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ABSTRACT: 
 
A PSE toolkit is a group of technologies within a software architecture through which multiple 
PSEs can be built for different application domains. The effective use of a PSE toolkit requires 
the management of the heterogeneity of the involved resources that can include computers, data, 
network facilities, sensors, and software tools provided by different organizations. A distributed 
implementations of a PSE toolkit can be envisioned through the exploitation of features and 
functionalities offered by a service-oriented Grid framework, so obtaining a Grid PSE toolkit 
based on Web services. This paper presents a metadata model for Grid PSE toolkits based on 
Web services and the architecture of an information system that exploits the proposed metadata 
model. These two components contribute to define a general model of metadata management for 
supporting the design and implementation of problem solving environments on Grids. 
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INTRODUCTION 
 
A problem solving environment (PSE) is a computer system that provides the computational 
features necessary to solve a target class of problems, according to the well-known definition 
reported in (Gallopoulos, Houstis et al. 1994). PSEs for industry, commercial, and business 
applications are gaining popularity in the recent years. An advancement of the PSE concept is the 
PSE toolkit concept. A PSE toolkit is a group of technologies through which multiple PSEs can 
be built for different application domains.  
PSEs can benefit from advancements in hardware/software solutions achieved in parallel and 
distributed systems. In particular, the Web service paradigm and the Grid emerged as very 
interesting computing models in the area of parallel and distributed computing. The Web service 
paradigm enables flexible, platform-independent, and largely automated interactions between 
Web-resident services and applications, promoting the interoperation among them. The Grid is a 
novel infrastructure for network computing on local or geographical scales that can dynamically 
embody heterogeneous computing resources. Grid computing is today broadly used in many 
scientific and engineering application fields and is attracting a growing interest from business and 
industry. 
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The recently proposed OGSA architecture (Open Grid Services Architecture (Foster, Kesselman 
et al. 2002)) aligns Grid technologies with Web services technologies to take advantage of 
important Web services properties, such as service description and discovery, automatic 
generation of client and service code from service description, compatibility with emerging 
higher-level open standards and tools, and broad commercial support. To achieve this goal, 
OGSA defines a uniform exposed service semantics, the so-called Grid service, based on 
principles inherited from both the Grid computing and the Web services technologies.  
The research and industry communities, under the guidance of the Global Grid Forum (GGF) 
(“GGF”, 2005), contributed to evolve OGSA toward the Web Services Resource Framework 
(WSRF (“WSRF”, 2005)) that completes the integration between Grid services and Web services. 
WSRF specifications define a generic and open framework for modeling and accessing stateful 
resources using enriched Web services referred to as WSRF Web services. This framework 
comprises mechanisms to describe views on the state and to support management of the state 
through properties associated with the Web services. 
In order to fulfill the requirements of a PSE toolkit in a distributed environment, and according to 
the evolution trend discussed so far, this paper aims to exploit Grid and Web services features to 
enhance the  functionalities of a PSE toolkit in a multi-domain environment. A “Grid PSE toolkit 
based on WSRF Web services” can indeed benefit from the advanced services and components 
offered by these novel technologies, such as security components, dynamic resource management 
services, resource discovery services, services for the parallel and distributed execution of 
complex applications. In particular, this paper focuses on the development of an information 
system for a multi-domain PSE toolkit and on the definition of a flexible and semantically 
enriched metadata model.  
An efficient information system is a key component because a PSE toolkit needs to manage a 
large variety of resources that can include computers, data, network facilities, sensors, and 
software tools provided by different organizations (Cannataro, Folino et al 2004). The 
management of such heterogeneous resources requires the use of metadata that, through an 
accurate categorization of resources, provides useful information about the features of resources 
and their usage modalities.  
As opposed to a single domain PSE, in a multi-domain PSE toolkit the structure of metadata 
information is not uniform: it depends on the type of the resource (i.e. software, hardware, data 
etc.), and on the application domain in which the resource is used.  
Accordingly, we propose a metadata model that can be flexibly exploited in a number of 
application domains, and at the same time is suited to be specialized in a particular application 
domain. In particular, we propose to associate a metadata document to each resource offered by 
the PSE toolkit and distinguish three sections within that document: an ontological metadata 
section that identifies the resource category, a semantic metadata section that characterizes 
resources in different application domains and assists discovery services, and a resource metadata 
section that gives details about how to use and access a resource. The rationale of such distinction 
comes from the consideration that, in a PSE toolkit, resources must be annotated with metadata 
information at different levels and at different times. 
Moreover, this paper introduces a novel architecture for a Grid-based information system capable 
to support the requirements of a multi-domain PSE toolkit. The proposed information system 
extends the basic information services of the WSRF-based Globus Toolkit 4 and offers semantic 
high-level services that exploit the proposed metadata model. 
The paper is organized as follows. After the “Related Work” Section, the Section “A Metadata 
Model for a Grid PSE Toolkit based on Web Services” describes the metadata model and the 
Section “Information System of the Grid PSE Toolkit” presents a software architecture for the 
information system based on the proposed metadata model. The “Ontology System” Section 
describes the ontology system and the approach that we use to represent a domain ontology 
through the XML schema formalism. The Section “Conclusions” concludes the paper. 
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RELATED WORK 
 
The adoption of the service oriented model in novel Grid systems, based on the OGSA 
architecture and the WSRF framework, has a noteworthy impact on the management of metadata 
and the architecture of information systems. The WSRF framework is concerned mainly with the 
creation, addressing, inspection, and lifetime management of stateful resources. Such a 
framework provides the means to manage stateful resources and codifies the relationship between 
Web services and stateful resources in terms of the implied resource pattern, which is a set of 
conventions related to the use of Web services technologies, in particular XML, WSDL, and WS-
Addressing. The composition of a stateful resource and a Web service that participates in the 
implied resource pattern is referred to as a WS-Resource. The WSRF framework introduces the 
WS-Resource definition and describes how to make the properties of a WS-Resource accessible 
through a Web service interface. The Globus Alliance has developed the Globus Toolkit 4 (GT4) 
(“Globus”, 2005), which offers advanced tools and functionalities based on the WSRF Web 
services. The information model of service-oriented Grid frameworks is essentially based on two 
features: 
1. Metadata describing Grid services instances is stored into XML-encoded documents, called 

Resource Properties in WSRF. Such documents must conform to enriched XML schema 
documents. 

2. Information is collected and indexed by means of hierarchical information services (called 
IndexServices in WSRF) that collect the metadata stored in WSRF Web services, aggregate it 
and provide enriched metadata information to high level browsing and querying services. 

When exploiting the WSRF architecture, based on the Web Service technology (“WSRF”, 2005), 
it is essential to integrate metadata embedded in services (i.e. information stored in the XML-
based Resource Properties provided by WSRF Web Services) and metadata external to WSRF 
Web Services, which can be stored in distributed databases having extremely variable scope and 
completeness. In the information model proposed in this paper, this integration is achieved 
through the use of a metadata repository that stores the XML metadata documents related to the 
components/services provided by the PSE toolkit. This repository is maintained as the primary 
source of information for both metadata embedded in services and metadata external to them. 
Furthermore, XML metadata related to services can be retrieved from this repository and 
published within WSRF Web services in the form of Resource Properties. 
In the Grid computing community there is an effort to define the so called Semantic Grid 
(“Semantic Grid”, 2005), whose approach is based on the systematic description of resources 
through metadata and ontologies. In (Fox, 2003) the role of metadata in the context of the 
Semantic Grid is discussed. There, metadata is used to assist a three level programming model: 
the lowest level includes traditional code to implement a service; the next level uses agent 
technology and metadata to choose which services to use; the third level (workflow) links the 
chosen services to solve domain specific problems. The metadata model we propose aims to 
apply the Semantic Grid concepts in the context of a multi-domain PSE toolkit; furthermore, 
Semantic Grid standards – for example, the OWL-S standard – are adopted for the definition of 
metadata documents. 
Reference (Aktas, Pierce et al 2004) describes a metadata management approach based on 
Semantic Web technologies, focusing particularly on the needs of the earth observation 
application domain. An ontology system is used to produce metadata documents in three steps. 
The first step aims to create a hierarchy of resource classes; then, for each class, meaningful 
properties are defined to characterize the resources belonging to that class. Finally, the 
description of classes and properties, and metadata instances, are written in semantic languages 
such as RDF and OWL (“OWL”,  2004). The approach described in (Aktas, Pierce et al 2004) is 
similar to the one we propose in this paper. However, our approach is not limited to a particular 
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application domain (such as earth observation), but can be used in multiple domains. Moreover, 
differently from us, (Aktas, Pierce et al 2004) does not take full advantage of the information 
services provided by service-oriented Grid frameworks. 
In (Hastings, Langella et al  2004), a middleware framework designed for the efficient 
management of data and metadata in dynamic, distributed environments is described. Such a 
framework provides a set of services that support the distributed creation, versioning and 
management of metadata models and instances. XML schemas are used to represent metadata 
models and XML documents to represent and exchange metadata instances. In particular, users 
are facilitated in creating and managing XML schemas describing the data types they want to 
maintain, possibly using and modifying previously registered schemas. In our approach, besides 
using XML schemas to define the metadata model, we also exploit domain-specific ontologies 
(encoded in the OWL language) to enrich the semantic description of PSE resources and 
components and enhance the resource discovery service of the proposed information system. 
 
 
A METADATA MODEL FOR A GRID PSE TOOLKIT BASED 
ON WEB SERVICES 
 
In a Grid-based PSE toolkit, metadata must be used to manage heterogeneity that comes from the 
large variety of resources available within each resource class (Cannataro, Folino et al 2004). As 
compared to a PSE designed for a single application domain, a PSE toolkit covering multiple 
domains must tackle a further difficulty: the structure of metadata information is not uniform but 
depends on the characteristics of the resource under consideration. Resources can be 
distinguished according to their type (e.g., software, data source, hardware etc.) and the 
application domain in which they are used (e.g. bioinformatics, earth observation, physics etc.). 
In the following, the combination of a resource type and an application domain will be referred to 
as a resource category. In other words, a resource category is a set of resources of a given type 
which can be used in a given application domain. 
The following resource types can be identified: 
• Data-related resources, such as data sources (e.g., flat files, databases, etc), data sets (results of 

applications), and data management components (e.g., DBMS, file systems). 
• Software resources, among which Web and Grid services are gaining a major role. 
• Hosts and hardware devices (computers, storage facilities, network connections). 
• Applications modeled as workflows. 
The metadata model we propose takes into account the specific characteristics of different 
resource types and application domains. In particular, we propose to associate a metadata 
document to each resource offered by the PSE toolkit and distinguish three sections within that 
document. The rationale of such distinction comes from the consideration that, in a PSE toolkit, 
resources must be annotated with metadata information at different levels and at different times.  
First of all, when a resource is published it is necessary to specify the category to which the 
resource belongs, in order to determine the set of users that could be interested in that resource: 
category specification is performed through the first section of metadata information. 
Furthermore, a resource should be semantically classified within its category to facilitate key 
services such as resource discovery and workflow composition: the second metadata section is 
used for this purpose. The third metadata section contains information that, once a resource has 
been discovered and selected, can be used to facilitate its access and use. 
More specifically, a metadata document associated to a resource is composed of the following 
three sections: 
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1. Ontological metadata used to identify the categories to which the resource belongs. Whereas 
the type of a resource is univocally determined, the same resource could be used in different 
application domains: in such a case, ontological metadata specifies multiple categories. 
Ontological metadata is generated and managed by an ontology system, which also specifies 
the structure (expressed as an XML schema) of the remaining two sections of the metadata 
document. This way, it is possible to adopt a uniform approach to manage metadata information 
and at the same time the structure of such metadata fits the specific features of different 
resource categories. 

2. Semantic metadata used to describe and characterize the resources belonging to a given 
category. To this aim, for each resource category, a set of classification parameters are defined 
by means of an XML schema. This schema represents the structure of semantic metadata and, 
as mentioned above, is constructed by an ontology system, according to the features of the 
application domain 

3. Resource metadata supplies specific information about a resource in order to facilitate its access 
and usage. As well as semantic metadata, resource metadata must conform to an XML schema 
generated by an ontology system for each resource type. Resource metadata is further classified 
into description and usage metadata. 

The proposed approach allows for taking advantage of the benefits offered by the Grid 
technology. In fact, the WSRF technology permits to store XML metadata information within a 
WSRF Web service, on condition that such information complies with an XML schema. This way, 
it is possible to exploit Grid information services to discover and access resources by examining 
associated metadata. 

 
 

Ontological Metadata 
 
The ontological metadata section specifies the categories to which a resource belongs (as 
mentioned above, a resource belongs to multiple categories if it can be used in multiple domains) 
and, indirectly, the XML schemas to which semantic and resource metadata must conform. 
For each resource, ontological metadata is generated by an ontology system according to a high 
level ontology which classifies the PSE toolkit categories. Ontological metadata should specify 
the type of the resource (it is a service-oriented software) and the application domains in which it 
can be used (bioinformatics and data mining). For example, TribeMCL (Enright, Van Dongen et 
al. 2005) is a software tool used in the bioinformatics domain to perform data mining analysis. 
The ontological section of the metadata document related to TribeMCL is as follows: 

<OntologicalMetadata> 
  <ResourceType type="service">software</ResourceType> 
  <ApplDomain>data mining</ApplDomain> 
  <ApplDomain>bioinformatics</ApplDomain> 
</OntologicalMetadata> 

The element <ResourceType> specifies that the resource is a software tool, and it is offered as a 
service. Consequently, the resource metadata section must comply with the XML schema 
ServiceSoftware.xsd, which specifies the structure of resource metadata describing a generic 
service-oriented software. 
Furthermore, the <ApplDomain> elements permit to establish that the software can be used under 
the data mining and bioinformatics domains. Therefore, the semantic metadata section must 
comply with the XML schemas used to categorize software in those two domains: 
SciDataMiningTools.xsd, and BioinformaticsSoftware.xsd. Such schemas are 
discussed in the Section “Ontology System”. 
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Semantic Metadata 
 
Semantic metadata characterizes a resource within a given category in order to facilitate the 
discovery and browsing of resources. As a category identifies a couple <resource type, 
application domain>, semantic metadata describes the semantics of a resource in a specific 
domain. Such metadata includes parameters such as the purpose of the resource, the task achieved 
by the resource in that domain, the functionalities, indications about other related resources that 
are available in the same domain, which domain concepts the resource analyzes/describes, etc. 
These parameters and possible associated values are specified by means of an XML schema 
generated by the ontology system.  
More precisely, as described in Section “Ontology System”, an ontology system offers a set of 
application domain ontologies. Thus, to produce semantic metadata for a given category, we will 
exploit the related domain ontology. Section “Ontology System” gives more details about the 
approach that the ontology system uses to generate an XML schema related to a category and 
describes the domain ontologies related to two different categories: the scientific data mining 
tools category (<software, scientific data mining>), and the bioinformatics software category 
(<software, bioinformatics>). For these two categories, the ontology system produces the XML 
schemas SciDataMiningTools.xsd and BioinformaticSoftware.xsd, respectively.  
If a resource belongs to several resource categories (i.e., it can be used in multiple domains), the 
semantic metadata section is composed of as many subsections as the specified resource 
categories. In this case each subsection must comply with the XML schema associated to the 
corresponding resource category.  
For example, the semantic metadata section associated to the software TribeMCL (see Section 
“Ontological Metadata”), is validated against the mentioned XML schemas 
SciDataMiningTools.xsd and BioinformaticsSoftware.xsd (which are shown in 
Section “Ontology System”). Semantic metadata, reported in Figure 1, specifies that the software 
analyzes BLAST protein sequences in order to predict the protein function, uses a statistical 
method based on the Markov Clustering algorithm (MCL), produces clusters in the form of 
TribeMCL protein families. 
 
<SemanticMetadata xmlns="http://domain/path/SciDataMiningTools" …> 
 <DataMiningSoftware name="TribleMCL"> 
<PerformsTask>Clustering</PerformsTask> 

  <ImplementsAlgorithm name="MarkovClustering" kind="ClusteringAlg"> 
 <UsesMethod name="MarkovModel" kind="StatisticalAnalysis"> 
 </UsesMethod>         

  </ImplementsAlgorithm> 
 </DataMiningSoftware> 
</SemanticMetadata> 
<SemanticMetadata xmlns="http://domain/path/BionformaticsSoftware" …> 
 <BioinformaticsSoftware name="TribeMCL"> 
<BiologicalFunction name="ProteinFunctionPrediction" kind="SequenceAnalisys"/> 
<BiologicalElement name="Protein" kind="BiologicalSequence"/> 

  <HasInput>BLASTProteinSequence</HasInput> 
  <ProducesOutput>TribeMCLProteinFamiliesSequence</ProducesOutput> 
 </BioinformaticsSoftware> 
</SemanticMetadata> 

Figure 1. Semantic metadata section of the software TribeMCL 
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Resource Metadata 
 
Resource metadata describes the procedures through which resources can be accessed and used, 
and can also be used to evaluate the quality of a resource. For each type of resource, the structure 
of resource metadata is defined through an XML schema generated by an ontology system. Such 
a structure does not depend on the particular application domain. Resource metadata is divided 
into Description and Usage metadata. 
Description metadata provides a concise description of a resource. It contains provider and 
contact information about the entity which is responsible for providing a resource. Description 
metadata can also include a functional description of a resource, expressed in terms of the 
capabilities and functionalities offered by a resource, and information about the quality rating of 
such a resource. Finally, description metadata can provide information about the past usage of a 
resource, e.g. about the performance obtained when using the resource with given parameters 
and/or input data values. 
Usage metadata gives information that specifies details on how to access and use a resource. 
Even if it would be preferable that all or most of the resources were offered as Web services, a 
PSE toolkit should also support non service-oriented resources. The structure of usage metadata is 
different for service-oriented and non service-oriented resources. Accordingly, for each type of 
resource (e.g. software, workflow etc.), two different XML schemas are defined. The usage 
metadata section of a service-oriented resource contains a reference to the WSDL document 
which specifies the service interface (i.e. the format of inputs and outputs), along with the URL of 
the service and other information. Usage metadata related to a non service-oriented resource 
provides detailed XML information about the resource interface, e.g. about the correct usage of a 
command line interface or an Application Program Interface. 
In the following, for three important types of resources (i.e. software components, data resources 
and workflows), the structure of resource metadata is briefly outlined. We extensively exploit 
standards that are commonly used for such resources, and in the cases in which those standards 
are not sufficient, we propose additional formalisms: see reference (Mastroianni, Talia et al. 2003) 
for more details. 

Software Resources 
 
The resource metadata section of a software resource must be validated against the XML schema 
ServiceSoftware.xsd, or against the schema GenericSoftware.xsd, depending on 
whether the software is offered as a service or not. The two cases are discussed separately in the 
following. 

Service-oriented software. The usage metadata section must contain at least a reference to the 
WSDL document describing the service. However, the WSDL language does not give semantic 
information about a Web service due to the limited expressive power of the XML Schema 
formalism. In the recent years, a number of formalisms have been proposed to describe the 
semantics of a service. One important proposal has been formulated by the DARPA Agent 
Markup Language (DAML) Program (“OWL-S”, 2005). The Semantic Web Services arm of the 
DAML program developed an OWL-based Web Service Ontology, namely OWL-S, to enable 
automation of services on the Semantic Web. An OWL-S document gives different types of 
semantic information about a Web service, through the definition of the following OWL classes: 
• the Profile class, which gives information about the service provider and a functional 

description of the service; 
• the Model class, which describes the internal process that realizes the service; 
• the Grounding class, that specifies details about the access mechanisms. 
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If a description of a service is furnished through the OWL-S language, the description subsection 
should contain a reference to that description. WSDL and OWL-S documents can also reference 
each other. 

Non service-oriented software. Resource metadata should provide the same type of information 
which, in the case of service-oriented resources, is provided by OWL-S and WSDL documents: 
structure of input and output, information about the software provider, functional description etc. 
Such information is contained in an XML document. Details on the syntactic description of a 
software interface are given in (Mastroianni, Talia et al. 2003). 

Data Resources 
 
Data-related resources can be classified as follows:  
1. Data resource managers are systems designed to manage data. Examples are a file system or a 

DBMS. 
2. Data sources can be files, relational databases, XML databases, transaction databases, etc. 
3. Data sets are collections of data that are not explicitly managed by a resource manager. For 

example, data generated by an application or the result set of a query evaluated over a 
relational database. 

Resource metadata for data-related resources is validated against the XML schema 
ServiceData.xsd, or against the schema GenericData.xsd, depending on whether the 
resource is offered as a service or not. The two cases are discussed separately below. 

Non service-oriented data resources. Description metadata includes: 
• Product information metadata defining technical parameters such as product name, data 

currency and history (i.e. versions).  
• Structure metadata. It contains information about both the logical/physical structure of a data 

source (e.g. organization and grouping of data items into logical records, database schemas 
etc.) and the data model. 

• Capability metadata specifies the capabilities of a data resource manager. For a DBMS such 
metadata specifies: language capabilities, queries and update operations supported; 
transactional capabilities; connection options such as protocols and encodings that can be 
supported, etc. 

Service-oriented data resources. We adopt the Open Grid Services Architecture Data Access and 
Integration (“OGSA-DAI”, 2005) standard. It builds upon OGSA data access components to 
manage both relational and XML databases wrapped as Grid Data Services (GDSs). Metadata is 
handled through several types of XML documents including: (i) a data resource configuration 
document specifying the activities that a GDS can support, information on the database 
management system, on the connection to data resources, etc; (ii) a RoleMap file containing data 
sources access permissions; (iii) a registry containing information about a set of GDSs; (iv) a 
gridDataServicePerform document used by clients to send query and update operations 
to a GDS. (v) a gridDataServiceResponse document, returned by a GDS, which contains 
the results of query and update operations.  

Workflows 
 
A main purpose of a Grid-based PSE toolkit is to facilitate users in the specification of complex 
applications and in the construction of workflows composed by multiple tasks that must be 
executed sequentially or in parallel. 
Several Grid-based workflow systems, such as Pegasus (Deelman, Blythe et al. 2003)), adopt a 
two layer approach to build and execute a workflow: an abstract workflow is designed at a high 
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level, and then is mapped to the set of available Grid resources, thus generating an executable 
workflow. In our system, a concrete workflow contains only well defined resources (e.g. 
particular software resources to be executed on specified hosts), whereas an abstract workflow 
contains at least an abstract resource, that is a resource defined by means of constraints on 
metadata properties (e.g., a software that extracts clusters from bioinformatics data). The 
instantiation of an abstract workflow resolves each abstract resource into a concrete resource 
available on the Grid.  
The document that describes a concrete workflow is placed in the resource section of the 
metadata document describing the application. Details about the specification of abstract and 
concrete workflows with XML syntax, and about workflow instantiation, are given in 
(Mastroianni, Talia et al. 2003). 
If an application is composed of Web services, a concrete workflow can also be expressed with 
one of the formalisms that are emerging for this purpose, such as OWL-S (“OWL-S”, 2005) and 
BPEL (Curbera, Goland et al. 2005). An OWL-S composite process can be viewed as a workflow 
that maintains and manages an internal state; each message the client sends advances the state 
through the workflow. BPEL defines a model and a grammar for describing the behaviour of a 
business process based on interactions between the process and its partners. 
 
 
INFORMATION SYSTEM OF THE GRID PSE TOOLKIT 
 
To properly manage metadata in a Grid PSE toolkit based on Web services, we model metadata 
on the basis of the above described approach and propose an information system that 
accomplishes two main tasks: managing metadata and supporting high-level discovery services. 
Figure 2 depicts the architecture of the information system.  
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Figure 2. Architecture of the PSE toolkit information system 

 
The information system is integrated with the WSRF-based Globus Toolkit 4 (“Globus”, 2005), 
in order to take advantage of the services offered by that framework (browsing and indexing 
services, information providers etc.).  
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The information system is composed both by fully distributed components and hierarchical 
components. In particular, components that are used to manage, publish and access metadata 
documents are distributed on the different hosts. The schema repository, that stores the XML 
schemas generated by the ontology system, and the metadata repository, that stores the XML 
metadata documents, are both distributed XML databases. The ontology system and the 
components that are used to index, browse and search resources on the Grid are organized in a 
hierarchical configuration that reflects the structure of Grid Virtual Organizations. In Figure 2, 
components that are inherently distributed are replicated.  
The rest of the section is organized as follows. Section “Metadata Repository and WSRF 
Web Services” explains the approach used to store metadata documents and justifies the 
opportunity of storing metadata both in the metadata repository and within WSRF Web 
services. Section “Index Services” describes the main characteristics of GT4 Index 
Services. Finally, Section “Publishing and Discovery of Resources” illustrates the 
publishing and discovering functionalities offered by the proposed information system. 
The structure of the ontology system is analyzed in more details in Section “Ontology 
System”. 

Metadata Repository and WSRF Web Services 

The metadata repository stores the metadata documents related to the components/services 
provided by the PSE toolkit. As mentioned in Section “A Metadata Model for a Grid PSE Toolkit 
based on Web services”, the choice of using XML schemas to define the structure of metadata 
allows for an efficient integration with the GT4 framework. In GT4, metadata is stored within 
Web services as WSRF resource properties, whose structure is defined by means of enriched 
XML schemas. As a consequence, a metadata document associated to a service-oriented resource, 
or part of such a document, can be retrieved from the metadata repository and stored within a 
WSRF Web service.  
The advantage of storing metadata both in the metadata repository and within a service is 
motivated as follows. The publication of metadata within a service is useful if we want to take 
advantage of the Grid information services offered by the Globus Toolkit. On the other hand, 
storing metadata in the metadata repository is useful for two reasons: (i) to give persistency and 
high availability to metadata; (ii) to provide a uniform point of access to metadata, including 
metadata describing non service-oriented resources. 
However, consistency problems could arise. To tackle this issue, the metadata repository is 
chosen as the primary source of information. Metadata associated to a new resource is generated 
by the metadata publisher and stored in the metadata repository. If the new resource is a Web 
service, metadata is retrieved by an information provider and published as resource properties. 
One information provider is associated to each Web service, and is executed when the service is 
published for the first time and whenever the metadata document stored in the repository is 
modified by authorized users. 
It is also possible that resource properties are modified during the lifetime of a Web service. To 
avoid inconsistency problems, an attempt to modify a resource property requires an access to the 
metadata document stored in the metadata repository. If access is authorized, a lock is executed 
on the database, the requested modification is performed on the metadata document with a 
synchronous operation and finally the resource property is modified as requested. 
The metadata repository adopted in the PSE toolkit is a distributed XML database based on the 
Apache Xindice (“Xindice”, 2005) platform. For each Grid node, the metadata repository 
contains metadata related to all the resources published in that node. To facilitate the searching 
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and browsing of resources, metadata can also be aggregated and published by GT4 Index 
Services, as described in the next subsection. 

Index Services 

The GT4 information system produces, aggregates and indexes metadata related to the resources 
provided by a set of Grid hosts belonging to a Virtual Organization (VO). Such a system exploits 
the functionalities of GT4 Index Services; usually each VO provides one Index Service, but more 
Index Services, organized in a hierarchy, can be installed on a large VO. Metadata describing the 
resources of the PSE toolkit is aggregated and published on Index Services with two mechanisms, 
depending on the kind of resource: 
1. Non service-oriented resources. A set of information providers retrieve the XML metadata 

documents stored in the metadata repositories of a VO, and publish them in the Index Service 
of that VO. 

2. Service-oriented resources. The VO Index Service subscribes to the resource properties that 
have to be aggregated and indexed, in order to be notified of changes. The GT4 service 
aggregators retrieve the resource properties from the WSRF Web services and publish them in 
the Index Service. If the Index Services of a VO are organized in two or more levels, service 
aggregators can retrieve metadata from lower level Index Services and publish it in higher 
level Index Services, as depicted in Figure 2. 

Since Index Services are fed with data retrieved both from Web services and metadata 
repositories, the deployed architecture provides a uniform and flexible mechanism to query and 
browse metadata related to all kinds of resources, including non service-oriented ones. Browsing 
and querying can be performed by means of specific Globus Toolkit services (e.g. the Service 
Data Browser) or high level services offered by domain specific PSEs. 

Publishing and Discovery of Resources 

On top of GT4 Index Services, the proposed architecture provides high level services through 
which users can publish and discovery resources on the PSE toolkit.  
The publishing functionality enables to create, modify, and delete XML metadata documents 
stored in the metadata repository and within Web services. The information system offers an 
assisted publishing procedure that guarantees the consistency of a metadata document with the 
XML schemas associated to a given resource category. In particular, when a user publishes a new 
resource, the following steps are performed: 
1. The user verifies if the new resource belongs to one of the resource categories defined by the 

ontology system. It can occur that: 
(a) the resource category under consideration has already been defined. In this case, the user 

can exploit the ontology system to fill the ontological section of the resource metadata 
document (see Section “Ontological Metadata”) and retrieve the structures – i.e the XML 
schemas - of semantic and resource metadata sections from the schema repository (see 
Sections “Semantic Metadata” and “Resource Metadata”). 

(b) the new resource does not belong to any defined resource category. In this case the user, 
with the aid of domain experts, can use the ontology system to refine the classification of 
application domains, and possibly create a new resource category and the corresponding 
XML schemas that will be stored in the schema repository. Afterwards the user will be able 
to use such schemas and produce the new resource metadata document. 

2. The user exploits the metadata publisher to create the semantic and resource sections of the 
metadata document which describes the new resource. The publisher offers a semi-automatic 
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tool for editing metadata documents: it allows a user to (i) view the characteristics of the 
resource categories defined by the ontology system and (ii) define the parameters and values 
through which the new resource can be described and classified. 

3. At the end of the editing process, the metadata document is stored in the metadata repository. 
4. If the new resource is offered as a Web service, its metadata document, or part of it, is also 

published within the service itself as a set of resource properties . 
5. Metadata stored within the service can be aggregated and published by the GT4 Index Service. 
 
The Discovery functionality allows users to search, locate and select PSE components and 
resources by examining the metadata information contained in each node of the Grid. To this end, 
the Index Service offers a set of services for browsing and querying metadata documents made 
available by the PSE toolkit. Typically, a user specifies a set of constraints on resource features, 
and the information system matches such constraints with the semantic section of the resource 
metadata documents.  
Specifically, when a user needs to discover resources having given characteristics, she/he 
executes the following actions: 
1. To construct a query, the user must know the XML schema that defines the structure of the 

semantic metadata section for the resource category under consideration. If such a schema is 
not known, the user can browse or query the ontology system in order to retrieve it from the 
schema repository.  

2. The user builds the query on the basis of the parameters and possible values specified in the 
XML schema. 

The user submits the query to the PSE toolkit information system to discover the needed 
resources. 
As a final remark, it must be specified that all the operations described in this section can be 
performed with the aid of a graphical interface which hides to the user the technical details 
regarding the ontology and XML schema formalisms. As an example, the DAMON ontology 
(Cannataro and Comito 2003), described in Section “Ontology System”, offers a graphical tool 
through which a user can browse the data mining ontology by simply selecting the graphical 
objects associated to ontology concepts and relationships. This tool gradually presents deeper 
levels of the ontology: the user starts at the top of the ontology and can navigate towards more 
specific topics by clicking the classes of interest (diving into the information). At any point, the 
map shows the current class, its parent and its subclasses. 
 
 
ONTOLOGY SYSTEM 
 
“An ontology is an explicit specification of a conceptualization” (Gruber, 1993); it is a shared 
understanding of some domains of interest, which is often conceived as a set of classes (concepts), 
relations, functions, axioms and instances. Concepts in an ontology are usually organized in 
taxonomies. Each taxonomy, for a given application domain, organizes the concepts and terms 
into a classification structure.  
To produce satisfactory results, a PSE should be designed using the best domain practice and 
following decisions made by skilled engineers in practical situations. Ontologies can be used for 
managing the knowledge in a Grid-based PSE environment allowing for the building of 
semantically enriched knowledge bases.  
In the proposed information system, a suite of ontologies are used to classify resources and 
components provided by the PSE toolkit and, as a PSE toolkit is tailored towards different 
application domains, different ontologies are used to manage specific knowledge in different 
domains. 
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Due to the large heterogeneity of resources, two types of classifications are needed: 
• domain-independent classification: resources are classified into generic types of resources, e.g. 

data sources, software, hardware resources, applications, Web/Grid services, etc. 
• domain-dependent classification: generic classes of resources are instantiated or specialized 

into domain specific classes of resources. 
Accordingly, each ontology should be composed of two parts, a specific domain part and a core 
part. The core part models knowledge related to generic PSE components/resources which are 
common to different application domains and provides domain independent primitives to build 
domain specific ontology. The domain specific part is an explicit description of domain specific 
terms, characteristics, components, and relationships among them. Moreover the description of 
relevant tasks of a domain (e.g. retrieval and analysis) should also be modeled. To this aim all the 
different aspects of the domain should be modeled: domain specific knowledge, domain specific 
tasks and applications.  
Ontologies are modeled as a set of taxonomies derived from the specialization of a number of 
basic classes. These taxonomies may be linked together via relations or axioms. Two kinds of 
relations are used to organise ontological knowledge in the domain: 
• specialisation relation (“is-a”): specialises general concepts in more specific ones. An “is-a” 

relation states that a class A is a subclass of B if every instance of A is also an instance of B.  
• “has part” relation: defines a partition as a subclass of a class.  
As the necessity of building a PSE for a specific application domain emerges, an ontology of 
concepts related to this domain should be added to the PSE toolkit, so that the proposed 
information system can exploit such an ontology in order to describe and categorize the resources 
used in that domain. In particular, in the last few years we developed an ontology for the data 
mining domain and an ontology for the bioinformatics application domain. In the following, we 
briefly introduce the DAMON ontology (DAta Mining ONtology) (Cannataro and Comito 2003) 
and the Bioinformatics ontology (Cannataro, Comito et al 2004), and describe how such 
ontologies are employed in the PSE toolkit. Similarly, other ontologies for different application 
domains can be retrieved from the literature and integrated in the ontology system of the PSE 
toolkit. 
DAMON is an ontology of the Data Mining domain. The main concepts modeled in DAMON are 
the following: 
• A Task represents a data mining technique for extracting patterns from data. A task specifies 

the goal of a data mining process. 
• A Method is a data mining methodology used to discover the knowledge. It can be thought as 

a structured manipulation of the input data to extract knowledge. 
• An Algorithm is the programmatic procedure which performs a data mining task. 
• A Software is an implementation of a data mining algorithm. 
• A Suite implements a set of data mining algorithms: every algorithm may perform different 

tasks and employ different methods to achieve the goal.  
Figure 3 shows the taxonomy obtained by creating subclasses of the data mining Task. Figures 4 
to 6 show the taxonomies related to the other basic concepts (Method, Algorithm, and Software) 
of our ontological model; in each of these taxonomies we construct a subsequent specialization 
level for every task identified in the taxonomy of Figure 3. 
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Figure 4. Data Mining Method taxonomy 

Classification
Algorithm

Clustering
Algorithm

Deviation
Detection
Algorithm

Link
Analysis
Algorithm

Summarization
Algorithm

Visualization
Method

Algorithm

Regression
Algorithm

CHAID C4.5 SLIQ SPRINT ID3 Gini RBF
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Figure 6. Data Mining Software taxonomy 

 
Figure 7 shows an extract from the DAMON ontology regarding the conceptualization of the 
TribeMCL Clustering Software. The figure illustrates the hierarchical concept classifications (is-a 
relations) and the relationships (realized by means of properties) among concepts belonging to 
different taxonomies. In the example, TribeMCL is a Clustering software that implements the 
Markov Clustering algorithm. Such an algorithm is a Clustering Algorithm performing 
(PerformsTask property) the Clustering task and using (UsesMethod property) a Statistical 
Analysis method that is constrained to be a Clustering Method specifying (SpecifiesTask property) 
the Clustering task. 
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Figure 7. A fragment of the DAMON ontology for the TribeMCL software 

 
The Bioinformatics ontology integrates different aspects of bioinformatics, including 
computational biology, molecular biology and computer science. In such an ontology we classify 
the following bioinformatics resources:  
1) biological data sources, such as protein databases (e.g.,SwissProt, PDB); 
2) bioinformatics software components, such as tools for retrieving and managing biological data 
(e.g., SRS, Entrez, BLAST, EMBOSS ); 
3) bioinformatics processes/tasks (e.g. sequence alignment, similarity search, etc.). 

Biological data sources are classified on the basis of the following features: 
• the kind of biological data (e.g., proteins, genes, DNA); 
• the format in which the data is stored (e.g., sequence, BLAST proteins sequence); 
• the type of data source (e.g., flat file, relational database, etc); 

Bioinformatics processes and software components are organized on the basis of the following 
parameters: 
• the biological function achieved by the software; that is the specific bioinformatics task (e.g., 

sequence analysis, secondary structure prediction, etc); 
• the methodology (method) that the software uses to perform a bioinformatics task (e.g. GOR, 

Chou and Fasman, etc.)  
• the algorithm implemented by the software (e.g. Clustalw, SmithWaterman, etc.); 
• the data source on which the software works on (e.g. Swiss-Prot, PDB, etc.); 
• the kind of output produced by the software; 
• the software components used to perform a task (e.g. BLAST, EMBOSS, etc.). 
    As for the DAMON ontology, a taxonomy that specializes each of these classification 
parameters is implemented. For example the data source taxonomy classifies the different 
databases specifying the kind of biological data stored, the format in which the data is stored, the 
type of data source (flat file, relational database, and so on), etc.  
Figure 8 shows a fragment of the bioinformatics ontology. The ontology can be explored by 
choosing one of the previous classifying parameters. For example, exploring the biological 
function taxonomy it is possible to determine for a given function which are the available 
algorithms that achieve it, and then which software implements the chosen algorithm. Moreover it 
is possible to find the data sources and the biological elements involved in that function. 
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Figure 8. A fragment of the bioinformatics ontology for the TribeMCL software 
 
 
As explained before, for each resource category, the ontology system generates the structure of 
the semantic and resource metadata sections. 
Ontologies are maintained as OWL files in centralized/hierarchical repositories. To be stored in a 
WSRF Web service, the ontology must be written in an XML document conform to an XML 
schema. Though it is not possible to represent all the details of an ontology structure in the XML 
schema formalism, we used a translation mechanism that preserves as much information as 
possible in an XML schema and in the compliant XML documents. 
In the case of semantic metadata, we will exploit the pertinent domain ontology to characterize 
the given resource type in that particular domain. For example, in order to define the semantic 
metadata of the category <software, scientific data mining>, we characterize the software 
resource type in the data mining domain by exploiting the DAMON ontology. Accordingly to the 
fragment shown in Figure 7, we explore the DAMON ontology following all the relationships 
related to the software concept. More precisely the “is-a” relations within a same taxonomy are 
encoded through parent-child XML relationships, whereas relations among different taxonomies 
are encoded by associating an XML element to each of them.   
Figure 9 reports an extract from the XML schema SciDataMiningTools.xsd, which 
defines the structure of semantic metadata for a data mining software. The schema specifies that 
the root element of every conform XML document must contain the element 
DataMiningSoftware which specifies, in its sub-elements, the kind of task that is performed 
by the software and the kind of algorithm which is implemented. The possible values for such 
sub-elements are those shown in Figures 3 and 5. Furthermore the ImplementsAlgorithm 
element permits to specify the method used by the software, among those shown in Figure 4. 
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Note that the first part of the semantic metadata section shown in Figure 1 is validated against the 
schema SciDataMiningTools.xsd, since it is related to a data mining sofware. 
In the same way, exploiting the Bioinformatics ontology shown in Figure 8, we obtain the XML 
schema BioinformaticsSoftware.xsd (see Figure 10) which defines the structure of 
semantic metadata for the category <software, bioinformatics>. The second part of the semantic 
metadata section shown in Figure 1 is validated against the schema 
BioinformaticsSoftware.xsd, since it is related to a bioinformatics sofware. 
 
 
<schema targetNamespace="http://domain/path/SciDataMiningTools" 

  xmlns="http://www.w3.org/2001/XMLSchema" …> 
<complexType name="DMSoftwareType"> 
  <sequence> 
  <element name="PerformsTask" type="TaskType"/> 
  <element name="ImplementsAlgorithm" type="AlgorithmType"/> 
  </sequence> 
  <attribute name="name" type="string"/> 
</complexType 
<complexType name="AlgorithmType"> 
  <element name="UsesMethod" type="MethodType"/> 
  <attribute name="name" type="string"/> 
  <attribute name="kind" type="AlgoCategory"/> 
</complexType> 
<complexType name="MethodType"> 
  <attribute name="name" type="string"/> 
  <attribute name="kind" type="MethodCategory"/> 
</complexType> 
<simpleType name="TaskType"> 
  <restriction base="string" 
    <enumeration value="Clustering"/> 
    <enumeration value="Classification"/> 
    <enumeration value="Association Rules"/> 
    … 
  </restriction> 
</simpleType> 
<simpleType name="AlgoCategory"> 
  <restriction base="string" 
    <enumeration value="ClusteringAlg"/> 
    <enumeration value="ClassificationAlg"/> 
    <enumeration value="Association RulesAlg"/> … 
  </restriction> 
</simpleType> 
<simpleType name="MethodCategory"> 
  <restriction base="string" 
    <enumeration value="ClusteringMethod"/> … 
  </restriction> 
</simpleType> 
<element name="SemanticMetadata"/> 
 <complexType> 
  <element name="DataMiningSoftware" type="DMSoftwareType"/> 
 </complexType> 
</element> 

</schema> 

 
Figure 9. An extract from the XML schema SciDataMiningTools.xsd 
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<schema targetNamespace="http://domain/path/BioinformaticsSoftware" 
  xmlns="http://www.w3.org/2001/XMLSchema" …> 
<complexType name="BioSoftwareType"> 
  <sequence> 
  <element name="BiologicalFunction" type="FunctionType"/> 
  <element name="BiologicalElement" type="ElementType"/> 
  <element name="HasInput" type="string"/> 
  <element name="ProducedOutput" type="string"/> 
  </sequence> 
  <attribute name="name" type="string"/> 
</complexType 
<complexType name="FunctionType"> 
  <attribute name="name" type="string"/> 
  <attribute name="kind" type="FunctionValue"/> 
</complexType> 
<complexType name="ElementType"> 
  <attribute name="name" type="string"/> 
  <attribute name="kind" type="ElementValue"/> 
</complexType> 
<simpleType name="FunctionValue"> 
  <restriction base="string" 
    <enumeration value="SequenceAnalysis"/> 
    <enumeration value="ProteinFunctionPrediction"/> 
    … 
  </restriction> 
</simpleType> 
<simpleType name="ElementValue"> 
  <restriction base="string" 
    <enumeration value="Protein"/> 
    <enumeration value="Gene"/> 
    … 
  </restriction> 
</simpleType> 
<element name="SemanticMetadata"/> 
 <complexType> 
  <element name="BioinformaticsSoftware" type="BioSoftwareType"/> 
 </complexType> 
</element> 

</schema> 
 

Figure 10. An extract from the XML schema BioinformaticsSoftware.xsd 

CONCLUSIONS 

A Grid PSE toolkit based on Web services is a group of technologies that allows for building 
PSEs for different application domains by exploiting the features and functionalities of both the 
Web service paradigm and the Grid infrastructure. Such PSE toolkits require an efficient 
approach to manage the heterogeneity of the involved resources. The paper proposes a metadata 
model that allows for classifying and describing resources needed for different domains. A 
metadata document, associated to each resource, includes an ontological metadata section that 
identifies the resource category, a semantic metadata section that characterizes resources in 
different application domains and assists discovery services, and a resource metadata section that 
gives details about how to use and access a resource. Moreover, the paper described the 
architecture of an information system that allows for a uniform and flexible management of 
metadata. The information system exploits the basic information services of a Grid framework 
based on Web services (i.e. the WSRF framework) to aggregate and index metadata.  
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Currently the information system is usable in the bioinformatics and data mining application 
domains, since the related domain ontologies have already been integrated. We plan to integrate 
more domain ontologies, starting from the geo-computation domain. Moreover, we are going to 
evaluate the performance of the information system by issuing a large set of resource discovery 
requests in the bioinformatics and data mining domain. On the basis of performance results, we 
will focus our future work on the improvement and optimization of the PSE toolkit high-level 
services. 
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