
A Sketch-based Architecture for Mining Frequent Items and Itemsets
from Distributed Data Streams

Eugenio Cesario, Antonio Grillo, Carlo Mastroianni

ICAR-CNR
Rende (CS), ITALY

Email: {cesario,grillo,mastroianni}@icar.cnr.it

Domenico Talia

University of Calabria, ICAR-CNR
Rende (CS), ITALY

Email: talia@deis.unical.it

Abstract—This paper presents the design and the implemen-
tation of an architecture for the analysis of data streams in
distributed environments. In particular, data stream analysis
has been carried out for the computation of items and itemsets
that exceed a frequency threshold. The mining approach is
hybrid, that is, frequent items are calculated with a single
pass, using a sketch algorithm, while frequent itemsets are
calculated by a further multi-pass analysis. The architecture
combines parallel and distributed processing to keep the pace
with the rate of distributed data streams. In order to keep
computation close to data, miners are distributed among the
domains where data streams are generated. The paper also
reports the experimental results obtained with a prototype of
the architecture, tested on a Grid composed of two domains
handling two different data streams.

Keywords- distributed data mining; frequent items; frequent
itemsets; Grids; stream mining

I. INTRODUCTION

Mining data streams is a very important research topic

and has recently attracted a lot of attention, because in many

cases data is generated by external sources so rapidly that

it may become impossible to store it and analyze it offline.

Moreover, in some cases streams of data must be analyzed in

real time to provide information about trends, outlier values

or regularities that must be signaled as soon as possible.

The need for online computation is a notable challenge

with respect to classical data mining algorithms [1], [2].

Important application fields for stream mining are as diverse

as financial applications, network monitoring, security prob-

lems, telecommunication networks, Web applications, sensor

networks, analysis of atmospheric data, etc.

A further difficulty occurs when streams are distributed,

and mining models must be derived not only for the data

of a single stream, but for the integration of multiple and

heterogeneous data streams [3]. This scenario can occur in

all the application domains mentioned before. For example,

in a Content Distribution Network, user requests delivered

to a Web system can be forwarded to any of several servers

located in different and possibly distant places, in order

to serve requests more efficiently and balance the load. In

such a context, the analysis of user requests, for example

to discover frequent patterns, must be performed with the

inspection of data streams detected by different servers.

Another notable application field is the analysis of packets

processed by the routers of an IP network. In any distributed

scenario, it is essential that miners are located as close to

data sources as possible, in order to limit the overhead of

data communication. When there is the need for performing

multiple passes on data, the presence of data cachers can

help, provided that they are also distributed appropriately.

Sometimes the rate of a single data stream can be so fast

that a single computing node can have difficulties to keep

the pace with the generation of data. In these cases, it can

be useful to sample the data stream instead of processing

all the data [4], but of course this can lower the accuracy

of derived models, depending on the sampling frequency

and the adopted algorithm. A different, or complementary,

solution is to partition a data stream among a set of miners,

so that each miner processes only a fraction of data. This

solution can be achieved by parallelizing the computation

over the nodes of a cluster, or can also be implemented

by exploiting the multiple CPUs/GPUs offered by modern

multicore and manycore machines.

Two important and recurrent problems regarding the anal-

ysis of data streams are the computation of frequent items
and frequent itemsets from transactional datasets. The first

problem is very popular both for its simplicity and because

it is often used as a subroutine for more complex problems.

The goal is to find, in a sequence of items, those whose

frequency exceeds a specified threshold. When the items

are generated in the form of transactions — sets of distinct

items — it is also useful to discover frequent sets of items.

A k-itemset, i.e., a set of k distinct items, is said to be

frequent if those items concurrently appear in a specified

fraction of transactions. The discovery of frequent itemsets

is essential to cope with many data mining problems, such as

the computation of association rules, classification models,

data clusters, etc. This task can be severely time consuming,

since the number of candidates is combinatorial with their

allowed size. The technique usually adopted is to first

discover frequent items, and then build candidate itemsets

incrementally, exploiting the Apriori property [5], which

states that an i-itemset can be frequent only if all of its

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CCGrid.2011.45

245

subsets are also frequent. While there are some proposals in

the literature to mine frequent itemsets in a single pass, it is

recognized that in the general case, in which the generation

rate is fast, it is very difficult to solve the problem without

allowing multiple passes on the data stream [6].

The architecture we designed and present in this paper

addresses the issues mentioned above by exploiting the

following main features:

• the architecture combines the parallel and distributed

paradigms, the first to keep the pace with the rate of a

single data stream, by using multiple miners (processors

or cores), the second to cope with the distributed

nature of data streams. Miners are distributed among

the domains where data streams are generated, in order

to keep computation close to data.

• the computation of frequent items is performed through

sketch algorithms. These algorithms maintain a matrix

of counters, and each item of the input stream is

associated with a set of counters, one for each row

of the table, through hash functions. The statistical

analysis of counter values allows item frequencies to be

estimated with the desired accuracy. Sketch algorithms

compute a linear projection of the input: thanks to this

property, sketches of data can be computed separately

for different stream sources, and can then be integrated

to produce the overall sketch [7].

• the approach is hybrid, meaning that frequent items are

calculated online, with a single pass, while frequent

itemsets are calculated by a further multi-pass analysis.

This kind of approach allows important information to

be derived on the fly without imposing too strict time

constraints on more complex tasks, such as the extrac-

tion of frequent k-itemsets, as this could excessively

lower the accuracy of models.

• to support the mentioned hybrid approach, the archi-

tecture exploits the presence of data cachers on which

recent data can be stored. In particular, miners can turn

to data cachers to retrieve the statistics about frequent

items and use them to identify frequent sets of items. To

avoid excessive communication overhead, data cachers

are distributed and placed close to stream sources and

miners.

To the best of our knowledge, this is one of the first

attempts to combine the four mentioned characteristics.

In particular, we are not aware of attempts to combine

the parallel and distributed paradigms in stream mining,

nor of implemented systems that adopt the hybrid single-

pass/multi-pass approach, though this kind of strategy is

suggested and fostered in the recent literature [8]. The major

advantages of the proposed architecture are its scalability

and flexibility. Indeed, the architecture can efficiently exploit

the presence of multiple miners, and can be adapted to the

requirements of specific scenarios: for example, the use of

parallel miners can be avoided when a single miner can keep

the pace of a single stream, and the use of data cachers is

not necessary if mining frequent itemsets is not required or

if the stream rate is so slow that they can be computed on

the fly.

Beyond presenting the architecture, we describe a pro-

totype that implements it and discuss a set of experiments

performed in a Grid environment composed of two domains

handling two data streams. In this scenario, we computed

frequent items and itemsets for two well known datasets,

Kosarak and WebDocs, and we analyzed the processing

time when changing the number of miners available in each

domain and the rate of the data streams.

The rest of the paper is structured as follows: Section II

summarizes the main issues regarding the mining of data

streams and illustrates the most common algorithms for

the computation of frequent items and itemsets; Section

III describes the proposed parallel/distributed architecture

for mining data streams and discusses the adopted hybrid

approach; Section IV describes the prototype and the testbed

scenario, and reports the related results; Section V discusses

related work and Section VI concludes the paper and gives

hints for future research avenues.

II. MINING FREQUENT ITEMS AND FREQUENT

ITEMSETS IN DISTRIBUTED DATA STREAMS

Data stream analysis is often performed with randomized

and approximated algorithms, since exact and deterministic

algorithms would require too much computing time or

memory space. Accordingly, data mining algorithms for data

stream analysis are generally evaluated with respect to three

metrics [7]:

• The processing time of the operations that update the

data structures and the mining models after the arrival

of a new stream item;

• The storage space used by the algorithm;

• The accuracy of the approximated algorithm, in gen-

eral specified through two parameters set by the user:

the accuracy parameter ε and the failure probability

δ, which means that the estimation error is at most

ε with probability (1 − δ). Of course, processing time

and storage size strongly depend on these parameters.

One of the most important issues is the discovery of

frequent items [9], consisting of identifying the items whose

frequency in a stream exceeds a specified fraction σ of

the overall stream size. This problem has a huge number

of applications in a variety of scenarios: frequent items

can be the most popular destinations of IP packets, the

most frequent queries submitted to a search engine, the

most common values observed by sensors in a wireless

environment, etc. Moreover, frequent items are often used

as the basis for more complex analysis processes.

The problem is formalized as follows [7]:

246

PROBLEM STATEMENT. Given a stream S of n
items e1, ..., en, where the frequency of an item i is
fi = |{j|ej = i}|, and a frequency threshold σ, the
ε-approximate-frequent-items problem consists of finding
the set F of items such that: F = {i|fi ≥ (σ − ε)n}

Two basic categories of algorithms can be used to solve

this problem: the Counter-Based and the Sketch-Based al-

gorithms. The algorithms of the first type maintain counters

for a subset of elements, and counters are updated every

time one of these elements is observed in the stream. If the

observed element has no associated counter, the algorithm

must choose whether to ignore the element or replace an

existing counter with a counter for the new item. At the

end of the first pass, frequent items will surely be among

those associated with counters, but the inverse is not true,

which requires at least a second pass to verify which

counters actually correspond to frequent items. Some of the

most used Counter-Based algorithms are the SpaceSaving
algorithm [10] and the LossyCounting algorithm [11].

Conversely, Sketch-Based algorithms [9] do not monitor

a subset of elements but provide, with a given accuracy, an

estimation of the frequency for all stream elements using a

matrix of counters C with d rows and w columns. A set

of d hash functions h1, ..., hd are chosen among a family

of pairwise-independent functions, and are associated to the

different matrix rows. Each item i observed in the stream is

mapped, for each row r, to the matrix element C[r, hr(i)].
This counter is then modified depending on the specific

sketch algorithm: in CountMin [12], at the arrival of a new

item i, the counter is incremented as follows (see Figure 1):

for r ∈ [1, d]→ C[r, hr(i)]+ = 1

Figure 1. CountMin Algorithm. A new item is associated, for each
row, to a different entry - computed with a hash function - which is
then incremented.

The number of counters in a row, w, is lower than the

number of elements, so there are conflicts, because several

distinct elements will be mapped by a hash function to the

same counter. However, different elements are in conflict

for different rows, which enables the adoption of statistical

techniques to estimate the actual frequencies of elements.

In CountMin, collisions always cause extra increments of

counters, therefore the best estimation for the frequency fi

of element i is the minimum value of the counters associated

to i:

fi = minr{C[r, hr(i)]}
Of course, the accuracy of sketch algorithms increases

with the size of the matrix, since a larger matrix reduces the

frequency of collisions of different elements on the same

counter. In CountMin, setting d = �ln 1
δ � and w = � eε �

ensures that fi, in a stream with n elements, has error at most

εn with probability of at least 1− δ. The spatial complexity

is O(eε ln
1
δ) while the time for update is O(ln 1

δ).
More details about CountMin can be found in [12]. Here

it is worth recalling that this algorithm, as all the sketch

algorithms, has the important property that the sketch is a

linear projection of the input. This means that the overall

sketch of multiple streams can be computed by adding the

sketches of the single streams. Thus is the main reason why

we decided to adopt CountMin: in a distributed architecture,

it would be prohibitive to transmit source data to a central

processing node, while the mere transmission of sketch sum-

maries allows overhead communications to be drastically

reduced.

The computation of frequent itemsets can either be per-

formed directly, or by exploiting the statistics of frequent

items. The direct computation in a single pass is feasible

only if the stream rate is moderate, due to the large number

of candidate frequent itemsets. For example, in [6] a hybrid

approach is used: first, a counter-based algorithm computes

the candidate 2-itemsets, then a second pass is necessary to

eliminate the false candidates, finally the Apriori property

is exploited to find the frequent i-itemsets, for i > 2. The

merit of hybrid approaches is that they try to combine the

best of single-pass and multiple-pass algorithms [8], and

can be particularly efficient in a distributed scenario. In our

architecture, frequent items are computed on the fly with

CountMin, and the results, stored in distributed data cachers,

are used to compute frequent itemsets.

III. A HYBRID MULTI-DOMAIN ARCHITECTURE

The stream mining architecture presented in this paper

aims at solving the problem of computing frequent items and

frequent itemsets from distributed data streams, exploiting

a hybrid single-pass/multiple-pass strategy. It is assumed

that stream sources, though belonging to different domains,

are homogenous, so that it is useful to extract knowledge

from their union. Typical cases are the analysis of the traffic

experienced by several routers of a wide area network, or

the analysis of client requests forwarded to multiple web

servers. Miner nodes are located close to the streams, so that

data transmitted between different domains only consists of

models (sketches), not raw data.

The architecture, depicted in Figure 2, includes the fol-

lowing components:

• Data Streams (DS), located in different domains.

247

Figure 2. Distributed architecture for data stream mining.

• Miners (M). They are placed close to the respective

Data Streams, and perform two basic mining tasks: the

computation of sketches for the discovery of frequent

items, and the computation of the support count of

candidate frequent itemsets. If a single Miner is unable

to keep the pace of the local DS, the stream items can

be partitioned and forwarded to a set of Miners, which

operate in parallel. Each Miner computes the sketch

only for the data it receives, and then forwards the

results to the local Stream Manager. Parallel Miners

can be associated to the nodes of a cluster or to the

cores of a manycore machine.

• Stream Managers (SM): in each domain, the Stream

Manager collects the sketches computed by local min-

ers, and derives the sketch for the local DS. Moreover,

each SM cooperates with the Stream Manager Coordi-

nator to compute global statistics, valid for the union

of all the Data Streams.

• Stream Managers Coordinator (SMC): this node

collects mining models from different domains and

computes overall statistics regarding frequent items and

frequent itemsets. The SMC can coincide with one

of the Stream Managers, and can be chosen with an

election algorithm. In the figure, the SM of the domain

on the left also takes the role of SMC.

• Data Cachers (DC) are essential to enable the hybrid

strategy. Each Data Cacher stores the statistics about

frequent items discovered in the local domain. These

results are then re-used by Miners to discover frequent

itemsets composed of increasing numbers of items.

The algorithm for the computation of frequent items,

outlined in Figure 3, is performed continuously, for every

new block of data that is generated by the data streams.

A block is defined here as the set of transactions that

are generated in a time interval P . If the generation rate

is too fast to be sustained by a single Miner, a filter is

used to partition the block into as many mini-blocks as

Figure 3. Schema of the algorithm for mining frequent items.

the number of available miners (step 1 in the figure). Each

Miner computes the sketch related to the received mini-

block (step 2) and transmits it to the SM (step 3), which

overlaps the sketches, thanks to the linearity property of

sketch algorithms, and extracts the frequent items for the

local domain. Then, two concurrent operations are executed:

every SM sends the local sketch to the SMC (step 4a), and

the Miners send the most recent blocks of transactions to the

local Data Cacher (step 4b). The last operation is necessary

to later compute the frequent itemsets. At step 5, the SMC

aggregates the sketches received by SMs and identifies

the items that are frequent for the union of data streams.

Frequent items are computed for a window containing the

most recent W blocks. This can be done easily thanks to

the linearity of the sketch algorithm: at the arrival of a new

block, the sketch of this block is added to the current sketch

of the window, while the sketch of the least recent block is

subtracted. The window-based approach is common because

most interesting results are generally related to recent data

[13].

Sketch-based algorithms are only capable of computing

frequent items. To discover frequent itemsets, it is necessary

to perform multiple passes on the data. Candidate k-itemsets

are constructed starting from frequent (k–1)-itemsets. More

specifically, at the first step candidate 2-itemsets are all the

possible pairs of frequent items: Miners must compute the

support for these pairs to determine which of them are

frequent. In the following steps, a candidate k-itemset is

obtained by adding any frequent item to the frequent (k–
1)-itemsets. Thanks to the Apriori property, candidates can

be pruned by checking if all the k–1 subsets are frequent: a

k-itemset can be frequent only if all the subsets are frequent.

The approach allows us to compute both itemsets that are

frequent for a single domain and those that are frequent for

the union of distributed streams. Figure 4 shows an example

of how frequent 3-itemsets are computed. The top part of

the figure reports items and 2-itemsets that are frequent for

248

the two considered domains and for the whole system. The

candidate 3-itemsets, computed by the two SMs and by the

SMC, are then reported, before and after the pruning based

on the Apriori property. In the bottom part, the figure reports

the support counts computed for the two domains and for

the whole system. Finally, the SMs check which candidates

exceed the specified threshold (in this case, set to 10%):

notice that the {abc} itemset is frequent globally though

it is locally frequent in only one of the two domains. In

general, it can happen that an itemset occurs frequently for

a single domain and infrequently globally, or vice versa:

therefore, it is necessary to separately perform the two kinds

of computations.

Figure 4. Example of the computation of frequent 3-itemsets.

Figure 5. Schema of the algorithm for mining frequent itemsets.

The schema of the algorithm for mining frequent itemsets

is illustrated in Figure 5. It assumes that the steps indicated

in Figure 3 have already been performed. At step 6, every

SM builds the candidate k-itemsets for the local domain (6a),

and the SMC also builds the global candidate k-itemsets

(6b). The SMC sends the global candidates to the SMs for

the computation of their support at the different domains

(step 7). The SMs send both local and global candidates

to the Miners (step 8), which turn to the Data Cacher to

retrieve the transactions included in the current window (step

9)1, compute the support count for all the candidates, and

transmit the results to the local SM (step 10). The SM

aggregates the support counts received by Miners and selects

the k-itemsets that are frequent in the local domain (step 11).

Analogously, the SMs send the SMC the support counts of

the global candidates (step 12), and the SMC computes the

itemsets that are frequent over the whole system (step 13).

The algorithm restarts from step 6 to find frequent itemsets

with increasing numbers of items. The cycle stops either

when the maximum allowed size of itemsets is reached or

when no frequent itemset was found in the last iteration.

IV. PROTOTYPE AND PERFORMANCE EVALUATION

The architecture described in the previous section was

implemented starting from the Mining@Home system. Min-
ing@Home, a Java-based framework partly inspired by the

Public Computing paradigm, was adopted to perform several

classes of data mining computations, among which the

analysis of astronomical data to search for gravitational

waves [14], and the discovery of closed frequent itemsets

with parallel algorithms [15]. The main features of the

stream mining prototype inherited from Mining@Home, are

the pull approach (Miners are assigned jobs on the basis

of their availability) and the adoption of Data Cachers to

store reusable data. Moreover, some important modifications

were necessary to adapt the framework to the stream mining

scenario: for example, the selection of the Miners that are the

most appropriate to perform the mining tasks is subject to

vicinity constraints, because in a streaming environment it is

very important that the analysis of data be performed close to

the data source. Another notable modification is the adoption

of the hybrid approach for the single-pass computation of

frequent items and the multi-pass computation of frequent

itemsets.

Experiments were performed on the ICAR-CNR Grid. We

used two clusters, connected by a router to test a scenario

with two domains and two data streams. The first cluster

has eight Cpu Intel Xeon E5520 nodes with four 2.27 GHz

processors and 24 GB Ram; the second cluster has eight

Intel Itanium nodes with two 1.5 GHz CPU and 4 GB Ram.

The Miners and the Stream Managers were installed on the

nodes of the clusters while the Data Streams and the Data

Cachers were put on different nodes, external to the clusters.

All the nodes run Linux, and the software components are

written in Java.

To assess the prototype, we used the transactional datasets

published by the FIMI Reposity [16]. Some of these datasets

are originated by data streams, so they are appropriate for

our analysis. In particular:

1Miners may have the ability to store some transactions in their own
memory. In this case, they only ask the Data Cacher those transactions that
could not be stored locally.

249

• The ”kosarak” dataset contains a list of click-streams
generated by users of an online portal. The analysis of

user visits can be useful to identify the most popular

sections of the portal, the preferences and requirements

of users, etc.;

• the ”webDocs” dataset is generated from a set of Web

pages. Each page, after the application of a filtering

algorithm, is represented with a set of significant words

included in it. The analysis of most frequent words, or

sets of words, can be useful to devise caching policies,

indexing techniques, etc.

Basic information about the two datasets is summarized

below:

Dataset MB No. of No. of distinct Size of tuples
tuples items (no. of items)

min med max
kosarak 30.5 990002 41270 1 8 2498

webDocs 1413 1692082 5267656 1 177 71472

The parameters used to assess the prototype are listed

below:

• P : the time interval that delimits a block of data. This

interval determines the average number of transactions

generated within a block, denoted as Nt, and the

average size of a block in bytes, B;

• NM : the number of available miners per domain,

assuming that this number is the same for the two

domains;

• FCPU : the fraction of CPU time dedicated by miners to

mining jobs. In the experiments this parameter is tuned

using the program ”cpulimit” 2.

• S: the support threshold used to determine frequent

items and itemsets;

• W : the number of blocks contained in the sliding

window;

• CM : the capacity of the miner buffer, expressed in

bytes. In the experiments, the buffer size is set so as to

contain the most recent block of data.

• ε and δ, the accuracy parameters of the sketch algo-

rithm, which are both set to 0.01.

• the maximum size of candidate itemsets, set to 5 for

Kosarak and to 8 for Webdocs.

The main performance index assessed during the experi-

ments is the average execution time, i.e., the time necessary

to compute frequent items and frequent itemsets at the arrival

of a new block of data. If this value is not longer than the

time interval P , it means that the system is able to keep the

pace with data production.

A. Experiments with the dataset Kosarak

The experiments were executed assuming a time period

P equal to 15s. The generation rates were compatible

with the Web sites of Wikipedia, Microsoft and Ebay, as

estimated using the Web site http://www.webtraffic24.com.

2http://cpulimit.sourceforge.net.

These rates correspond, respectively, to values of Nt equal

to about 20,000, 15,000 and 10,000 transactions per block.

The generation rates were equally partitioned between the

two domains. Notice that these are very high generation

rates, and allowed the prototype to be tested in challenging

conditions. 30% of the CPU time was dedicated by miners

to the mining jobs, the frequency threshold S was set to

0.02, and the window size was set to 5 blocks.

Figure 6 reports the average execution time experienced

for the computation of frequent items exclusively (I), and for

the computation of both frequent items and itemsets (I+IS),

vs. the number of miners per domain NM . The figure shows

that the processing time decreases as the number of miners

increases, which confirms that the architecture is scalable.

Scalability is ensured by two main factors: the linearity

property of the sketch algorithm, and the placement of data

cachers close to the miners. The dashed line, corresponding

to an execution time equal to the time period P (15 seconds),

is used to check if the system is stable: when the index is

lower than the dashed line, the system is able to keep pace

with the generation of stream data. This condition is always

verified when the system is only asked to compute frequent

items. On the other hand, the computation of frequent

itemsets is much more time consuming, and results show

that a single miner per domain is not sufficient: depending

on the generation rate, two, three or four miners are needed

to keep the processing time below the period length P .

Figure 7 shows the average execution time measured when

setting the value of Nt to 15,000 and varying the support

threshold S. This parameter does not influence the time to

execute the frequent items algorithm, which is executed in a

single pass: therefore the figure reports the results regarding

the combined computation of frequent items and frequent

itemsets (I+IS). As expected, a lower value of the threshold

leads to an increase of the processing time, since the number

of frequent itemsets, computed at each step of the algorithm

(see Figure 5), is larger.

B. Experiments with the dataset Webdocs

A second set of experiments was performed taking the

dataset Webdocs as input of the data stream. As the dataset

contains representative words of Web pages filtered by

a search engine, the data rate was set to typical values

registered by servers of Google and Altavista, again using

the site http://www.webtraffic24.com to do the estimation.

The considered values for Nt were 500, 1500 and 3000

transactions, with the time period P set to 15 seconds. A

single transaction contains on average many more items than

the Kosarak dataset, so the size of a block in bytes is larger:

for example, with Nt = 1500, the value of B is about 750

KBytes, while it was about 150 Kbytes with Kosarak. As

for the previous set of tests, the percentage of the CPU time

dedicated by miners to the mining jobs was set to 30%, the

250

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6

Ti
m

e
(m

s)

Number of miners per domain, NM

P=15000 ms
I+IS; Nt=10000

I; Nt=10000
I+IS; Nt=15000

I; Nt=15000
I+IS; Nt=20000

I; Nt=20000

Figure 6. Analysis of Kosarak: average execution time for the computation
of frequent items (I) and itemsets (IS), vs. the number of miners per domain,
for different values of the number of transactions per block, Nt.

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6

Ti
m

e
(m

s)

Number of miners per domain, NM

P=15000 ms
I+IS; S=0.03
I+IS; S=0.02
I+IS; S=0.01

Figure 7. Analysis of Kosarak: average execution time for the computation
of frequent items and itemsets vs. the number of miners per domain, for
different values of the threshold S. The value of Nt is set to 15,000.

frequency threshold S to 0.02 (except when this parameter

was varied) and the window size to 5 blocks.

Figure 8 shows the average time needed to compute

frequent items and itemsets after the arrival of a new block.

The architecture has no problems computing frequent items

before the arrival of the next block but, owing to the higher

complexity of the dataset (in particular, the larger number of

items per transaction), the computation of frequent itemsets

is more challenging. To perform this task, six miners per

domain are sufficient if the data rate is equal to 500

transactions per time period, but results show that more

miners are needed in the case of higher generation rates. It

should be considered that a centralized architecture would

have few chances to keep pace with data, which means

that the computation of frequent itemsets would have to be

done completely offline, while the architecture proposed here

can achieve the objective by using an appropriate degree of

parallelism.

Figure 9 focuses on the case in which the transaction rate

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5 6

T
im

e
(m

s)

Number of miners per domain, NM

P=15000 ms

I+IS; Nt=500

I; Nt=500

I+IS; Nt=1500

I; Nt=1500

I+IS; Nt=3000

I; Nt=3000

Figure 8. Analysis of Webdocs: average execution time for the computation
of frequent items (I) and itemsets (IS), vs. the number of miners per domain,
for different values of the number of transactions per block, Nt.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5 6

T
im

e
(m

s)

Number of miners per domain, NM

P=15000 ms

I+IS; S=0.03

I+IS; S=0.02

I+IS; S=0.01

Figure 9. Analysis of Webdocs: average execution time for the computation
of frequent items and itemsets vs. the number of miners per domain, for
different values of the threshold S. The value of Nt is set to 1500.

is set to 1500 transactions per time period, and illustrates

the impact of the threshold value S. Reported results show

that the system is stable (i.e., the processing time is shorter

than the time period) only when the threshold is as high as

0.03 and at least 5 miners per domain are available.

V. RELATED WORK

The analysis of data streams has recently attracted a lot

of attention owing to the wide range of applications for

which it can be extremely useful. Important challenges arise

from the necessity of performing most computation with a

single pass on stream data, because of limitations in time

and memory space. Stream mining algorithms deal with

problems as diverse as clustering and classification of data

streams, change detection, stream cube analysis, indexing,

forecasting, etc [17].

For many important application domains previously men-

tioned in this paper, a major need is to identify frequent

patterns in data streams, either single frequent elements or

251

frequent sets of items in transactional databases. A rich

survey of algorithms for discovering frequent items is pro-

vided by Cormode and Hadjieleftheriou [7]. In their paper,

discussion focuses on the two main classes of algorithms

for finding frequent items. Counter-based algorithms have

their foundation on some techniques proposed in the early

80s to solve the Majority problem [18], i.e., the problem

of finding a majority element in a stream, using a single

counter. Variants of this algorithm were devised, sometimes

decades later, to discover items whose frequencies exceed

any given threshold. LossyCounting is perhaps the most

popular algorithm of this type [11]. The second class of

algorithms compute a sketch, i.e., a linear projection of

the input, and provide an approximated estimation of item

frequencies using limited computing and memory resources.

Popular algorithms of this kind are CountSketch [19] and

CountMin [12], and the latter is adopted in this paper.

Advantages and limitations of sketch algorithms are dis-

cussed in [20]. Important advantages are the notable space

efficiency (required space is logarithmic in the number of

distinct items), the possibility of naturally dealing with

negative updates and item deletions, and the linear property,

which allows sketches of multiple streams to be computed

by overlapping the sketches of single streams. The main

limitation is the underlying assumption that the domain size

of the data stream is large, but this is true in many significant

domains.

Even if modern single-pass algorithms are extremely

sophisticated and powerful, multi-pass algorithms are still

necessary either when the stream rate is too rapid, or when

the problem is inherently related to the execution of multiple

passes, which is the case, for example, of the frequent

itemsets problem. Single-pass algorithms can be forced to

check the frequency of 2- or 3-itemsets, but this approach

cannot be generalized easily, as the number of candidate k-

itemsets is combinatorial, and it can become very large when

increasing the value of k [6]. Therefore, a very promising

avenue could be to devise hybrid approaches, which try to

combine the best of single- and multiple-pass algorithms.

A strategy of this kind, discussed in [8], is adopted in the

mining architecture presented in this paper.

The analysis of streams is even more challenging when

data is produced by different sources spread in a distributed

environment. A thorough discussion of the approaches cur-

rently used to mine multiple data streams can be found

in [21]. The paper distinguishes between the centralized
model, under which streams are directed to a central location

before they are mined, and the distributed model, in which

distributed computing nodes perform part of the computation

close to the data, and send to a central site only the models,

not the data. Of course, the distributed approach has notable

advantages in terms of degree of parallelism and scalability.

An interesting approach for the continuous tracking of

complex queries over collections of distributed streams is

presented in [3]. To reduce the communication overhead,

the adopted strategy combines two technical solutions: (i)

remote sites only communicate to the coordinator concise

summary information on local streams (in the form of

sketches); (ii) even such communications are avoided when

the behavior of local streams remains reasonably stable, or

predictable: updates of sketches are only transmitted when

a certain amount of change is observed locally. The success

of this strategy depends on the level of approximation on

the results that is tolerated. A similar approach is adopted

in [22]: here stream data is sent to the central processor

after being filtered at remote data sources. The filters adapt

to changing conditions to minimize stream rates while guar-

anteeing that the central processor still receives the updates

necessary to provide answers of adequate precision.

VI. CONCLUSIONS

In recent years, the progress in digital data production and

pervasive computing technology have made it possible to

produce and store large streams of data. Data mining tech-

niques became vital to analyze such large and continuous

streams of data for detecting regularities and outlier values in

them. In particular, when data production is massive and/or

distributed, decentralized architectures and algorithms are

needed for its analysis.
The distributed stream mining system presented in this

paper is a contribution in the field and it aims at solving the

problem of computing frequent items and frequent itemsets

from distributed data streams by exploiting a hybrid single-

pass/multiple-pass strategy. We assumed that stream sources,

though belonging to different domains, are homogenous,

so that it is useful to extract knowledge from their union.

Beyond presenting the system architecture, we described

a prototype that implements it and discussed a set of

experiments performed in a real Grid environment. The ex-

perimental results confirm that the approach is scalable and

can manage large data production by using an appropriate

number of miners in the distributed architecture.

REFERENCES

[1] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining
data streams: A review,” ACM SIGMOD Record, vol. Vol. 34,
no. 1, 2005.

[2] C. C. Aggarwal, Data Streams: models and algorithms.
Springer, 2007.

[3] G. Cormode and M. Garofalakis, “Approximate continuous
querying over distributed streams,” ACM Transactions on
Database Systems, vol. Vol. 33, no. 2, 2008.

[4] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang, “Op-
timal sampling from distributed streams,” ACM Principles of
Database Systems (PODS), 2010.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo, “Fast discovery of association rules,” pp. 307–328,
1996.

252

[6] R. Jin and G. Agrawal, “An algorithm for in-core frequent
itemset mining on streaming data,” in 5th IEEE International
Conference on Data Mining ICDM, Houston, Texas, USA,
2005, pp. 210–217.

[7] G. Cormode and M. Hadjieleftheriou, “Finding the frequent
items in streams of data,” Communications of the ACM,
vol. 52, no. 10, pp. 97–105, 2009.

[8] A. Wright, “Data streaming 2.0,” Communications of ACM
(CACM), vol. Vol. 53, no. 4, 2010.

[9] G. Cormode and M. Hadjieleftheriou, “Finding frequent items
in data streams,” in International Conference on Very Large
Data Bases, 2008.

[10] A. Metwally, D. Agrawal, and A. Abbadi, “Efficient com-
putation of frequent and top-k elements in data streams,” in
International Conference on Database Theory, 2005.

[11] G. Manku and R. Motwani, “Approximate frequency counts
over data streams,” in International Conference on Very Large
Data Bases, 2002.

[12] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” J.
Algorithms, vol. Vol. 55, 2005.

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM Journal on
Computing (SIAMCOMP), vol. Vol. 31, no. 6, 2002.

[14] C. Mastroianni, P. Cozza, D. Talia, I. Kelley, and I. Taylor,
“A scalable super-peer approach for public scientific compu-
tation,” Future Generation Computer Systems, vol. 25, no. 3,
pp. 213–223, March 2009.

[15] C. Lucchese, C. Mastroianni, S. Orlando, and D. Talia, “Min-
ing@home: toward a public resource computing framework
for distributed data mining,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 5, pp. 658–682, April
2009.

[16] “Frequent itemset mining dataset repository,” available at
http://fimi.cs.helsinki.fi.

[17] C. Aggarwal, “An introduction to data streams,” in Data
Streams: Models and Algorithms, C. Aggarwal, Ed. Springer,
2007, pp. 1–8.

[18] M. Fischer and S. Salzburg, “Finding a majority among n
votes: solution to problem 81-5,” J. Algorithms, vol. 3, no. 4,
pp. 376–379, 1982.

[19] M. Charikar, K. Chen, and M. Farach-Colton, “Finding fre-
quent items in data streams,” in Proceedings of the Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP), 2002.

[20] C. C. Aggarwal and P. S. Yu, “A survey of synopsis con-
struction in data streams,” in Data Streams: Models and
Algorithms, C. Aggarwal, Ed. Springer, 2007, pp. 169–207.

[21] A. G. Srinivasan Parthasarathy and M. E. Otey, “A survey of
distributed mining of data streams,” in Data Streams: Models
and Algorithms, C. Aggarwal, Ed. Springer, 2007, pp. 289–
307.

[22] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for
continuous queries over distributed data streams,” in SIGMOD
’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, San Diego, California,
2003.

253

