
The Weka4WS framework for
distributed data mining in
service-oriented Grids

Domenico Talia, Paolo Trunfio†,∗, Oreste Verta

DEIS, University of Calabria
Via P. Bucci 41C
87036 Rende (CS), Italy

SUMMARY

The service oriented architecture (SOA) paradigm can be exploited for the
implementation of data and knowledge-based applications in distributed environments.
The Web Services Resource Framework (WSRF) has recently emerged as the standard
for the implementation of Grid services and applications. WSRF can be exploited
for developing high-level services for distributed data mining applications. This paper
describes Weka4WS, a framework that extends the widely used open source Weka toolkit
to support distributed data mining on WSRF-enabled Grids. Weka4WS adopts the
WSRF technology for running remote data mining algorithms and managing distributed
computations. The Weka4WS user interface supports the execution of both local and
remote data mining tasks. On every computing node, a WSRF-compliant Web service is
used to expose all the data mining algorithms provided by the Weka library. The paper
describes the design and the implementation of Weka4WS using the WSRF libraries
and services provided by Globus Toolkit 4. A performance analysis of Weka4WS for
executing distributed data mining tasks in different network scenarios is presented.
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INTRODUCTION

In enterprise and scientific scenarios handling and analyzing distributed data sources through
Grid systems is as important as delivering high-performance computing. Complex business and
scientific applications are exploiting Grids to access distributed resources (e.g., computers,
databases, networks, etc.) and run decentralized applications operating on dispersed data
and resources. In fact, Grids have been designed to support applications that can benefit

†E-mail: trunfio@deis.unical.it
∗Correspondence to: Paolo Trunfio, DEIS, University of Calabria, Via P. Bucci 41C, 87036 Rende (CS), Italy



2 D. TALIA, P. TRUNFIO, O. VERTA

from high performance, distribution, collaboration, data sharing and complex interaction of
autonomous and geographically dispersed resources. Recently, a few Grid-based data mining
systems have been proposed including general frameworks, abstract models, and domain-
specific implementations [1, 2, 3, 4].

Through a service-oriented model, application and system functions can be distributed
among several computers or domains for improving efficiency or for necessity. By using this
approach, data-intensive and knowledge discovery applications can be developed through the
exploitation of Grid technology for delivering high performance and managing data and
knowledge distribution. Our focus here is on distributed data mining services that allow
decentralized teams to analyze data in a high-level, standard and reliable way. Members of
a decentralized team can be part of a physical organization (e.g., a company having more
sites) or a virtual organization [5] composed of a set of people belonging to different physical
organizations that share resources and goals.

This paper describes Weka4WS, a framework that extends the widely used Weka toolkit [6]
for supporting distributed data mining on Grid environments. Weka provides a large
collection of machine learning algorithms written in Java for data pre-processing, classification,
clustering, association rules, and visualization, which can be invoked through a common
graphical user interface. In Weka, the overall data mining process takes place on a single
machine, since the algorithms can be executed only locally. The goal of Weka4WS is to extend
Weka to support remote execution of the data mining algorithms. In such a way, distributed
data mining tasks can be concurrently executed on decentralized Grid nodes by exploiting
data distribution and improving application performance.

Data mining algorithms for classification, clustering and association rules in Weka4WS can
be executed on remote Grid resources. To enable remote invocation, all the data mining
algorithms provided by the Weka library are exposed through a Web service, which can be
easily deployed on the available Grid nodes. Thus, Weka4WS also extends the Weka GUI
to enable the invocation of the data mining algorithms that are exposed as Web services on
remote machines. To achieve integration with standard Grid environments, the Weka4WS Web
services have been implemented by using the Web Services Resource Framework (WSRF ) [7]
as enabling technology. As WSRF implementations are recent, to the best of our knowledge,
Weka4WS is the first data mining framework exploiting the WSRF technology.

In the following we describe the design and implementation of Weka4WS. To evaluate the
overhead introduced by the service invocation mechanisms and its effects on the efficiency of the
proposed system, we also present a performance analysis of Weka4WS executing distributed
data mining tasks in different network scenarios. This work is one of the first performance
evaluations of WSRF. The work presented in this paper is an extended version of the work
presented in [8]. This new version describes an improved implementation of the framework,
includes a wider set of experimental results, and outlines system extensions on which we are
currently working.
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WSRF AND THE WEKA4WS FRAMEWORK

WSRF is a family of technical specifications concerned with the creation, addressing, inspection
and lifetime management of stateful resources using Web services [7].

A Web service is a software component that can be accessed by remote entities (clients or
other services) using standard Internet protocols such as HTTP. The capabilities offered by
a service are defined using the Web Services Description Language (WSDL), an XML-based
formalism that allows to define the operations exposed by a Web service, as well as specifying
the input and output messages that must be exchanged to invoke such operations. The set of
operations and associated messages constitute the interface of a service.

An important feature of Web services is the independence of the service interface from the
implementation of the operations. To invoke a Web service, a remote entity needs to know
only its WSDL interface, without worrying about the actual programming language used to
implement its operations. This allows to couple in an easy way distributed software components
implemented using different languages and running on heterogeneous platforms.

Web services in Grid computing are used as uniform interfaces for accessing remote
resources and composing distributed applications, independently from their location and
specific implementation. The so-called Open Grid Services Architecture (OGSA) [9] defines
an architectural model for Grid systems in which distributed resources and applications are
modelled as Web services that interact each other using Internet-based standards.

WSRF implements the OGSA philosophy by defining a set of Web service standards for the
implementation of Grid systems. As mentioned above, WSRF focuses on managing stateful
resources using Web services. The combination of a stateful resource with a Web service is
termed WS-Resource. The possibility to define a “state” associated to a Web service is the most
important difference between WSRF-compliant Web services and pre-WSRF ones. This is a key
feature in implementing Grid systems, because Grid applications can be composed by multiple
long-running processes, whose state needs to be accessed and monitored to control the overall
execution. In this context, WS-Resources provide a standard way to represent, advertise, and
access properties associated to processes as required by complex Grid applications.

Currently, WSRF includes the following standards:

• WS-Resource Lifetime: Defines mechanisms for managing the lifecycle of WS-Resources,
including their creation and destruction.

• WS-Resource Properties: Defines types and values of the components of a WS-Resource
that can be accessed or modified by service requestors through the Web service interface.
The term resource property is used to refer to an individual component of a WS-Resource.

• WS-Renewable References: Defines mechanisms to retrieve an updated version of the
endpoint reference (EPR) of a WS-Resource. Each EPR is globally unique and includes
the URL of the Web service and a unique identifier of the resource it is associated to.

• WS-Service Group: Defines a means by which Web services and WS-Resources can
be aggregated or grouped together for a specific purpose (e.g., for service/resource
discovery).

• WS-Base Faults: Defines a standard exception type, along with rules for how this
exception type is used by Web services.
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A separate standard, called WS-Notification [10], defines a publish-subscribe notification
model for Web services that is exploited to notify interested clients and/or services about
changes that occur to the state of a WS-Resource. The combination of the WSRF and WS-
Notification mechanisms are exploited in Grids to build long-lived distributed applications, in
which the state of the computation is managed across multiple nodes, and services cooperate
by exchanging messages in a highly-distributed way.

While WSRF and WS-Notification are currently adopted as the standard implementation
of the OGSA model, some researchers [11] have evaluated the feasibility of an alternative
implementation of OGSA based on two different standards: WS-Transfer and WS-Eventing.

WS-Transfer [12] defines mechanisms for acquiring XML-based representations of resources
using the Web service infrastructure. Specifically, it defines operations for sending and receiving
the representation of a given resource, and operations for creating and deleting a resource
and its corresponding representation. WS-Eventing [13] defines a notification protocol that
allows clients to request asynchronous delivery of event messages generated by Web services.
Standardized messages are defined to allow clients to subscribe to unsubscribe from these event
sources.

The comparative study proposed in [11] shows a substantial equivalence of WSRF/WS-
Notification and WS-Transfer/WS-Eventing in terms of functionality and implied performance,
arguing the feasibility of an alternative implementation of OGSA based on the WS-
Transfer/WS-Eventing specifications. According to this study, it should be relatively easy
to transform a WSRF/WS-Notification-based application, such as Weka4WS, into a WS-
Transfer/WS-Eventing-based application, without affecting general design and performance.

One of the most adopted implementations of the WSRF specifications has been developed
by the Globus Alliance in the context of the Globus project. The Globus Toolkit 4 (GT4) [14]
provides both an implementation of WSRF as an open source library and a set of WSRF-
compliant services that can be used to create Grid applications.

The Weka4WS system described here has been developed by using the Java WSRF library
provided by GT4. Moreover, all nodes involved in Weka4WS applications use the GT4 services
for standard Grid functionality, such as security, data management, and so on. These nodes are
distinguished in two categories on the basis of the available Weka4WS components: user nodes
that are the local machines providing the Weka4WS client software; and computing nodes that
provide the Weka4WS Web services allowing for the execution of remote data mining tasks.
Data can be located on computing nodes, user nodes, or third-party nodes (e.g., shared data
repositories). If a dataset to be mined is not available on a computing node, it can be uploaded
by means of the GT4 data management services. Figure 1 shows the software components of
user nodes and computing nodes in the Weka4WS framework.

Computing nodes include two components: a Web Service (WS ) and the Weka Library
(WL). The WS exposes all the data mining algorithms provided by the underlying WL.
Therefore, requests to the WS are executed by invoking the corresponding WL algorithms.

User nodes include three components: Graphical User Interface (GUI ), Client Module (CM ),
and Weka Library (WL). The GUI is an extended version of the Weka Explorer environment
to support the execution of both local and remote data mining tasks. Local tasks are executed
by directly invoking the local WL, whereas remote tasks are executed through the CM, which
operates as an intermediary between the GUI and Web services on remote computing nodes.
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Figure 1. Software components of user nodes and computing nodes.

Figure 2. The Weka Explorer extended with a Control Panel that allows
to choose the Grid node to which submit the data mining task.

Figure 2 shows a snapshot of the current GUI implementation. As highlighted in the broken
box, a Control Panel has been added to the original Weka Explorer environment. This panel
includes the following components: i) a drop-down list to choose the Grid node to which submit
the data mining task; ii) a Reload hosts button to update the list of available computing nodes;
iii) the Start and Stop buttons to start and stop the data mining task.

Through the drop-down list the user can select one of the following items:
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Table I. Operations provided by each Web service in the Weka4WS framework.

Operation Description

createResource Creates a new stateful resource.
subscribe Subscribes to notifications about resource properties changes.
destroy Explicitly requests destruction of a resource.
classification Submits the execution of a classification task.
clustering Submits the execution of a clustering task.
associationRules Submits the execution of an association rules task.

• Local : the task will be executed on the local machine, as in the standard Weka
environment.

• Auto: the task will be submitted to one of the listed hosts; the host is selected
automatically using a round-robin strategy (i.e., at each invocation, the next host in
the list is chosen).

• One of the listed hosts: the task will be submitted to the Grid node selected by the user.

Each data mining task in the GUI is managed by an independent thread. Therefore, a user
can start multiple tasks in parallel on different nodes, this way taking full advantage of the
distributed Grid environment. Whenever the output of a data mining task has been received
from a remote computing node, it is visualized in the standard Output panel (on the right of
Figure 2).

Web service operations

Table I lists the operations provided by each Web service in the Weka4WS framework. The
first three operations are related to WSRF-specific invocation mechanisms (described below),
whereas the last three operations - classification, clustering and associationRules - are
used to require the execution of a specific data mining task. In particular, the classification
operation provides access to the complete set of classifiers in the Weka library (currently, 71
algorithms). The clustering and associationRules operations expose all the clustering and
association rules algorithms provided by the Weka library (5 and 2 algorithms, respectively).

To improve concurrency, data mining task are invoked in an asynchronous way, that is, the
client submits the task in a non-blocking mode and results are notified to it as soon as they
are computed.

Table II lists the input parameters of the classification, clustering, and
associationRules data mining operations. Four parameters are required in the invocation
of all the data mining operations: algorithm, arguments, dataSet, and crcValue. The
algorithm argument specifies the name of the Java class in the Weka library to be invoked (e.g.,
“weka.classifiers.trees.J48”). The arguments parameter specifies a sequence of arguments to
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Table II. Input parameters of the Web service data mining operations.

Operation Parameter Description

classification

algorithm Name of the classification algorithm to be used.
arguments Arguments to be passed to the algorithm.
testOptions Options to be used during the testing phase.
classIndex Index of the attribute to use as the class.
dataSet URL of the dataset to be mined.
crcValue Checksum value of the dataset to be mined.

clustering

algorithm Name of the clustering algorithm.
arguments Algorithm arguments.
testOptions Testing phase options.
selectedAttrs Indices of the selected attributes.
classIndex Index of the class w.r.t. evaluate clusters.
dataSet URL of the dataset to be mined.
crcValue Checksum value of the dataset to be mined.

associationRules

algorithm Name of the association rules algorithm.
arguments Algorithm arguments.
dataSet URL of the dataset to be mined.
crcValue Checksum value of the dataset to be mined.

be passed to the algorithm (e.g., “-C 0.25 -M 2”). The dataSet parameter specifies the URL
of the dataset to be mined, and the crcValue parameter specifies its checksum.

Task execution

This section describes the steps performed to execute a data mining task on a remote Web
service in the Weka4WS framework. Figure 3 shows a Client Module (CM ) that interacts with
a remote Web Service (WS ) to execute a data mining task. In particular, this example assumes
that the CM is requesting the execution of a classification task on a dataset located on the
user node. Notice that this is a worst case, since in many scenarios the datasets to be mined
may be already available (e.g., replicated) on most computing nodes.

The following steps are executed in order to perform this task, (see Figure 3):

1. Resource creation. The CM invokes the createResource operation to creates a new
resource that will maintain the state of the subsequent classification analysis. The state
is stored as properties of the resource. In this example, a model property is used to store
the result of the classification task. The WS returns the endpoint reference (EPR) of the
created resource. The EPR is globally unique and distinguishes this resource from all
other resources over the Grid. Subsequent requests from the CM will be directed to the
resource identified by that EPR.
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Figure 3. Execution of a data mining task on a remote Web service.

2. Notification subscription. The CM invokes the subscribe operation that subscribes
to notifications about changes that will occur to the model resource property. As soon
as this property will change its value (i.e., as soon as the model has been computed), the
CM will receive a notification containing that value, which represents the result of the
classification task.

3. Task submission. The CM invokes the classification operation requiring the
execution of the classification task. This operation receives a set of parameters as shown
in Table II, among which the name of the classification algorithm to be used, the URL
of the dataset to be mined and its checksum. If a copy of the dataset is not already
available on the computing node, this operation returns the URL where the dataset has
to be uploaded.

4. File transfer. Since in this example we assume that the dataset is not already available
on the computing node, the CM requests to transfer it to the URL specified as a return
value by the classification operation. The transfer request is managed by the GT4
Reliable File Transfer (RFT ) service running on the computing node, which in turn
invokes the GridFTP servers [15] running on the user and computing nodes. If the
size of the dataset is over a given threshold, it is compressed before the transfer and
decompressed at destination.

5. Data mining. The classification analysis is started by the WS through the invocation
of the appropriate Java class in the Weka library. The result of the computation (i.e.,
the inferred model) is stored in the model property of the resource created on Step 1.

6. Results notification. As soon as the model property has been changed, its new value
is notified to the CM by invoking its implicit deliver operation. This mechanism allows
for the asynchronous delivery of the execution results as soon as they are generated.
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7. Resource destruction. The CM invokes the destroy operation, which eliminates the
resource created on Step 1.

PERFORMANCE EVALUATION

To evaluate the performance of the system, we carried out some experiments where we used
Weka4WS for executing different data mining tasks in two network scenarios:

• Local Area Grid (LAG): the computing node and the user node are connected by a
local area network, with an average bandwidth of 41.2MB/s.

• Wide Area Grid (WAG): the computing node and the user node are connected by a
wide area network, with an average bandwidth of 52.7kB/s.

In the following we discuss performance results obtained by executing clustering and
classification data mining tasks on publicly available datasets. The main goal of our analysis
is to evaluate the overhead introduced by the WSRF mechanisms and the distributed scenario
with respect to the overall execution time.

Clustering experiments

For our clustering experiments we used the USCensus1990 dataset † from the UCI KDD
Archive [16]. The dataset contains data extracted from the U.S. Census Bureau Web site
as part of the 1990 U.S. census. We extracted from it ten datasets containing a number of
instances ranging from 143000 to 1430000, with a size ranging from 20 to 200 MB. We used
Weka4WS to execute the Expectation Maximization (EM ) clustering algorithm on each of
these datasets and asked the system to group data in 5 clusters on the basis of 10 selected
attributes.

As mentioned before, the clustering analysis was executed both in the LAG and WAG
scenarios. For each dataset size and network scenario we run 20 independent executions. The
measures reported in the following graphs resulted from the average values of all executions.

Figure 4 shows the execution times of the different steps in the LAG scenario for a dataset
size ranging from 20 to 200 MB. As shown in the figure, the execution times of the WSRF-
specific steps are independent from the dataset size, namely: resource creation (1681 ms, on
the average), notification subscription (261 ms), task submission (289 ms), results notification
(1347 ms), and resource destruction (207 ms).

On the contrary, the execution times of the file transfer and data mining steps are
proportional to the dataset size. In particular, the execution time of the file transfer ranges
from 2.8 s for 20 MB to 27.7 s for 200 MB, while the data mining execution time ranges from
254 s for the dataset of 20 MB, to 3709 s for the dataset of 200 MB. The total execution time
(not shown in the figure) ranges from 261 s for 20 MB, to 3740 s for 200 MB.

†http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html [19 March 2007]
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Figure 4. Execution times of the clustering task in the LAG scenario.

Figure 5 shows the execution times of all steps in the WAG scenario. The execution times
of the WSRF-specific steps are pretty equal to those measured in the LAG scenario. The main
difference is the execution time of the results notification step, which in the LAG scenario is on
average of 1347 ms whereas in the WAG scenario is equal to 2671 ms, due to additional time
needed to transfer the clustering model through a low-speed network. For the same reason, the
transfer of the dataset to be mined required an execution time significantly greater than the
one measured in the LAN scenario. In particular, the execution time of the file transfer step
in the WAG scenario ranges from 63.3 s for 20 MB to 627.9 s for 200 MB, taking into account
that datasets are transferred in compressed form, as mentioned in the previous section.

The data mining execution time is similar to that measured in the LAN scenario, since the
clustering analysis is executed on an identical computing node. Mainly due to the additional
time required by the file transfer step, the total execution time (not shown in figure) is greater
than that measured in the LAG scenario; it ranges from 320 s for the 20 MB dataset to 4244
s for the 200 MB dataset.

Classification experiments

For data classification experiments we used the kddcup99 dataset ‡ available at the UCI
archive. This dataset, used for the KDD’99 Competition, contains a wide set of data produced
during seven weeks of monitoring in a military network environment subject to simulated
intrusions. As before, we extracted ten datasets from it, with a number of instances ranging

‡http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html [19 March 2007]
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Figure 5. Execution times of the clustering task in the WAG scenario.

from 172000 to 1720000 and a size ranging from 25 to 250 MB, and then we used Weka4WS
to perform a classification analysis on each of those datasets. In particular, we employed the
J48 classification algorithm, using 5-folds cross-validation based on 10 attributes.

Figure 6 shows the execution times of the different steps of the classification task in the
LAG scenario for a dataset size ranging from 25 to 250 MB. As highlighted in the clustering
experiments, the execution times of the WSRF-specific steps are independent from the dataset
size, whereas the execution times of the file transfer and data mining steps are proportional
to the dataset size.

In particular, the execution time of the file transfer ranges from 1.0 s for 25 MB to 13.2
s for 250 MB, while the data mining execution time ranges from 301 s for the dataset of 25
MB, to 2038 s for the dataset of 250 MB. The total execution time ranges from 349 s for the
dataset of 25 MB, to 2055 s for the dataset of 250 MB.

Figure 7 shows the execution times in the WAG scenario. As expected and noted in the
clustering experiments, the file transfer step requires an execution time significantly greater
than in the LAG scenario. In this case times range from 27.8 s for 25 MB to 201.7 s for 250
MB.

The data mining execution time is similar to that measured in the LAG scenario, since the
classification analysis is executed on an identical computing node, as mentioned before. The
total execution time in this case ranges from 65 s for the dataset of 25 MB to 2256 s for the
dataset of 250 MB.

To better highlight the overhead introduced by the WSRF mechanisms and the distributed
scenario, Figure 8 shows the percentage of data mining, file transfer, and WSRF overhead (i.e.,
the sum of resource creation, notification subscription, task submission, results notification, and
resource destruction steps), with respect to the total execution time in the LAG and WAG
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Figure 6. Execution times of the classification task in the LAG scenario.

Figure 7. Execution times of the classification task in the WAG scenario.
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Figure 8. Percentage of the execution times of the different steps of the
classification task in the LAG and WAG scenarios.

scenarios. For space reasons, the values reported in this figure refers only to the datasets of
50, 100, 150, 200 and 250 MB.

In the LAG scenario the data mining step takes the 96.39% of the total execution time for
the dataset of 50 MB, whereas it takes the 99.18% of the total execution time for the dataset
of 250 MB. At the same time, the file transfer ranges from 1.25% to 0.64%, and the WSRF
overhead range from 2.36% to 0.18%. In the WAG scenario the data mining step takes from
70.75% to 90.83% of the total execution time, the file transfer ranges from 26.95% to 8.94%,
while the WSRF overhead range from 2.30% to 0.23%.

We can observe that in the LAG scenario neither the file transfer nor the WSRF overhead
represent a significant overhead with respect to the total execution time. In the WAG scenario
the file transfer is a critical step only in relatively small datasets, since in these cases the
data mining step is very fast. However, in most scenarios the data mining step is a very time-
consuming task, so the file transfer step - if needed - is marginal when large datasets must be
transferred, as shown in the figure.

As a concluding remark, the performance analysis discussed above demonstrates the
efficiency of the WSRF mechanisms as a means to execute data mining tasks on remote
machines. By exploiting such mechanisms, Weka4WS can provide an effective way to perform
compute-intensive distributed data analysis on a large-scale Grid environment.

APPLICATION EXAMPLE

The ability of Weka4WS to manage multiple concurrent tasks on different machines allows users
to implement a wide range of data mining applications that take advantage of the distributed
computing power of a Grid.
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A class of applications that can efficiently exploit the Weka4WS approach is that of a single
dataset analyzed in parallel on multiple Grid nodes using different data mining algorithms.
For example, a given dataset could be concurrently classified using different classification
algorithms with the aim of finding the “best” classifier on the basis of some evaluation criteria
(e.g., error rate, confusion matrix, etc.).

A variant of this class of applications is that of a single dataset analyzed using multiple
instances of the same algorithm with different parameters (parameter sweeping). In the
following we describe an example of application in which a real dataset is analyzed with
Weka4WS by running multiple instances of the same clustering algorithm, with the goal of
obtaining multiple clustering models from the same data source.

The covertype dataset § from the UCI archive has been used as data source. The dataset
has a size of about 72 MB and contains information about forest cover type for 581012 sites in
the United States. Each dataset instance, corresponding to a site observation, is described by
54 attributes that give information about the main features of a site (e.g., elevation, aspect,
slope, etc.). The 55th attribute contains the cover type, represented as an integer in the range
1 to 7.

Weka4WS has been used to run an application in which 6 independent instances of the
KMeans algorithm [17] perform a different clustering task on the covertype dataset. In
particular, each KMeans instance has been asked to group data into a given number of clusters,
ranging from 2 to 7, based on all the attributes but the last one (the cover type). The same
application has been executed using a number of computing nodes ranging from 1 to 6 in order
to evaluate the speedup of the system.

Table III reports the execution times of the application when 1, 2, 4 and 6 computing nodes
are used. The 6 clustering tasks that constitute the overall application are indicated as C2..C7,
where the notation Cn refers to the task of grouping data into n clusters. The table shows
how the clustering tasks are assigned to the computing nodes (denoted as N1..N6), as well as
the partial execution times (file transfer time, data mining time, and WSRF overhead), and
the total execution time.

The file transfer time includes the processes of compressing the dateset on the user node,
transferring the compressed dataset, and decompressing the dataset on the computing node. As
stated in the previous section, the WSRF overhead is given by the sum of the execution times
needed to perform the various WSRF-related steps. Note that the case of 1 node corresponds
to the sequential execution of tasks C2..C7 on a single machine. Thus, the file transfer time
and the WSRF overhead in this case are not present, and the total time corresponds to the
data mining time.

The total execution time decreases from 10882 s obtained using 1 computing node, to 2444
s obtained with 6 nodes. The achieved execution speedup ranged from 1.78 using 2 nodes, to
4.45 using 6 nodes. The execution times and speedup values for different number of nodes are
represented in Figure 9.

§http://kdd.ics.uci.edu/databases/covertype/covertype.html [19 March 2007]
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Table III. Task assignments and execution times for different number of nodes (times
in seconds).

No of Task assignments File Data WSRF Total
nodes (Node ← Tasks) transfer mining overhead time

1 N1 ← C2,C3,C4,C5,C6,C7 0 10882 0 10882

2
N1 ← C2,C4,C6

199.6 5912 15.9 6128
N2 ← C3,C5,C7

4

N1 ← C2,C6

193.6 3740 11.6 3945
N2 ← C3,C7
N3 ← C4
N4 ← C5

6

N1 ← C2

197.6 2240 5.9 2444

N2 ← C3
N3 ← C4
N4 ← C5
N5 ← C6
N6 ← C7

Figure 9. Execution times and speedup values for different number of
nodes.
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ONGOING WORK

As shown by the example described in the previous section, through the Weka4WS Explorer
GUI a user can run applications composed of several data mining tasks that execute in parallel
on single or multiple datasets. These data mining applications are effectively supported by the
Explorer GUI, and their execution on multiple Grid nodes results in a significant increase of
performance.

Besides the kind of applications discussed above, distributed data mining includes a variety
of techniques that combine parallel and centralized execution of algorithms. An example of
distributed data mining technique is meta-learning, which aims to build a global classifier from
a set of inherently distributed data sources [18]. Meta-learning is basically a two-step process:
first, a number of independent classifiers are generated by applying learning programs to a
collection of distributed and homogeneous datasets in parallel. Then, the classifiers computed
by learning programs are collected in a centralized site and combined to obtain the global
classifier.

Another example of distributed data mining is collective data mining [19]. Instead of
combining incomplete local models, collective data mining builds the global model through the
identification of significant sets of local information. In other terms, the local blocks directly
form the global model. This result is based on the fact that any function can be expressed
in a distributed fashion using a set of appropriate basis functions. If the basis functions are
orthogonal the local analysis generates results that can be correctly used as components of the
global model.

The Weka4WS Explorer GUI does not support the visual design of such complex distributed
data mining scenarios, because it is based on the Weka Explorer environment that is targeted
to the execution of single data mining tasks. On the other hand, the Explorer is not the only
way for implementing distributed data mining tasks in Weka4WS. In fact, the Weka4WS Web
services can be directly invoked within ad hoc programs or scripts that exploits the Weka4WS
client module. This allows developers to implement applications that coordinate the invocation
of multiple data mining services in a distributed scenario more complex of that shown in the
Application example section. Therefore, a distributed data mining application can be composed
by several tasks that are submitted to different Weka4WS Web services in parallel and/or in
sequence.

We are currently working to extend Weka4WS in order to support the visual design of
distributed data mining applications that coordinate the execution of algorithms on different
Grid nodes. To this end, we are extending the KnowledgeFlow environment provided by the
original Weka. The KnowledgeFlow is an alternative to the Weka Explorer as a front end
to the algorithms in the Weka library. Using the KnowledgeFlow a user can select the Weka
components from a tool bar, place them onto a panel and connect them together in order to
form a “knowledge flow” for processing and analyzing data. Currently, all the Weka classifiers
and filters are available as components in the KnowledgeFlow. The most important feature of
the KnowledgeFlow is that multiple batches of data can be processed in parallel, because each
flow executes in its own thread.

Like in the Weka Explorer, all the components in the KnowledgeFlow are executed locally.
We are extending the KnowledgeFlow in order to allow the execution of all the data mining
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Figure 10. A distributed data mining application designed using the
Weka4WS KnowledgeFlow environment: the broken boxes highlight the

hosts where the single data mining tasks are running.

components in the “knowledge flow” on different Web services. In this way, the overall execution
time can result significantly reduced because different parts of the computation are executed
in parallel on different nodes, taking at the same time advantage of data and algorithms
distribution.

Figure 10 shows a snapshot of the Weka4WS KnowledgeFlow prototype we are currently
working on. As in the original KnowledgeFlow environment, the user can compose a “knowledge
flow” as a workflow that links together data loaders, filters, data mining algorithms, and results
visualizers. The new feature in our Grid-enabled KnowledgeFlow is that, for each algorithm
in the application flow, the user can specify where such algorithm must be executed. The user
can do that by right-clicking on the node that represents the algorithm, and then selecting the
location of its execution through a control panel similar to that provided by the Weka4WS
Explorer environment. As in the Explorer, the location can be set either to Local, Auto, or to
a node specified by the user.

As an example, the “knowledge flow” in Figure 10 represents a distributed data mining
applications in which a dataset (covertype) is analyzed by using four different classification
algorithms (J48, Random Forest, Decision Stump and Naive Bayes). The flow starts (on the
left) with an ArffLoader node, used to load the dataset, which is connected to a TrainTest
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SplitMaker node that splits the dataset into training and test set. The TrainTest SplitMaker
node is connected to four nodes, each one performing a given classification algorithm. These
are in turn connected to a ClassifierPerformanceEvaluator node for the model validation,
and then to a TextViewer node for results visualization. The user can see the results of the
data mining tasks by clicking on the TextViewer nodes. When the application is started, the
four branches of the “knowledge flow” are executed in parallel on four Grid nodes, selected
as specified by the user. As highlighted in the figure, during the application execution the
environment shows the names of the hosts on which the single data mining algorithms are
running.

RELATED WORK

The idea of adapting the Weka toolkit to a Grid environment has been recently explored,
although none of the proposed systems makes use of WSRF as enabling technology.

Grid Weka [20] extends the Weka toolkit to enable the use of multiple computational
resources when performing data analysis. In that system, a set of data mining tasks can be
distributed across several machines in an ad-hoc environment. Tasks that can be executed by
using Grid Weka include: building a classifier on a remote machine, labelling a dataset using
a previously built classifier, testing a classifier on a dataset, and cross-validation.

Although if Grid Weka provides a way to use multiple resources to execute distributed data
mining tasks, it has been designed to work within an ad-hoc environment, which does not
constitute a Grid per se. In particular, the invocation of remote resources in the Grid Weka
framework is not service-oriented, and it makes use of ad-hoc solutions that do not take into
considerations fundamental Grid aspects (e.g., interoperability, security, etc.). On the contrary,
Weka4WS exposes all its functionalities as WSRF-compliant Web services, which enable
important benefits, such as dynamic service discovery and composition, standard support for
authorization and cryptography, and so on.

FAEHIM (Federated Analysis Environment for Heterogeneous Intelligent Mining) [21] is a
Web services-based toolkit for supporting distributed data mining. This toolkit consists of a
set of data mining services, a set of tools to interact with these services, and a workflow system
used to assemble these services and tools. The Triana problem solving environment [22] is used
as the workflow system. FAEHIM exposes data mining services as Web services to enable easy
integration with other third-party services, allowing data mining algorithms to be embedded
within existing applications.

Most of the Web services in FAEHIM are derived from the Weka library. All the data
mining algorithms available in Weka were converted into a set of Web services. In particular,
a general “Classifier Web service” has been implemented to act as a wrapper for a complete
set of classifiers in Weka, a “Clustering Web service” has been used to wrap a variety of
clustering algorithms, and so on. This service-oriented approach is similar to that adopted in
Weka4WS. However, in Weka4WS standard WSRF mechanisms are used for managing remote
tasks execution and asynchronous results notification, and all the algorithms are exposed on
every node as a single WSRF-compliant Web service to facilitate the deployment in a large
Grid environment.
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CONCLUSIONS

The Grid computing paradigm focuses on managing distributed applications and coordinated
service composition involving networked computers and data sources rather than single
resources. Today many data repositories are distributed for necessity and privacy reasons,
therefore distributed infrastructures and applications can help in designing data management
systems that access and analize data sources where they are or where it is necessary for
functionality and/or performance purposes. To pursue this approach, distributed middleware
is a key element and can help users in achieving their goals.

The middleware toolkit we discussed here offers a large set of data mining services for
composing flexible knowledge discovery applications in distributed environments. Weka4WS
adopts the emerging Web Services Resource Framework (WSRF) for remotely running data
mining algorithms and composing distributed knowledge discovery applications that integrate
data, tools, and resources available from dispersed sites through the SOA paradigm.

We described the design and the implementation of Weka4WS by exploiting the WSRF
library provided by Globus Toolkit 4. To evaluate the efficiency of the implemented system,
we also presented a performance analysis of Weka4WS that discussed the execution of two
distributed data mining tasks in different network scenarios. This work is one of the first
performance evaluations of WSRF. In particular, to the best of our knowledge, it proposes the
first implementation and performance analysis of WSRF for data mining on the Grid.

The experimental results demonstrate the low overhead of the WSRF Web service invocation
mechanisms with respect to the execution time of data mining algorithms and the efficiency
of the WSRF framework as a means for executing data mining tasks on remote resources. By
exploiting such mechanisms, Weka4WS provides an effective way to perform compute-intensive
distributed data analysis on large-scale Grid environments.

The Weka4WS Web services can be directly invoked within ad hoc programs to implement
applications that coordinate the invocation of multiple data mining services in a distributed
scenario. Thus, a distributed data mining application can be composed by several tasks that
execute on multiple Grid nodes in parallel and/or in sequence. We are currently working to
extend the Weka KnowledgeFlow environment to support the visual design of distributed
data mining applications. This will allow users to design and execute complex data mining
applications on the Grid in a simple and effective way.

The Weka4WS code is available for research and application purposes. It can be downloaded
from http://grid.deis.unical.it/weka4ws.
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