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Abstract 
 
Today a large number of scientific and commercial applications often require to 
analyse large data sets maintained over geographically distributed sites by using 
the computational power of distributed high-performance environments. 
Advances in networking technology and computational infrastructure made it 
possible to construct large-scale distributed computing platforms, called 
computational grids, that provide dependable, consistent, and pervasive access to 
high-end computational resources. Grids can play a significant role in providing 
an effective computational support for distributed data mining applications. 
Currently we are developing a software system for geographically distributed 
knowledge discovery applications called KNOWLEDGE GRID, which is designed 
on top of computational grid mechanisms, provided by grid environments such 
as Globus. In this paper we present an integrated toolset named VEGA (Visual 
Environment for Grid Applications), which allows a Knowledge Grid user to 
develop and execute distributed data mining computations in a simple and 
effective way. 
 
1 Introduction 
 
In many industrial, scientific and commercial applications, it is often necessary 
to mine large distributed data sets by using the computational power of 
distributed high-performance computers. Advances in networking technology 
and computational infrastructure made it possible to design computational grids 
as large-scale distributed computing platforms that provide dependable, 
consistent, and pervasive access to high-end computational resources. The term 



grid refers to an emerging infrastructure that enables the integrated use of remote 
computers, databases, scientific instruments, and other resources [1]. Grid 
applications often involve large amounts of computing and data. For these 
reasons, the grids can play a significant role in providing an effective 
computational support for distributed data mining applications.  

We designed a software architecture for geographically distributed knowledge 
discovery applications called KNOWLEDGE GRID [2], which is designed on top of 
computational grid mechanisms, provided by grid environments such as Globus. 
The KNOWLEDGE GRID uses the basic grid services such as communication, 
authentication, information, and resource management to build more specific 
distributed data mining tools and services. This paper presents a KNOWLEDGE 
GRID toolset, named VEGA, for the composition and execution of distributed 
data mining computations over a Globus-based grid. Such toolset allows a user 
to build the computation starting from a set of useful remote resources (e.g., 
computational nodes, sources of data, data mining suites, etc.). Such resources, 
which are located and selected by means of grid information services, are 
presented to the user as a set of objects. The user can compose those objects 
using common visual facilities, to form a graphic representation of her/his data 
mining computations. The toolset validates and translates this graphic 
representation into an execution plan, which is then processed and effectively 
executed on the grid by means of Globus resource management tools. 
 
 
2. The KNOWLEDGE GRID architecture 
 
The KNOWLEDGE GRID architecture [2] (see Figure 1) is designed on top of 
computational grid mechanisms, provided by grid environments such as Globus 
[1]. The KNOWLEDGE GRID uses the basic grid services such as communication, 
authentication, information, and resource management to build more specific 
parallel and distributed knowledge discovery (PDKD) tools and services.  

The KNOWLEDGE GRID services are organized into two layers: core K-grid 
layer, which is built on top of generic grid services, and high level K-grid layer, 
which is implemented over the core layer.  

The core K-grid layer comprises two basic services: the Knowledge Directory 
Service (KDS) and the Resources Allocation and Execution Management Service 
(RAEMS). The KDS manages the metadata describing the characteristics of 
relevant objects for PDKD applications, such as data sources, data mining 
software, results of computations, data and results manipulation tools, execution 
plans, etc. The information managed by the KDS is stored into three ad hoc 
repositories: the metadata describing features of data, software and tools, coded 
in XML documents, are stored in a Knowledge Metadata Repository (KMR), the 
information about the knowledge discovered after a PDKD computation is stored 
in a Knowledge Base Repository (KBR), whereas the Knowledge Execution Plan 
Repository (KEPR) stores the execution plans describing PDKD applications 
over the grid. The goal of RAEMS is to find a mapping between an execution 



plan and available resources on the grid, satisfying user, data and algorithms 
requirements and constraints.  

Figure 1: The KNOWLEDGE GRID architecture. 

The high level K-grid layer comprises the services used to build and execute 
PDKD computations over the grid. The Data Access Service (DAS) is used for 
the search, selection, extraction, transformation and delivery of data to be mined. 
The Tools and Algorithms Access Service (TAAS) is responsible for search, 
selection, and download of data mining tools and algorithms. The Execution 
Plan Management Service (EPMS) is used to generate a set of different possible 
execution plans, starting from the data and the programs selected by the user. 
Execution plans are stored in the KEPR to allow the implementation of iterative 
knowledge discovery processes, e.g., periodical analysis of the same data sources 
varying in time. The Results Presentation Service (RPS) specifies how to 
generate, present and visualise the PDKD results (rules, associations, models, 
classification, etc.), and offers methods to store in different formats these results 
in the KBR.  
 
3. Task building and execution process 
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The design and the execution of computations on the KNOWLEDGE GRID is 
performed as showed in Figure 2. The operations start searching data and 
programs to be used in the data mining process. 

The search of resources is accomplished by means of the DAS and TAAS 
tools, analyzing the XML metadata documents stored into the KMR of the 
participant grid nodes. Such analysis attempts to find specific information about 
useful resources (e.g., a desired software, datasets regarding a specific argument, 
etc.), and is conducted on the basis of the search parameters and selection filters 



chosen by the user. The useful metadata (i.e., those satisfying the searching and 
filtering criteria) are then stored into the Task Metadata Repository (TMR), a 
local storage space that contains information about resources (nodes, data 
sources and algorithms) selected to perform a computation. The TMR is 
organized as a set of directories: each one is named with the fully qualified 
hostname of a grid node, and contains metadata files about resources of that 
node. 
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Figure 2: Design and execution steps of an application on the KNOWLEDGE GRID. 
 

The design of the computation is performed by means of the EPMS tools, 
which permits to generate an execution plan for the planned computation. The 
execution plan (an XML document) can be stored into the KEPR, and processed 
for its execution by the RAEMS tools. The RAEMS uses in turn the services 
provided by the resource allocation manager of the underlying grid. After the 
execution the results are stored in the KBR. A user can visualise and analyse 
such results using the RPS tools. In the next section we describe in detail an 
environment integrating functionalities of both EPMS and RAEMS services.  
 
4. Visual Environment for Grid Applications 
 
In order to allow a KNOWLEDGE GRID user to develop and execute applications 
in a simple and useful manner, we developed an integrated environment named 
VEGA (Visual Environment for Grid Applications), which software architecture 
is depicted in Figure 3. VEGA includes a set of tools, allowing to perform the 
following operations: 
• task composing, i.e., definition of the entities involved in the computation 

and specification of the relations among them; 
• checking of the consistency of the planned task; 
• generation of the execution plan for the task; 
• execution of the generated execution plan through the resource allocation 

manager of the underlying grid. 
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Figure 3: The VEGA software modules. 
 
4.1 Task composing 
 
The task composing phase is performed by means of a graphical interface (see 
Figure 4), which provides the user with a set of graphical objects representing 
the resources (datasets, data mining tools, grid nodes). This objects can be 
composed using visual facilities which consent to insert links among them, 
forming a graphical representation of the computation. In particular, such phase 
is realized by the following software components: 
• Workspace Manager, 
• Resource Manager, and 
• Object  Manager. 

A complex computation is composed of several jobs. The design environment 
is organized in workspaces. Jobs present in a given workspace are intended to be 
executed concurrently, whereas workspaces are executed sequentially. To this 
end is maintained a priority relationship between the workspaces which reflects 
the order of their creation. In addition, the Workspace Manager manages an 
internal model of the graphical representation showed to the user. Since the set 
of workspaces represents a unique logical computation, the Workspace Manager 



must handle with the case in which a task in a given workspace needs to operate 
on resources generated by tasks in previous workspaces. Such resources are not 
physically generated by a given workspace in the moment in which the user start 
to compose the next workspace of the same computation, because all the 
workspaces are processed for the execution only at the end of the design session. 
Thus, the Workspace Manager recognizes such a situation during the 
composition of a workspace, generates the needed virtual resources and make 
them available through the Resource Manager to all the following workspaces. 
For instance, if in the workspace 1 a software component S is transferred to a 
node N, a new metadata document is created for S and stored in the directory N 
of the TMR. That document that specifies the new location of S is marked as 
temporary until the data transfer is performed. However, if a workspace 2 is 
opened in the same session (i.e. it is scheduled after workspace 1), the software S 
is displayed as already available under the resources of N. The Workspace 
Manager allows also to store a graphical composition in a binary file, which can 
be next retrieved for modifications by the user.  

Figure 4: The VEGA user interface 
 
The Resource Manager permits to browse the TMR in order to search and 

choose the resources to be used in the computation. Selected hosts are displayed 
into the Hosts panel, and the user can explore resources of each one by clicking 
on its label. That resources are displayed by categories into the Resources panel. 



The Object Manager deals with the graphical objects during the realization of 
the visual composition. Each graphical object is associated with information 
about the related resources; such information is used for the creation of the 
internal model and for the execution plan generation. The Object Manager 
handles three kind of objects: data, software and hosts. It allows the user to drag 
the objects presented in the Hosts and Resources panels into the active 
workspace (on the right of Figure 4). After this, the user can link that objects in 
order to indicate the interaction between them. During the composition phase the 
objects can be involved in several operations, such insertion and movement in a 
workspace, selection, linking with other objects, etc. Links can represent 
different actions, such as data transfer, programs execution and input and output 
relations. The Object Manager performs the labeling of the links and the 
attribution of the others properties characterizing them. The data transfer link is 
used to move resources among different locations of the grid. The execute link is 
used to run an application on a grid host, the input and output links are used to 
respectively indicate input and output of a program. For each link type is 
possible to set related parameters (e.g., protocol and destination path of the data 
transfer, job-manager of the execution, etc.). 
 
4.2 Task consistency checking 
 
The goal of this phase is to obtain a correct and consistent model of the 
computation. The validation process is performed by means of two components: 
• Model pre-processor and 
• Model post-processor. 

The pre-processing of the computation model takes place during the 
graphical composition. The Model pre-processor verifies the composition 
consistency, allowing, with a context-sensitive control, to create links only if 
they represent actions that can be effectively executed. For instance, it allows to 
insert only an input or output link between a software object and a data object, 
but it does not allow to insert an execution link between a host object and a data 
object.  

The checking is completed by the Model post-processor, which is responsible 
to catch error occurrences that cannot be recognized during the pre-processing 
phase. For example, it indicates if the graphical composition in a workspace does 
not contain at least one host. 
 
4.3 Execution plan generation 
 
In this phase the computation model is translated into a generic execution plan 
(represented by an XML document), and/or into an RSL script. There are two 
software modules that accomplish these tasks: 
• XML Generator and 
• RSL Generator. 



Basically, the XML Generator is a parser that analyses the computation model 
produced during the graphical composition, and is able to generate its equivalent 
XML representation. When invoked, the XML Generator performs its goal 
taking into account the properties of the involved resources and the parameters of 
the links. The XML execution plan describes a data mining computation at a 
high level, neither containing physical information about resources (which are 
identified by metadata references), nor about status and current availability of 
such resources. In fact, specific information about the involved resources will be 
included in the RSL generation phase, when the computation model is translated 
in this language. Figure 5 shows an excerpt of a sample execution plan. 

<ExecutionPlan> 
 ...  
 <Task ep:label="ws1_dt4">      
  <DataTransfer> 
   <Source ep:href="minos../unidb_db2.xml"  
           ep:title="unidb.db2 on minos.isi.cs.cnr.it"/> 
   <Destination ep:href="icarus../unidb_db2.xml"   
                ep:title="unidb.db2 on icarus.isi.cs.cnr.it"/> 
   ... 
  </DataTransfer> 
 </Task>   
 ...  
 <Task ep:label="ws2_c1"> 
  <Computation> 
   <Program ep:href="icarus../autoclass3-3-3.xml"  
            ep:title="autoclass on icarus.isi.cs.cnr.it"/> 
   <Input ep:href="icarus../unidb_db2.xml"  
          ep:title="unidb.db2 on icarus.isi.cs.cnr.it"/> 
   ... 
   <Output ep:href="icarus../classes.xml"  
           ep:title="Classes on icarus.isi.cs.cnr.it"/> 
  </Computation> 
 </Task> 
 ... 
 <TaskLink ep:from="ws1_dt4" ep:to="ws2_c1"/>  
 ... 
</ExecutionPlan> 

Figure 5: The extract of a sample execution plan. 
 
The execution plan gives a list of tasks and task links, which are specified using 
respectively the XML tags Task and TaskLink. The label attribute for Task 
element identifies each basic task in the execution plan, and is used in linking 
various basic tasks to form the overall task flow. Each Task element contains a 
task-specific sub-element, which indicates the parameters of the particular 
represented task. For instance, the task identified by the ws1_dt4 label contains a 
DataTransfer element, indicating that it is a data transfer task. The 
DataTransfer element specifies Source and Destination of the data transfer. 
The href attributes of such elements specify the location of metadata about 
source and destination objects. In this example, metadata about source of data 



transfer in the ws1_dt4 task are provided by the unidb_db2.xml file stored in the 
directory named minos.isi.cs.cnr.it of the TMR, whereas metadata about 
destination are provided by the unidb_db2.xml file stored in the directory named 
icarus.isi.cs.cnr.it of the same TMR. The first of such XML documents 
provides metadata about the unidb.db2 data set when stored on 
minos.isi.cs.cnr.it, whereas the second one provides metadata about 
unidb.db2 when, after the data transfer, is stored on icarus.isi.cs.cnr.it. 
The TaskLink elements represent the relations among tasks of the execution 
plan. For instance, the showed TaskLink indicates that the task flow proceeds 
from the task ws1_dt4 to the task ws2_c1, as specified by its from and to 
attributes. 

The RSL Generator produces an RSL script that can be directly submitted to 
the GRAM (Globus Resource Allocation Manager) of a grid node running 
Globus. The RSL (Resource Specification Language) is a structured language by 
which resource requirements and parameters can be outlined by a user [3]. In 
opposition with the XML execution plan, the RSL script describes entirely an 
instance of the designed computation, i.e., it specifies all the physical 
information needed for the execution (e.g., name and location of resources, 
software parameter, etc.). Figure 6 shows an extract of a sample RSL script. 
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(&(resourceManagerContact=minos.isi.cs.cnr.it) 
  (subjobStartType=strict-barrier) 
  (label=ws1_dt4) 
  (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy) 
  (arguments=-vb –notpt gsiftp://minos.isi.cs.cnr.it/.../unidb.db2
             gsiftp://icarus.isi.cs.cnr.it/.../unidb.db2   
   ) 
) 
... 
(&(resourceManagerContact=icarus.isi.cs.cnr.it) 
  (subjobStartType=strict-barrier) 
  (label=ws2_c1) 
  (executable=.../autoclass) 
  (arguments=-search .../unidb.db2  .../unidb.hd2 .../unidb.model 
             ...    
   ) 
) 
... 
Figure 6: The extract of a sample RSL script.  

.4 Execution of the computation 

he execution of the computation is performed by means of the Execution 
anager module. The Execution Manager allows the system to authenticate a 

ser to the grid, by using the Globus GSI (Grid Security Infrastructure) services, 
nd submit the RSL script to the Globus GRAM for its execution. The Execution 



Manager is also responsible of the monitoring of the jobs that compose the 
overall data mining computation during their life cycle.  
 
5. Conclusions 
 
The deluge of data available today in several formats requires intelligent and 
efficient tools to analyze them and extract models that are useful and 
undertandable. In the latest years several efforts have been devoted to the design 
and implementation of parallel and distributed data mining systems that can 
speed up the knowledge discovery process on large and/or distributed data sets 
[4]. Among different parallel and distributed computing paradigms, the grid is 
emerging as a high-performance and higly decentralized infrastructure. 
Traditional and novel applications can benefit from the use of computational 
grids as a distributed platform for supporting complex applications. 

In this paper we presented the VEGA toolset for the composition of data 
mining applications on the KNOWLEDGE GRID environment. We discussed how 
such toolset allows a user to build the computation starting from a set of useful 
remote resources such as computational nodes, sources of data, and data mining 
algorithms. Such resources, which are located and selected by means of grid 
information services, are presented to the user as a set of objects. The user can 
compose those objects using common visual facilities, to form a graphic 
representation of her/his data mining computations. The toolset validates and 
translates this graphic representation into an execution plan, which is then 
processed and effectively executed on the grid by means of Globus resource 
management tools. 
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