
Adapting MapReduce for Dynamic Environments
Using a Peer-to-Peer Model

Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

DEIS, University of Calabria, Via P. Bucci 41C, 87036 Rende, Italy
fmarozzo@unical.it, {talia,trunfio}@deis.unical.it

Extended Abstract

1 Introduction

MapReduce is a programming model used for processing large data sets in a highly-
parallel way [1]. Users specify the computation in terms of a “map” function that
processes a key/value pair to generate a set of intermediate key/value pairs, and
a “reduce” function that merges all intermediate values associated with the same
intermediate key.

MapReduce implementations (e.g., Google’s MapReduce [2] and Apache
Hadoop [3]) are based on a master-slave model. A job is submitted by a user node to
a master node that selects idle workers and assigns each one a map or a reduce task.
When all map and reduce tasks have been completed, the master node returns the
result to the user node. The failure of a worker is managed by re-executing its task
on another worker, while master failures are not managed by current MapReduce
implementations as designers consider failures unlikely in large clusters or in reliable
Cloud environments.

On the contrary, node failures (including master failures) can occur in large clus-
ters and Clouds and are likely to happen in dynamic environments, like computa-
tional Grids and volunteer computing systems, where nodes join and leave the net-
work at an unpredictable rate. Therefore, providing effective mechanisms to manage
master failures is fundamental to exploit the MapReduce model in the implemen-
tation of data-intensive applications in those dynamic environments where current
MapReduce implementations could be unreliable. The goal of this work is investi-
gating how to improve the master-slave architecture of current MapReduce imple-
mentations to make it more suitable for Grid-like and P2P dynamic scenarios. The
extended model we introduce here exploits a P2P model to dynamically assign the
master role and to manage master failures in a decentralized but simple way.

In our P2P-MapReduce architecture, each node can act either as master or slave.
The role assigned to a given node depends on the current characteristics of that
node, and so it can change dynamically over time. Thus, at each time, a limited set
of nodes is assigned the master role, while the others are assigned the slave role.
Moreover, each master node can act as backup node for other master nodes. A user
node can submit the job to one of the master nodes, which will manage it as usual
in MapReduce. That master will periodically checkpoint the status of the job on its
backup nodes. In case those backup nodes detect the failure of the master, they will
elect a new master among them and will restart the job from the latest available
checkpoint.



In the following we describe the designed P2P-MapReduce architecture and out-
line its implementation using the Sun’s JXTA P2P framework.

2 Architecture

The P2P-MapReduce architecture includes three basic roles, shown in Fig. 1: user
(U), master (M) and slave (S). Master nodes and slave nodes form two logical P2P
networks called M-net and S-net, respectively. As mentioned above, computing nodes
are dynamically assigned the master or slave role, hence M-net and S-Net change
their composition over time. The mechanisms used for maintaining this infrastructure
are discussed in Section 3.

In the following we describe, through an example, how a master failure is handled
in the P2P-MapReduce architecture. We assume the starting situation represented
in Fig. 1, where U is the user node that submits a MapReduce job, nodes M are the
masters and nodes S are the slaves.

U

S1

S2

S5S3

S4

M-net

S-net

M2

M3
M1

…………

…………

Fig. 1. P2P-MapReduce architecture

The following steps are performed to submit the job and recover from a master
failure (see Fig. 2):

1) U queries M-net to get the list of the available masters, each one characterized
by a workload index that measures how busy the node is. U orders the list by
ascending values of workload index, takes the first element as primary master
and the next k elements as backup masters. In this example, M1 is chosen as
primary master and M2 and M3 as backup masters (k = 2). Then, U submits
the MapReduce job to M1 along with the names of its backup nodes (M2 and
M3).

2) M1 notifies M2 and M3 that they will act as backup nodes for the current job
(in Fig. 2, the apex “B” to node M2 and M3 indicates the backup function).
This implies that M1 will periodically backup the entire job state (e.g., the
assignments of tasks to nodes, the locations of intermediate results, etc.) on M2

and M3, which in turn will periodically check whether M1 is alive.
3) M1 queries S-net to get the list of the available slave, choosing (part of) them

to execute a map or a reduce task. As for the masters, the choice of the slave



U

S1

S2

S5S3

S4

M2

M3
M1

…………

…………

U

S1

S2

S5S3

S4

M2

M3
M1

…………

…………

B

B

1) 2)

U

S1

S2

S5S3

S4

M2

M3
M1

…………

…………

B

B

U

S1

S2

S5S3

S4

M2

M3
M1

…………

…………

B

B

3) 4)

U

S1

S2

S5S3

S4

M2

M3
M1

…………

…………

B

U

S1

S2

S5S3

S4

M2

M3
M1

…………

…………

5) 6)

Fig. 2. Steps performed to submit a job and manage a master failure

nodes to use can be done on the basis of a workload index and other performance
metrics (e.g. CPU speed). In this example, nodes S1, S3 and S4 are selected as
slave nodes. The tasks are started on the slave nodes and managed as usual in
MapReduce.

4) The primary master M1 fails. Backup masters M2 and M3 detect the failure
of M1 and start a distributed procedure to elect among them the new primary
master.

5) The new primary master (M2) is elected by choosing the backup node with the
lowest workload index. The remaining k − 1 backup nodes (only M3, in this
example) continue to play the backup master role. Then, the MapReduce job
restarts from the latest checkpoint available on M2.

6) As soon as the MapReduce job is completed M2 returns the result to U .

It is worth noticing that the master failure and the recovery procedure are trans-
parent to the user. It should also be noted that a master node may play at the same
time the role of primary master for one job and that of backup master for another
job. Fig. 3 shows an example of such a situation, in which:



– user nodes U1 and U2 have submitted their MapReduce jobs (respectively Job 1
and Job 2 );

– M1 is the primary master of Job 1 and its backup masters are M2 and M3;
– M3 is the primary master of Job 2 and its backup master is M4 (hence, M3 is

at the same time backup master for Job 1 and primary master for Job 2 ).

U1

S1

S2

S5

S6

S3

S4

S7

U2

M4M2

M3
M1

BB

B

Job 1 Job 2

…………

…………

Fig. 3. Master nodes playing multiple roles for different jobs

3 Implementation

After designing the model, we are now implementing the P2P-MapReduce system
using the JXTA framework [4]. JXTA provides a set of XML-based protocols that
allow computers and other devices to communicate and collaborate in a P2P fashion.
In JXTA there are two main types of peers: rendezvous and edge. The rendezvous
peers act as routers in a network, forwarding the discovery requests submitted by
edge peers to locate the resources of interest. Peers sharing a common set of interests
are organized into a peer group. To send messages to each other, JXTA peers use
asynchronous communication mechanisms called pipes. All resources (peers, services,
etc.) are described by advertisements that are published within the peer group for
resource discovery purposes.

In the following we briefly describe how the JXTA components are used in the
P2P-MapReduce system to implement resource discovery, network maintenance, job
submission and failure recovery mechanisms.

3.1 Resource Discovery

All master and slave nodes in the P2P-MapReduce system belong to a single JXTA
peer group called MapReduceGroup. Most of these nodes are edge peers, but some
of them also act as rendezvous peers, in a way that is transparent to the users. Each



node exposes its features by publishing an advertisement containing basic informa-
tion such as its "Role", "WorkloadIndex", and "CPUSpeed".

An edge peer publishes its advertisement in a local cache and sends some keys
identifying that advertisement to a rendezvous peer. The rendezvous peer uses those
keys to index the advertisement in a distributed hash table called Shared Resource
Distributed Index (SRDI), that is managed by all the rendezvous peers of MapRe-
duceGroup. Queries for a given type of resource (e.g., master nodes) are submitted
to the JXTA Discovery Services that uses SRDI to locate all the resources of that
type without flooding the entire network.

Note that M-Net and S-Net, represented in Fig. 1, are “logical” networks in the
sense that queries to M-net (or S-net) are actually submitted to the whole MapRe-
duceGroup but restricted to nodes having the attribute "Role" set to "Master" (or
"Slave") using the SRDI mechanisms.

3.2 Network Maintenance

Network maintenance is carried out cooperatively by all nodes on the basis of their
role. The maintenance task of each slave node is to check periodically the existence of
at least one master in the network. In case no masters are found, the slave promotes
itself to the master role. In this way, the first node joining the network always assumes
the master role. The same happens to the last node remaining into the network.

The maintenance task of master nodes is to ensure the existence of a given per-
centage p of masters on the total number of nodes. This task is performed periodi-
cally by one master only (referred to as coordinator), which is elected for this purpose
among all masters on a turn basis. The coordinator has the power of changing slaves
into masters, and viceversa. During a maintenance operation, the coordinator queries
all nodes and orders them by ascending values of workload index: the first p percent
of nodes must assume (or maintain) the master role, while the others will become or
remain slaves. Nodes that have to change their role are notified by the coordinator
in order to update their status.

3.3 Job Submission and Failure Recovery

To describe the JXTA mechanisms used for job submission and master failure recov-
ery, we take the six-point example presented in Section 2 as reference:

1) The user node invokes the Discovery Service to obtain the advertisements of the
master nodes published in MapReduceGroup. Based on the "WorkloadIndex",
it chooses the primary master and the backup masters. Then, it opens a bidi-
rectional pipe (called PrimaryPipe) to the primary master and submits the job
along with the identifiers of the backup nodes.

2) The primary master opens a multicast pipe (BackupPipe) to the backup masters.
The BackupPipe has two goals: copying checkpoint information to the backup
nodes and allowing backup nodes to detect a primary master failure when the
BackupPipe connection times out.

3) The primary master invokes the Discovery Service to select the slave nodes
to use for the job. Slave nodes are filtered on the basis of "WorkloadIndex"
and "CPUSpeed" attributes. The primary master opens a bidirectional pipe
(SlavePipe) to each slave and starts a map or a reduce task on it.



4) The backup masters detect a primary master failure (i.e., a timeout on the Back-
upPipe) and start a procedure to elect the new primary master. To this end,
they connect each other with a temporary pipe and exchange information about
their current "WorkloadIndex".

5) The backup master with the lowest "WorkloadIndex" is elected as new primary
master. This new primary master binds the pipes previously associated to the old
primary master (PrimaryPipe, BackupPipe and SlavePipes), and restarts from
the latest available checkpoint.

6) The primary master returns the result of the MapReduce job to the user node
through the PrimaryPipe.

The primary master detects the failure of a slave by getting a timeout to the
associated SlavePipe connection. If this event occurs, a new slave is selected and the
failed map or reduce task is assigned to it.

4 Concluding remarks

The master node in current MapReduce implementations is a single point of failure
for jobs submitted to it. This implies that, in case of master failure, the whole job
submitted to it must be restarted. This results in the waste of great amounts of
resources, as the machine time taken by a single MapReduce job is the sum of the
machine times of the various slaves that participated to its execution.

We can estimate the amount of resources involved in a typical MapReduce job by
taking the statistics about a large set of MapReduce jobs run at Google, presented
in [1]. On March 2006, the average completion time per job has been 874 seconds,
using 268 machines on average. Assuming that each machine is fully assigned to one
job, the overall machine time is 874× 268 seconds (about 65 hours). On September
2007, the average job completion time has been 395 seconds using 394 machines,
with an overall machine time of 43 hours.

From the statistics reported above, we see that a master failure causes loss of
dozens CPU hours for a typical MapReduce job. Moreover, when the number of
available machines per user is limited (as in typical Grid systems where resources
are shared among thousands of users), a master failure produces also a significant loss
of time, as the job completion time increases as the number of machines decreases.

The P2P-MapReduce model presented in this paper exploits a P2P model to
perform job status checkpointing and manage master failures in a decentralized but
simple way. Using a P2P approach, we extended the MapReduce architectural model
making it suitable for highly dynamic environments where failure must be managed
to avoid a critical waste of computing resources and time.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM, vol. 51 n. 1 (2008) 107-113.

2. Google’s Map Reduce. http://labs.google.com/papers/mapreduce.html (Visited: July
2008).

3. Apache Hadoop. http://hadoop.apache.org (Visited: July 2008).
4. Gong, L.: JXTA: A Network Programming Environment. IEEE Internet Computing,

vol. 5 n. 3 (2001) 88-95.


