
Distributing Workflows over a Ubiquitous P2P

Network

Eddie Al-Shakarchi1† Pasquale Cozza2

Andrew Harrison1 Carlo Mastroianni3 Matthew Shields1

Domenico Talia2 Ian Taylor1 4

1 School of Computer Science, Cardiff University, UK

2 DEIS University of Calabria, Rende (CS), Italy

3 CNR-ICAR, Rende (CS), Italy

4 Center for Computation and Technology, Louisiana State University, USA

† Corresponding author

Eddie Al-Shakarchi E.Alshakarchi@cs.cardiff.ac.uk

Tel: +44 (0)29 2087 4812

Fax: +44 (0)29 2087 4598

Cardiff School of Computer Science, Cardiff University, Queen’s Buildings, 5

The Parade, Roath, Cardiff CF24 3AA, UK

1



Abstract

This paper discusses issues in the distribution of bundled workflows

across ubiquitous peer-to-peer networks for the application of music in-

formation retrieval. The underlying motivation for this work is provided

by the DART project, which aims to develop a novel music recommen-

dation system by gathering statistical data using collaborative filtering

techniques and the analysis of the audio itself in order to create a reli-

able and comprehensive database of the music that people own and which

they listen to. To achieve this the DART scientists creating the algorithms

need the ability to distribute the Triana workflows they create, represent-

ing the analysis to be performed, across the network on a regular basis

(perhaps even daily) in order to update the network as a whole with new

workflows to be executed for the analysis. DART uses a similar approach

to BOINC but differs in that the workers receive input data in the form

of a bundled Triana workflow, which is executed in order to process any

MP3 files that they own on their machine. Once analysed, the results are

returned to DART’s distributed database that collects and aggregates the

resulting information. DART employs the use of package repositories to

decentralise the distribution of such workflow bundles and this approach

is validated in this paper through simulations that show that suitable scal-

ability is maintained through the system as the number of participants

increases. The results clearly illustrate the effectiveness of the approach.

2



1 Introduction

This paper describes a novel Music Recommendation System (MRS) that em-

ploys the use of the underlying Distributed Audio Retrieval using Triana1

(DART) peer-to-peer (P2P) subsystem in order to provide a fan-out mechanism

for distributing workflows across the network and for retrieval and aggregation

of results. Mrs Dart utilises a combination of distributed systems technologies

ranging from Grid computing, peer-to-peer, Web Services and workflow. The

UK Science and Technology Facility Council PIPSS 2 (PPARC Industrial Pro-

gramme Support Scheme) funded project at its core is based on the volunteer

computing paradigm that typically employs the use of home computers for the

analysis of data, e.g. radio-telescope data for SETI@home3, gravitational wave

data for Einstein@home4, and so on. In the DART scenario however, the home

users, or workers as they are referred to, perform analysis of their own mu-

sic collection by executing Triana workflows that encompass the analysis to be

performed at that time.

It is crucial to the project that the DART environment is capable of self-

updating as it is intended not only to provide music recommendations for end

users but also to establish itself as a research platform that music information

retrieval (MIR) scientists can use in order to test out new ideas in the MIR field.

To this end, scientists will want to design new methods for audio analysis, both

for statistical correlation based on tags and more interestingly for the analysis of

the actual audio itself to extract things like tempo, pitch, mood and so forth. We

believe these high-fi parameters will allow DART to stand out from the existing

recommendation systems that generally are based on grouping what people have

bought, and do not take into account the actual audio nor do they take into
1see MRS DART website www.mrsdart.com
2see http://www.pparc.ac.uk
3see SETI@Home website http://setiathome.berkeley.edu/
4see Einstein@Home website http://einstein.phys.uwm.edu/

3



account what people actually have and what they have listen to. Further, we

intend to build a DART community, rather similar to those hosted on Web sites

like mySpace and Facebook, to allow scientists to share workflows, which will

help to create a collaborative research space to help advance the state of the

art in this area. Such an environment is being developed through the WHIP5

project, based around tools developed in the myExperiment project [8].

In order to distribute such worflows, a complex uploading, packaging, and

deployment subsystem must exist; not only to bundle the XML document spec-

ifying the workflow along with all the tools, resources and Java class files for

execution on the remote platform, but also to be able to fan-out these bundles

potentially to millions of peers. For this to be achieved, we cannot rely on

the current, centralised mechanism employed for data distribution in BOINC6

(Berkeley Open Infrastructure for Network Computing, an open-source software

platform for computing using volunteered resources) as this is not only expen-

sive in both cost (i.e. we would need to buy a fairly heavyweight server for this

purpose) and time (for administration) but also it would be extremely slow for

updating the workflows to the network participants as existing Triana toolboxes

for the analysis of such audio are over 10 megabytes in size. Further, such la-

tency is simply not acceptable for the scientists who would like to be able to

prototype their ideas quickly and not have to wait a few days for everyone to

be updated before they can view the results.

To address this problem, we have chosen a peer-to-peer approach that is

based on the super peer architecture but extends this idea to employ the use of

secure data servers (called package repositories) that cache the workflow bun-

dles for DART, to be able to replicate and decentralise the distribution of the

workflows. Other techniques were considered, such as bittorrent but this is un-

acceptable within the BOINC framework because of security constraints. First,
5http://www.whipplugin.org/
6see BOINC website http://boinc.berkeley.edu/

4



it requires every user on the network to open a port for serving the data and

secondly, it provides no scoping environment for DART to be able to restrict

which servers can act as a data provider for their workflows. We would like

scientists to be able to develop their ideas in confidence (and also to support

commercial products) and therefore a user must be able to impose control on

who is authorised to distribute the data. For this we employ the use of X.509

certificates that are issued by the Certificate Authority (CA), in this case the

Dart manager, and made available to certain participants for authentication to

become package repositories.

DART is a realisation of a Cardiff University research framework called Al-

chemist, which provides the underlying P2P infrastructure and mechanisms to

create secure data caching groups for implementing the distributed package

repositories. This framework is also used by another project that implements

data distribution techniques for scientific data. More information about this

framework can be found in publications [14] [3]. The scheme described here for

distributing workflows therefore has many applications in distributed systems

as a whole.

The rest of the paper is organised as follows; in the next section we discuss

some of the background technologies and related work within this paper, in-

cluding an overview of Triana and some workflow examples. In Section 3, we

describe the DART framework itself, followed by a discussion of our simulation

results for the application and network in Section 4, which shows how the system

will scale as the number of peers (users) in the network increases. Finally the

conclusion will argue that this approach to distributing dynamic computational

workflows is valid, and outline the future work.

5



2 Background Technologies

DART represents a fusion of recent Internet scale distributed systems tech-

nologies. It encompasses security techniques from Grid computing, which has

evolved from toolkits such as Globus7 that provide the core mechanisms for

managing the execution of jobs and transfer of data. The Alchemist frame-

work, on which DART is built, is also based on Web services with support

for the Open Grid Services Architecture (OGSA) [7] approach to expose re-

sources using Web services standards8 within a service oriented architecture

(SOA). The recent implementation of OGSA in the form of WS-RF [6] provides

decoupled mechanisms for representing stateful resource capabilities through

stateless Web services interfaces, which allow a system to manage lifetime with-

out using a tightly coupled approach such as those used in previous distributed

object systems, e.g. Corba9 or Jini10. Grid computing is built on standardised

technologies and extended through other standardisation efforts often initiated

through the various research and working groups hosted within the Open Grid

Forum11 (OGF). Both Alchemist and therefore DART intend to adhere to these

standards as they evolve.

DART also employs the use of Peer-to-peer (P2P) technologies, which have

grown through the development of popular applications targeted at specific ser-

vices, such as Napster12, Gnutella13, and CPU sharing systems like SETI@home,

with no desired path to their interoperability or standardisation. P2P designers

have been more concerned about solving practical problems, such as discovery

and communication between huge numbers of unreliable edge peers, and devel-

oping scalable and robust mechanisms to tackle frequently disconnecting peers
7http://www.globus.org/
8http://www.w3.org/TR/ws-arch/
9http://www.omg.org/

10http://www.jini.org/
11http://www.ogf.org/
12http://www.napster.com
13http://www.gnutella.com/

6



and unfriendly network application environments, e.g. Network Address Trans-

lation (NAT) systems and firewalls. More often, the society of peers cannot be

trusted and therefore the content of a file or service cannot be the guaranteed.

The data distribution techniques employed here build upon the super peer net-

work structure that has been shown to cope with highly transient participants

on a massive network scale.

Thirdly, DART builds on tools within the workflow domain for e-Science

applications, where there has recently been a wealth of activity from specific

application domains, such as the support for scientists to conduct in silico ex-

periments in biology using Taverna [13] to more generalised systems, such as

Kepler [12] or the VDS [4]. For a state-of-the-art overview of current workflow

environments and toolkits, see [15].

Audio analysis algorithms and frameworks for Music Information Retrieval

(MIR) are expanding rapidly, providing new ways to garner information from

audio sources well beyond what can be ascertained from ID3 tags, the standard

format for storing artist and song meta-data within an MP3 audio file. Modest

successes have been made in audio-based musical genre classification audio-

analysis algorithms such as musical genre classification [18][1], beat detection

and analysis [5], similarity retrieval [11][1][21], and audio fingerprinting [9]. This

work uses Short-Time Fourier Transforms to track the means and variances of

the Spectral Centroid, standard deviations of the spectrum around its centroid,

spectral envelopes, and signal power to represent sound textures, beat and pitch

content [17]. These values are then transformed into attribute–value pairs for

pattern matching and semantic retrieval. There is still much to be done in

this field. Refinements to existing strategies, as well as new strategies are still

needed.

The analysis component of MIR requires extensive computational resources.

Distributed environments and P2P networks are already being used for this

purpose [19]. The idea of using MIR over P2P was proposed in Wang et. al. [20],

7



however this system suffered from problems with scalability. More recently, the

JXTA programming framework was used by Baumann [2] to aid in the content-

based retrieval over a P2P network. The proposed DART system differs from

the distributed MIR system proposed in [19] however, in that only metadata

is returned to the main Triana server for analysis, as opposed to actual audio

data files, and has a different overall goal; DART is not intended to act as a

file sharing system, but instead a distributed P2P MIR system with the main

application scenario focussing on the recommendation of music based on the

audio files already stored on the user’s hard drive.

Pandora14 and is a novel music recommendation system from the makers of

the Music Genome Project15. Pandora allows users to enter the names of artists

or songs they like, and Pandora will consult return a play list of artists and songs

that the user may like. DART hopes to build on these concepts by using the

users actual audio files, extracting information based on the characteristics of

the audio, and using these attributes to base the recommendations on

Last.fm16 is an internet radio and music community website, and uses an

MRS known as an Audioscrobbler17. Last.fm builds a profile of each users’

musical taste by recording details of all the songs the user listens to using their

media player (iTunes, Winamp, etc) or iPod. This information is ’scrobbled’

(transferred to Last.fm’s central database) via a plugin installed into the users’

music player, and the users’ profile data is displayed on a personal web page. The

Last.fm website offers numerous social networking features and can recommend

and play artists similar to the user’s favourites. Again, DART hopes to build on

this by performing audio analysis in addition to relying on statistical data, and

will also employ a decentralised distributed P2P model. However, the Last.fm

Audioscrobbler system also exposes its data via webservices so other projects
14http://www.pandora.com/
15http://www.pandora.com/mgp.shtml
16http://www.last.fm/
17http://www.audioscrobbler.net

8



can make interesting use of the data and statistical results and recommendations

in the database. The feasibility of making use of this statistical data in DART

in addition to the audio analysis workflows, is currently being researched by the

DART team.

In summary, DART’s P2P architecture aims to build upon all of these devel-

opments to provide an advanced, fully scalable platform for developing, testing

and deploying new search and analysis algorithms on an Internet scale. Further-

more, as explained later in the paper, the DART system can be adapted to fulfil

a variety of applications other than music recommendation by modifying the

Triana workflow that is distributed to the worker nodes. The Triana framework

and Triana workflows are discussed in the next section.

2.1 The Triana Workflow Environment

Triana18 is a graphical Problem Solving Environment (PSE) for composing

data-driven applications by executing workflows. Workflows (data or control-

flows) are constructed by dragging programming components, called tools or

units, from the toolbox onto a workspace, and then drawing cables between

these components to create a graph. Components can be aggregated visually

to group functionality and compose new algorithms from existing components.

For example, to add a digital Schroeder reverb to a piece of audio (see Fig-

ure 1), the file could be loaded (using the LoadSound unit), then passed to

a SchroderVerb group unit before being passed to the Play unit to hear the

result. The SchroderVerb unit is itself a group, which consists of a number of

summed comb delays and all-pass filters, representing the inner workings of such

an algorithm.

Within Triana, a large suite of Java tools exist in a range of domains includ-

ing signal, image and text processing. The most advanced tools in Triana are
18http://www.trianacode.org

9



Figure 1: A simple audio processing work-flow, showing how a Schroeder reverb

is applied to a signal by using a group, which contains the underlying algorithmic

details.

created for signal processing, as Triana was initially developed for signal anal-

ysis within the GEO600 Gravitational Wave Project19, who use the system to

visualize and analyse one-dimensional signals (rather like an audio channel but

sampled at a lower rate). Therefore a number of core mathematical, statistical

and high-quality digital-signal processing algorithms already exist.

Triana integrates Grid, Web service, and P2P technologies, and has been

used in a number of domains, from bioinformatics, investigating biodiversity pat-

terns, to gravitational wave observation, using computational Grids to process

one-dimensional signals using standard digital signal-processing (DSP) tech-

niques. The goal of the DART project is to leverage this technology such that

the same kind of DSP processing can be achieved with audio rate signals for the

purposes of signal analysis, feature extraction, synthesis, and music information

retrieval.
19http://www.geo600.uni-hannover.de/

10



Given its modularity, its support for high quality audio, and its ability to

distribute processes across a Grid of computers, Triana has the potential to be

an extremely useful piece of software that allows users to implement custom

audio processing algorithms from their constituent elements, no matter their

computational complexity.

Triana’s data type classes are fundamental to Trianas flexibility and power.

Data Types are containers for the data being processed by the units or tools.

The two main types in Triana that are relevant to the processing of digital audio

in Triana are MultipleChannel, a base class for representing multiple channelled

data. The MutipleAudio Data Type stores many channels of sampled data,

again, each channel can have its own particular audio format of the data e.g. the

encoding format, sample rate and number of bits used to record the data. These

data types are essential for reading and writing sound files, and analysing audio

data. In essence, MultipleAudio provides the support for high quality audio to

be processed within Triana.

The Triana audio toolkit consists of several categorized hierarchical folders,

each with an assortment of units based on the MultipleAudio Triana data type.

This type utilises the JavaSound API classes in order to allow the use of high

fidelity audio. The Audio toolkit tree is split into three main folders: Input,

Output, and Processing.

The sub-categories inside these folders should be recognizable to regular

users of audio processing or production software, with sub-folders such as Con-

verters, Delay, Dynamics, Modulation, MIR, and EQ units, to name a few.

Each folder contains units which are in themselves effects but also allow the

user to create their custom algorithms from the smaller building blocks sup-

plied. This unit aggregation gives the user more freedom to take advantage of

Trianas modularity.

One feature of interest resides in the Converters folder; two units are avail-

able that allow the user to convert from MultipleAudio to a SampleSet Triana

11



data type – and back again (MAudioToSSet and SSetToMAudio respectively).

This opens up a whole range of possibilities to the user, enabling them to utilise

many of the numerous math and signal-processing units that work with the

SampleSet data type) to process the audio, and then convert data back to a

MultipleAudio data type for playback. One example of how this technique

could be used is shown in Figure 2. In this example, a Stereo2Mono unit is used

to split the stereo channels of an audio file or stream into two distinct mono

channels. Each side is then converted to a SampleSet and fed into a Subtractor

unit from the Math folder. This subtracts the left from the right stereo channel,

which results in the removal of sound that is contained in both i.e. those panned

in the middle of the stereo field. This is a simple way of removing vocals from

many songs and leaving the (majority) of the backing track (as vocals in par-

ticular are normally panned down the centre). This is just a simple example of

how a few of the converter units could help users create their own algorithms.

Figure 2: Splitting stereo audio and subtracting the left from right channel

As mentioned previously, Triana also contains hundreds of statistical, math-

ematical, and signal processing units, which can be used in conjunction with

all of the MultipleAudio compatible units, opening up an vast range of units

12



to facilitate and aid MIR and the creation of useful MIR algorithms. Triana

includes Fast Fourier Transform units, a range of filters, graph and histogram

viewers, spectrum analysers and more, meaning that scientists can take advan-

tage of pre-written software modules within Triana to aid in the development

of new algorithms. This allows the user to bypass the conventional approach to

programming; creating various methods and coding a core program to connect

the set of related method procedures together.

Triana is capable of working within P2P environments through the use of

P2PS and JXTA and it can work within Grid environments through the use of

the Globus toolkit accessed via the GAT/GAP interface. Further, it has the

capability of fusing these environments through the use of WSPeer, which can

host Web Services and OGSA implementations, such as WS-RF, within P2P

environments like P2PS, see [16] and [10] for a full description.

In DART, we are interested in forming unstructured P2P networks and there-

fore need to employ technologies that can adapt and scale within such an envi-

ronment. For distribution across dynamic networks, we use the P2PS binding

for Triana. Peer-to-Peer Simplified (P2PS) was a response to the complexity

and overhead associated with JXTA. As its name suggests, it is a simple yet

generic API for developing P2P systems. P2PS encompasses intelligent dis-

covery mechanisms, pipe based communication and makes it possible to easily

create desirable network topologies for searching, such as decentralised ad-hoc

networks with super peers or rendezvous nodes. P2PS is designed to cope with

rapidly changing environments, where peers may come and go at frequent in-

tervals.

At the core of P2PS is the notion of a pipe: a virtual communication chan-

nel that is only bound to specific endpoints at connection time. When a peer

publishes a pipe advertisement it only identifies the pipe by its name, ID, and

the ID of its host peer. A remote peer wishing to connect to a pipe must

query an endpoint resolver for the host peer in order to determine an actual

13



endpoint address that it can contact. In P2PS a peer can have multiple end-

point resolvers (e.g. TCP, UDP etc), with each resolving endpoints in different

transport protocols or returning relay endpoints that bridge between protocols

(e.g. to traverse a firewall). Also, the P2PS infrastructure employs XML in its

discovery and communication protocols, which allows it to be independent of

any implementation language and computing hardware. Assuming that suitable

P2PS implementations exist, it should be possible to form a P2PS network that

includes everything from super-computer peers to PDA peers.

In the DART framework the distribution policy for Triana is loosely cou-

pled. Although Triana acts as a manager and processor in the system, the dis-

tributed functionality is provided by the DART framework, which implements

a decentralised discovery and communication system based on P2PS. This al-

lows Triana workflows to be uploaded to peers for execution and enables users

to query the network to locate results and to perform custom searches. The

DART system therefore manages the specifics of the network and Triana acts

as a client (i.e. the DART manager or user) that both accesses DART and also

acts as an end processor to execute workflows that have been previously up-

loaded for the analysis of the audio. Therefore, Triana does not tie the network

together, rather it accesses a loosely coupled framework that allows wide-range

distributed Triana entities to communicate via the Internet. Section 3 of this

paper discusses the DART framework in more detail and details the mechanisms

to facilitate so-called work package assignment and the retrieval of the results.

14



3 Dart: A Framework For Distributed Informa-

tion Retrieval

3.1 Work Package Assignment and Results Retrieval

Many DART applications are process-intensive and can require the distributed

analysis of a large number of audio files in order to provide some useful, non-

trivial feedback to the user. One of the main aims of the DART system is the

development of a music recommendation system, whereby music on a users hard

drive (usually in MP3 format) is analysed, and recommendations are made to the

user based on the results of the analysis. Both index based analysis, including

statistical correlations between song names to extract commonalities in order to

make a recommendation, and audio content based analysis such searching the

track for tempos, timbre, mood, pitch, and frequency range etc., can be used to

analyse the audio. Algorithms for both types of analysis are composed in Triana

(as discussed earlier), from workflows that are created by the DART Manager.

These workflows are bundled into a workflow ’package’ (which can also be called

a ’DART package’, and contains the Java code and their required resources) that

is distributed onto the network in order to upload the new analysis to the users

(or workers) machines. As the algorithms are updated and refined by the DART

Manager, the updated Triana workflow and any new tools are bundled into a

new package, and propagated onto the network.

The scenario discussed in this section describes the decentralised DART

network, in which nodes are organized in a super peer topology using the P2PS

middleware. In P2PS producers (e.g. providers of packages containing workflows

or results) create adverts to advertise that they have something that is of interest

to other participants in the network. Consumers (i.e. the peers that wish to use

available packages, result sets and so on) issue queries in order to search for

relevant adverts. P2PS rendezvous nodes are then responsible for matching

15



queries with adverts within their local cache, in order to search for matches and

respond appropriately. Consumers receive adverts when their query matches,

and these adverts can be used to retrieve the relevant information they require

i.e. download the new workflow package to perform the analysis. The DART

Manager node produces and advertises the workflow package representing the

new DART bundle (called DART Package Adverts) containing algorithms that

the worker nodes need to run (new Triana units and workflows). With the DART

system, the data files that undergo analysis are on the users local systems hard

drive, and therefore all data processing is local so network bandwidth is not

consumed transferring large data files over the DART network. Although local,

the processing is massively parallel, as participants analyse their own audio files

in parallel.

Simple peers (or ’workers’) are available to execute the algorithms and work-

flows, and therefore issue a package query to download a package in order to

start the analysis of their music collections. The entire workflow is executed

by each worker which downloads the package; the workflow is not then broken

down and farmed out to separate nodes to complete different tasks.

Super peer interconnections are used to make package queries travel across

the network rapidly; super peers play the role of rendezvous nodes, since they

can store package adverts and compare these files with queries issued to dis-

cover them; thereby acting as a meeting place for both package providers and

consumers. Since packages could require a reasonable amount of storage space,

it is assumed that only some of the peers in the network will cache these files.

These peers are called Package Repositories (PR) and can also be super peers

or worker peers. Each node in the system decides if they want to be a super

peer and/or package repository, as well as a worker.

Figure 3 shows a sample topology with 5 super peers (2 of which are also

package repositories), and the sequence of messages exchanged among different

nodes in order to perform the package submission protocol. These messages are

16



related to the execution of a workflow by a single worker, labelled as W0. Note

that in this figure, normal peers are not considered as package repositories.

Super Peer
Package Repository Worker and User

DART Manager

1,3

1,3
1,3

2

1

4

4

w0

3

5

Messages

1. PackageQuery
2. PackageAdvert
3. DataQuery
4. DataAdvert
5. Download Request

Figure 3: Super peer protocol for the dissemination of workflow packages: sam-

ple network topology and sequence of exchanged messages to execute one pack-

age cycle.

When a new DART workflow package is available, the DART manager puts

this package on one or more package repositories and propagates an associated

metadata file, or package advert, on the super peer network. This advert is

an XML file describing the properties of the algorithms to be executed (i.e.

17



workflow parameters containing the units/tools, platform requirements if any,

information about required input audio data files, etc.).

When available to offer some of its CPU time, a worker searches the network

to verify if a new version of the package is available. More specifically, the

worker sends a package query that travels the network through the super peer

interconnections (message 1 in Figure 3). A package query is expressed by an

XML document that contains hardware and software features of the worker

node, if this is necessary e.g. available RAM, disk space or JDK version. The

query succeeds whenever it matches an advert of a package that can be actually

executed by the requesting worker. This package advert is then sent directly to

the worker.

Thereafter, the worker must search for a package repository that stores the

updated workflow package, and sends a data query to the network. As more

than one package repository can match the query, a matching repository does not

send the package directly to the worker, in order to avoid multiple transmissions

of the same file. Conversely, the repository returns only a data advert to the

worker.

A worker can choose a repository according to policies that can rely on the

distance of repositories, their available bandwidth etc. Then the worker initiates

the download operation from the selected repository.

The DART protocol allows for the progressive dissemination of workflow

packages on different repositories. Initially these packages are stored on one

or few repositories. However, when a worker downloads a package, if the local

super peer plays also the role of a repository, the package is first downloaded and

cached by this super peer, then forwarded to the worker. In the future another

package query can be matched directly by this package repository. Replication

of the workflow package on multiple package repositories allows for a significant

saving of time in the querying phase and enables the simultaneous retrieval of

packages from different repositories.

18



DART Manager

P2PS
Network

User

New Packages

Super Peers
Package Repositories

Super Peers Package Repositories

Workers

Workers

Worker
Song Suggestions

Result
Advertisements

Consumer

Audio Analyser/Provider 

Figure 4: High-level overview of the DART system, showing the various peers

and their connectivity.

Once the worker has received the updated package, the workflow is executed

by the workers, and they begin to analyse the audio files on the workers system

during the systems idle time. Once a package cycle is complete and the worker

has results to present, the worker then creates an XML advert containing the

results and metadata generated by the algorithm specified in the package (a

results advertisement). As the actual results generated would be extremely

small in size in this DART system, the functionality of the super peer has been

extended in order to also cache and make them available.

Each worker on the network can also be thought of a results provider on

the DART system, as well as act as a user, as it can query for results (in this

case a suitable music/song suggestion as generated on the super peer). There

19



is no central results collector, but rather DART utilises a fully decentralised

model and allows the results to propagate through the network hop by hop, to

be stored on the super peers. The super peers can process the metadata and

issue an XML results advertisement on receipt of a results query from the user.

Once the query is received, the results may be sent to the user.

3.2 Peer Overview

This section gives a brief overview of what role each node on the network plays,

and the jobs associated with that role:

DART Manager

• Creates new workflows and Triana units

• Advertises new DART Packages

User

• Queries Results

• Downloads/Receives Results

Worker Nodes

• Queries New Packages

• Downloads Package

• Works/processes Workflows

• Advertises Results

Package Repositories

• Query and Download New Packages (Stored locally)

20



• Advertise Packages

Super Peers

• Caches Advertisements

• Performs simple analysis of results received from workers

3.3 Workflow Design

The workflow created by the DART manager and distributed to the other peers

on the network, will always be evolving. Initially, it is easier to concentrate on

statistical methods for recommending music to the users of the DART system,

however this will soon evolve to become more involved as the Triana workflow

is refined and more MIR algorithms are incorporated into the package sent to

the worker nodes. The algorithms used for the analysis and recommendation of

music will be made available to the MIR community for refinement, suggestions,

and also to allow for the advancement of this field of research as MIR-algorithm

specialists provide input ideas and offer improvements to both refine and max-

imise the benefit of the use of the DART system.

3.4 DART Flexibility

So far this paper has focussed on the topic of distributing Triana workflows over

a ubiquitous P2P network in order to facilitate the recommendation of music to

its users, and the DART framework created in order to achieve this. However

the DART infrastructure can be used to distribute workflows for a variety of

applications, musical and otherwise. One application scenario is a DART system

installed on a local/closed network; scanning sound effect audio files on separate

systems in networked commercial studio facilities, to search for sound effect files

(or for example, drum sounds) that match a specific criteria. For example, if

a DART user requires a snare drum sample, usual search mechanisms cannot

21



search for suitable sounds unless the audio files filename contains the word snare

or other suitable identifier – the search mechanism would do no more than string

matching.

However, given the appropriate workflow created by the DART manager,

when propagated onto the network the DART system would allow the user to

search all the audio content in the distributed sound library, and suggest files

with suitable characteristics that match the specific search criteria set by the

user. This would also be able to return further results, which would not be

returned via conventional methods – any samples that match the users search

criteria, will be returned. This means that when ignoring criteria such as pitch

and tempo and investigating the timbre of the sound file, new sounds that could

be adapted to work for the user, could be suggested. For example, a sped up

sample of a car collision may easily work well in place of a snare sample!

Another example consists of a scenario that requires speech recognition al-

gorithms to detect a certain caller from a large amount of recorded telephone

audio data that was distributed over several machines. Given a sophisticated

enough algorithm (created in Triana as a workflow), the DART framework could

be used to scan terabytes of recorded audio data to help trace calls from a spe-

cific caller. The flexibility of the DART system stems from the ability to easily

refine and change the Triana workflow that dictates what the worker nodes will

be processing in their screensaver/idle/nice time.

4 Distributed Simulations

In order to demonstrate the DART system’s potential to scale and distribute

workflows over a ubiquitous P2P network as the number of participants increase,

ICAR-CNR (The Institute of High Performance Computing and Networking) in

Italy, and Cardiff University, Wales, conducted a study in which a simulation of

the DART scenario (as discussed in Section 3) was run. A simulation analysis

22



was performed by means of an ad hoc event-based simulator, written in C++,

to evaluate the performance of the package dissemination protocol described in

Section 3.1.

The simulation scenario is described in Table 1. In this case, a workflow

package of around 10.4mb in size (the current size of the Triana audio toolkit)

is to be distributed to the worker nodes on the network. It is here assumed that

the workflow can be executed by any worker and that only super peers can be

package repositories.

Table 1: Simulation scenario.
Scenario feature Value

Number of workers, or simple peers, Npeer 1,000 to 20,000

Number of super peers, Nspeer 100 to 2,000

Average number of workers connected to a super peer 10

Maximum number of neighbors for a super peer 4

Average connection time of workers 4 hours

Average disconnection time of workers 1 hour

Number of package repositories 1 to 50% of Nspeer

Size of input data files 10.4 Mbytes

Latency between two adjacent super peers 100 ms

Latency between a super peer and a local worker 10 ms

Bandwidth between two adjacent super peers 2 Mbps

Bandwidth between a super peer and a local worker 1 Mbps

Mean workflow execution time 10 hours

This scenario simulates the performance and behaviour of a distributed P2P

network with 1,000 to 20,000 workers, with a maximum value of 2,000 super

peers as the number of super peers is assumed to be 10% of the number of

workers. Workers can disconnect and reconnect to the network at any time.

This implies that the download or execution of a workflow fails upon the dis-

23



connection of the corresponding worker. It is assumed that connections between

two adjacent super peers have a larger bandwidth and a longer latency than local

connections (i.e. between a super peer and a local simple node) .

In the simulation scenario, each worker has to download and execute a work-

flow package; to this aim it issues a package query and follows the protocol

described in Section 3.1. If the download operation fails due to a worker dis-

connection, a new package query is forwarded and the procedure is repeated.

The experiments aimed at evaluating the effectiveness of the dynamic

caching mechanism described in Section 3.1. Therefore, the number of avail-

able package repositories was varied from 1 to half the number of super peers:

one of these repositories provides the workflow package from the beginning,

while the others act as cachers, as they can download, store and provide data

on the fly.

Simulations have been performed to analyze the overall dissemination time,

Tdiss, defined as the time needed to propagate the workflow package at least

at the 95% of the workers. This time is crucial to determine the rate at which

workflow packages can be retrieved from the package repositories in order to

guarantee that the workers are able to keep the pace with the availability of

new versions of the package. The average time needed to perform a single

download operation, Tdl, is also calculated.

The average utilization index of package repositories, Pact, is defined as the

fraction of time that a package repository is actually utilized, i.e., the fraction

of time in which at least one download connection, from a worker (or another

repository), is active with this repository. The value of Pact is averaged on all

the repositories and can be seen as an efficiency index.

Figure 5 shows that the dissemination time decreases as the number of pack-

age repositories increases, as worker nodes can exploit higher parallelism and

download workflow packages from multiple repositories (possibly closer) and

also because the repositories themselves are under less stress and therefore data

24



1e+03

2e+03

5e+03

1e+04

2e+04

5e+04

1e+05

0 100 200 300 400 500 600 700 800 900 1000

T
di

ss
 (

s)

Number of package repositories

Npeer = 1000
Npeer = 5000

Npeer = 10000
Npeer = 20000

Figure 5: Time at which 95% of workers have downloaded a new version of the

workflow package from a package repository.

download time decreases. Conversely, if the number of repositories is constant,

the dissemination time increases with the number of workers as more download

operations must be performed and therefore a single repository has to serve

more workers on average.

In these simulations, the protocol is shown as scalable when one observes the

results obtained with a fixed percentage of repositories. As an example, observe

results obtained when the number of repositories is set to 5% of peers (i.e., 50%

of super peers, see dashed line in Figure 5). It is interesting to note that as

the number of peers increases, the dissemination time increases very slightly,

much less than the number of peers. For example, with 1,000 peers and 50

repositories, dissemination time is approximately 2,200 seconds; however with

20,000 peers and 1,000 repositories, dissemination time is approximately 4,100

seconds.

25



1e+03

2e+03

5e+03

1e+04

2e+04

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n 
do

w
nl

oa
d 

tim
e 

T
dl

 (
s)

Number of package repositories

Npeer = 1000
Npeer = 5000

Npeer = 10000
Npeer = 20000

Figure 6: Average download time of single worker from package repository when

worker disconnection does not interrupt the download.

Figure 6 shows the average download time of a single worker from a package

repository when a worker disconnection does not interrupt the download opera-

tion. The results here are analogous to the behaviour previously observed when

considering Figure 5; the qualitative behaviour is the same, but the values are

lower. The download time decreases as the number of repositories increases,

and the download time will increase as the number of workers increases.

Figure 7 shows the percentage of time in which a repository is actually

exploited (i.e. there is at least one download in progress). We can observe that as

more repositories become available, the percentage of time decreases; therefore,

one should be hesitant in setting up a high number of repositories, because while

this can slightly decrease dissemination time, they can also be under-exploited.

Another interesting result is that the utilisation of a given number of repositories

increases as the network becomes bigger and more workers need to download

26



20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

. o
f 

PR
 a

ct
iv

ity
 ti

m
e 

Pa
ct

Number of package repositories

Npeer = 1000
Npeer = 5000

Npeer = 10000
Npeer = 20000

Figure 7: Percentage of time in which a package repository is actually exploited

(at least one download in progress).

the workflow package. This is another verification of the scalability behaviour

discussed earlier. It should be noticed that this percentage never reaches 100%

because a data cacher (a package repository that has no data at the beginning)

must download data from another repository before it can serve a worker.

Figure 8 displays the percentage of download operations that are interrupted

due to the disconnections of corresponding downloading workers. In this simu-

lation, only results for which this percentage is lower than 30% are displayed.

It was observed that the percentage of interrupted downloads decreases as the

number of repositories increases. In fact, the download time decreases if more

repositories are available (see Figure 6), then a worker has more chances to

conclude its download operation. Finally, if the percentage of repositories with

respect to the number of peers is set to a given value (for example 5%), the

percentage of interrupted downloads is almost constant (see dashed line), which

27



0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge
 o

f 
in

te
rr

up
te

d 
do

w
nl

oa
ds

Number of package repositories

Npeer = 1000
Npeer = 5000

Npeer = 10000
Npeer = 20000

Figure 8: Percentage of interrupted downloads.

is a further confirmation about the scalability of the dissemination protocol.

5 Conclusions

The DART Music Recommendation System (MRS) project makes novel use

of dynamic workflows in a massively distributed P2P environment. Remote

processing on peers in the DART network is performed through the execution

of workflows designed for Music Information Retrieval (MIR), and dynamically

propagated through the network and discovered using a super peer mechanism.

The scientist or analyst (DART manager) that creates the workflow is able to

modify it and retransmit it to the peers, fine tuning the application based on

results.

We have performed extensive simulations using an ad-hoc event simulator to

explore how the transmitted workflows will propagate throughout the network

28



as the number of peers and super peers increases. The results show that the

network will scale as the number of members increases as long as the number of

super peers that act as data providers increases by the same ratio. This shows

that the real application should be capable of operating at an Internet scale

with acceptable performance. Given the simulation results, a real network and

application is the next goal of the project.

References

[1] J. J. Aucouturier and F. Pachet. Representing musical genre: A state of

the art. Journal of New Music Research, 32(1):83–93, 2003.

[2] S. Baumann. Music Similarity Analysis in a P2P Environment. Proceedings

of the 4th European Workshop on Image Analysis for Multimedia Interac-

tive Services, London, UK, April, 2003.

[3] P. Cozza, C. Mastroianni, D. Talia, and I. Taylor. A super-peer protocol

for multiple job submission on a grid. In W. Lehner, N. Meyer, A. Streit,

and C. Stewart, editors, Euro-Par 2006 Workshops, volume 4375 of LNCS,

pages 116–125, Dresden, Germany, June 2007. Springer Berlin/Heidelberg.

ISBN: 978-3-540-72226-7.

[4] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Black-

burn, P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda. GriPhyN

and LIGO, building a virtual data grid for gravitational wave scientists. In

HPDC, pages 225–, 2002.

[5] J. Foote and M. Cooper. Audio retrieval by rhythmic similarity. In Pro-

ceedings of the International Conference on Music Information Retrieval,

volume Paris: IRCAM, pages 265–266, 2002.

29



[6] I. Foster et al. Modeling Stateful Resource with Web Services.

http://www.ibm.com/developerworks/

library/ws-resource/

ws-modelingresources.pdf.

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Inte-

gration. Technical report, Open Grid Service Infrastructure WG, Global

Grid Forum, 2002.

[8] C. Goble and D. De Roure. myExperiment: social networking for workflow-

using e-scientists. Proceedings of the 2nd workshop on Workflows in support

of large-scale science, pages 1–2, 2007.

[9] J. Haitsma and T. Kalker. A highly robust audio fingerprinting system. In

Proceedings of the Third International Conference on Music Information

Retrieval, volume Paris: IRCAM, pages 107–115, 2002.

[10] A. Harrison, I. Wang, I. Taylor, and M. Shields. WS-RF Workflow in Tri-

ana. International Journal of High Performance Computing Applications

(IJHPCA) Special Issue on Workflow Systems in Grid Environments, to

be published 2007.

[11] B. Logan and A. Salomon. A Content-Based Music Similarity Function.

Cambridge Research Laboratory. Technical Report Series. Jun, 2001.

[12] B. Ludäscher, I. Altintas, C. Berkley, D. G. Higgins, E. Jaeger, M. Jones,

E. A. Lee, and Y. Zhao. Scientific workflow management and the kepler

system. concurrency and computation: Practice and experience. Concur-

rency and Computation: Practice and Experience, Special Issue on Scien-

tific Workflows, 2006. to appear.

30



[13] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,

C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,

M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: Lessons in

creating a workflow environment for the life sciences. Concurrency and

Computation: Practice and Experience, special issue on Grid Workflow,

accepted for publication, 2006.

[14] M. Shields and I. Taylor. Alchemist: user driven searching in ubiquitous

networks. Proceedings of the 1st international workshop on Advanced data

processing in ubiquitous computing (ADPUC 2006), 2006.

[15] I. Taylor, E. Deelman, D. Gannon, and M. Shields (Eds.). Workflows for

e-Science. Springer, New York, Secaucus, NJ, USA, 2007.

[16] I. Taylor, M. Shields, I. Wang, and A. Harrison. Visual Grid Workflow in

Triana. Journal of Grid Computing, Special Edition on Workflow, To be

published, 2005.

[17] G. Tummarello, C. Morbidoni, P. Puliti, and F. Piazza. Semantic audio

hyperlinking: a multimedia-semantic web scenario. In Proceedings of the 1st

International Conference on Automated Production of Cross Media Content

for Multi-channel Distribution, pages 111–115, 2005.

[18] G. Tzanetakis and P. Cook. Music genre classification of audio signals.

IEEE Transactions on Speech and Audio Processing, 10(5):293–302, 2002.

[19] G. Tzanetakis, J. Gao, and P. Steenkiste. A scalable peer-to-peer system

for music information retrieval. Computer Music Journal, 28(2):24–33,

Summer 2004 2004.

[20] C. Wang, J. Li, and S. Shi. An Approach to Content-Based Approxi-

mate Query Processing in Peer-to-Peer Data Systems. Grid and Coopera-

31



tive Computing, Second International Workshopi (GCC 2003), Shanghai,

China, December, 2003.

[21] C. Yang. Music Database Retrieval Based on Spectral Similarity. Proceed-

ings of the 2nd Annual International Symposium on Music Information

Retrieval, pages 37–38, 2001.

32


