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Abstract. Several aspects of today’s Grids are based on centralized or 
hierarchical services. However, as Grid sizes increase from tens to thousands of 
hosts, functionalities should be decentralized to avoid bottlenecks and 
guarantee scalability. A way to ensure Grid scalability is to adopt Peer-to-Peer 
(P2P) models and techniques to implement nonhierarchical decentralized Grid 
services and systems. Standard P2P protocols based on a pervasive exchange of 
messages, such as Gnutella, appear to be inadequate for OGSA Grids, where 
peers communicate among them through Grid Services mechanisms. This paper 
proposes a modified Gnutella discovery protocol, named Gridnut, which makes 
it suitable for OGSA Grids. In particular, Gridnut uses appropriate message 
buffering and merging techniques to make Grid Services effective as a way to 
exchange messages in a P2P fashion. We present the design of Gridnut, and 
compare Gnutella and Gridnut performances under different network and load 
conditions. 

1   Introduction 

Many aspects of today’s Grids are based on centralized or hierarchical services. 
However, as Grids used for complex applications increase their size from tens to 
thousands of nodes, we should decentralize their functionalities to avoid bottlenecks 
and ensure scalability. As argued in [1] and [2], a way to provide Grid scalability is to 
adopt Peer-to-Peer (P2P) models and techniques to implement nonhierarchical 
decentralized Grid systems.  

Recently, the Grid community has undertaken a development effort to align Grid 
technologies with Web Services. The Open Grid Services Architecture (OGSA) 
defines Grid Services as an extension of Web Services and lets developers integrate 
services and resources across distributed, heterogeneous, dynamic environments and 
communities [3]. OGSA adopts the Web Services Description Language (WSDL) to 
define the concept of a Grid Service using principles and technologies from both the 
Grid and Web Services communities. Web Services and the OGSA both seek to 
enable interoperability between loosely coupled services, independent of 
implementation, location, or platform. The OGSA model provides an opportunity to 
integrate P2P models in Grid environments since it offers an open cooperation model 
that allows Grid entities to be composed in a decentralized way. 



In [4], Fox and colleagues explore the concept of a Peer-to-Peer Grid designed 
around the integration of Peer-to-Peer and OGSA models. A Peer-to-Peer Grid is 
built in a service model, where a service is a Web Service that accepts one or more 
inputs and gives one or more results. These inputs and results are the messages that 
characterize the system. All the entities in the Grid (i.e., users, computers, resources, 
and instruments) are linked by messages, whose communication forms a distributed 
system integrating the component parts. In a Peer-to-Peer Grid, access to services can 
be mediated by “servers in the core”, or by direct Peer-to-Peer interactions between 
machines “on the edge”. The server approach best scales within pre-existing 
hierarchical organizations, but P2P approaches best support local dynamic 
interactions. The Peer-to-Peer Grid architecture is a mix of structured (Grid-like) and 
unstructured dynamic (P2P-like) services, with peer groups managed locally and 
arranged into a global system supported by core servers. A key component of a Peer-
to-Peer Grid is the messaging subsystem, that manages the communication among 
resources, Web Services and clients to achieve the highest possible system 
performance and reliability. 

Although Grid Services are appropriate for implementing loosely coupled P2P 
applications, they appear to be inefficient to support an intensive exchange of 
messages among tightly coupled peers. In fact Grid Services operations, as other 
RPC-like mechanisms, are subject to an invocation overhead that can be significant 
both in terms of activation time and memory/processing consumption [5]. The 
number of Grid Service operations that a peer can efficiently manage in a given time 
interval depends strongly on that overhead. For this reason, standard P2P protocols 
based on a pervasive exchange of messages, such as Gnutella [6], are inappropriate 
on large OGSA Grids where a high number of communications take place among 
hosts.  

To overcome this limitation, we propose a modified Gnutella protocol, named 
Gridnut, which uses appropriate message buffering and merging techniques that make 
Grid Services effective as a way for exchanging messages among Grid nodes in a P2P 
fashion. Although the pure Gnutella protocol is not scalable (since the load on each 
node grows linearly with the total number of queries), and several advancements have 
been proposed to improve the performance of decentralized search (see for instance 
[7]), we worked on it because it is a reference model for several more sophisticated 
systems to which our approach can be also applied. 

Gnutella defines both a protocol to discover hosts on the network, based on the 
Ping/Pong mechanism, and a protocol for searching the distributed network, based on 
the Query/QueryHit mechanism. Here we discuss only the Gridnut discovery 
protocol, even if we are also designing the Gridnut search protocol. 

The remainder of the paper is organized as follows. Section 2 presents the design 
of the Gridnut protocol focusing on message routing and buffering rules. Section 3 
compares the performance of Gridnut and Gnutella protocols under different network 
and load conditions. Finally, Section 4 concludes the paper. 



2   Gridnut Design 

The two basic principles of the Gridnut protocol that make it different from Gnutella 
are 
a) Message buffering: to reduce communication overhead, messages to be delivered 

to the same peer are buffered and sent in a single packet at regular time intervals. 
b) Collective Pong: when a peer B must respond to a Ping message received from A, 

it waits to receive all the Pong messages from its neighbors, then merge them with 
its Pong response and send back the Pong collection as a single message to A. 
Since the Gridnut protocol is derived from the Gnutella discovery protocol, we 

adopt here the Gnutella terminology. Each Grid node executes a Gridnut servent, i.e., 
an application that performs both client and server Gridnut tasks. 

A Gridnut servent is composed of three logical components (see Figure 1): 
• Peer Service: a Grid Service through which remote Gridnut servents can connect 

and deliver messages to this servent. 
• Client Interface: an interface through which local users and applications can issue 

Grid nodes discovery requests and get results. 
• Network Module: a component that interacts with remote Gridnut servents on the 

basis of the Peer Service and Client Interface input. 
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Fig. 1. Gridnut servent components 

2.1   Peer Service 

The Peer Service is a persistent Grid Service, activated at the Gridnut servent’s 
startup and terminated when the servent leaves the network. Each Peer Service is 
assigned a globally unique name, the Grid Service Handle (GSH), that distinguishes a 
specific Grid Service instance from all other Grid Service instances. This handle is 
used within a Gridnut network to uniquely identify both the Peer Service and the 
associated Gridnut servent. For instance, a valid handle could be: 

http://p1.deis.unical.it:8080/ogsa/services/p2p/PeerService 
The Peer Service supports three main operations: 

• connect: used by a remote servent to connect this servent. The operation receives 
the handle of the requesting servent and returns a reject response if the connection 
is not accepted (for instance, because the maximum number of connections has 
been reached). 

• disconnect: used by a remote servent to disconnect this servent. The operation 
receives the handle of the requesting servent. 



• deliver: used by a connected servent to deliver messages to this servent. The 
operation receives the handle of the requesting servent and an array of messages to 
be delivered to this servent. 

2.2   Messages 

A servent connects itself to the Gridnut network by establishing a connection with 
one or more servents currently in the network (a discussion of the connection and 
disconnection phases is outside the scope of this paper). Once a servent joined 
successfully the Gridnut network, it communicates with other servents by sending 
and receiving Ping and Pong messages: 
• A Ping is used to discover available nodes on the Grid; a servent receiving a Ping 

message is expected to respond with a Pong message. 
• A Pong is a response to a Ping; it includes the URL of a set of reachable Gridnut 

servents, each one representing an available Grid node. 
The logical structure of Ping and Pong messages is shown in Figure 2. 

Fig. 2. Structure of Gridnut messages 

The meaning of fields in Figure 2 is the following: 
• GUID (Global Unique Identifier): a string identifying the message on the network.  
• TTL (Time To Live): the number of times the message will be forwarded by 

servents before it is removed from the network. 
• Hops: the number of times the message has been forwarded by servents. 
• Handles: an array of zero, one or more reachable Gridnut servents’ URLs. 
For the purposes of this paper, Pong messages do not include further information 
because here we use the discovery protocol to locate all the active nodes on the Grid. 
The search protocol we are designing (not discussed in the paper) will be used for 
host characterization, discovery of needed services, etc.  

2.3   Data Structures 

Each Gridnut servent uses a set of data structures to perform its functions. 
A connection list (CL) is used to maintain a reference to all directly connected 

servents (i.e., references to the connected servents’ Peer Services). Entries into the 
CL are updated by the connect and disconnect operations. 

A routing table (RT) is used to properly route messages through the network. The 
RT contains a set of records having a structure [GUID, Handle], used to route 
messages with a given GUID to a servent with a given Handle.  

The results of the discovery tasks are stored into a result set (RS), that users and 
applications can access for their purposes.  

Finally, each Gridnut servent uses a set of internal transmission buffers, in which 
messages are stored and processed before to deliver them to the proper servent. In 

Ping: Pong:Hops TTL GUID GUID TTL Hops Handles 



particular, a servent S0 uses two separated transmission buffers for each of its 
neighbors: 
• A pong buffer (Bp), in which Pong messages with an equal GUID are merged 

before the delivery. The notation Bp(Sk) indicates the pong buffer in which S0 
inserts Pong messages directed to a servent Sk. 

• A fast buffer (Bf_), used for Ping and Pong messages that are to be fast delivered to 
a given servent. We use the notation Bf_(Sk) to indicate the fast buffer in which S0 
inserts messages directed to a servent Sk. 
A thread Tk is associated to each couple of buffers Bp(Sk) and Bf_(Sk). Tk 

periodically delivers the buffered messages to Sk, on the basis of the rules described 
below. 

2.4   Routing Rules 

In Gridnut, like in Gnutella, Ping messages are forwarded to all directly connected 
servents, whereas Pong messages are sent along the same path that carried the 
incoming Ping message.  

However, there are two main differences between Gnutella and Gridnut message 
routing and transmission modalities: 
1) In Gnutella implementations, messages are sent as a byte stream over TCP sockets, 

whereas Gridnut messages are sent through a Grid Service invocation (by means of 
the deliver operation).  

2) In standard Gnutella implementations, each message is forwarded whenever it is 
received, whereas Gridnut messages, as mentioned before, are buffered and 
merged to reduce the number of Grid Service invocations and routing operations 
executed by each servent. 
Let consider a servent S0 having a set of neighbors S1...Sn. When a neighbor 

delivers an array of messages to S0, each message is processed separately by S0 as 
specified below. 

Let us suppose that S0 received from Sk the message Ping[GUID=g, TTL=t, 
Hops=h] (this notation means that g, t, and h are the actual values of GUID, TTL and 
Hops of this Ping); S0 performs the following operations: 
t = t - 1; h = h + 1; 
if (RT contains a record with GUID=g) 

insert a Pong [GUID=g, TTL=h, Hops=0, Handles=Ø] into Bf (Sk); 
else if (t == 0) 

insert a Pong [GUID=g, TTL=h, Hops=0, Handles={S0}] into Bf (Sk);  
else { 

insert a record [GUID=g, Handle=Sk ] into RT; 
insert a Pong [GUID=g, TTL=h, Hops=0, Handles={S0}] into Bp(Sk); 
for (i:1..n; i ≠ k) 

insert a Ping [GUID=g, TTL=t, Hops=h] into Bf (Si);   
} 

In the following we use the term “dummy Pong” to refer to a Pong having 
Handles=Ø. 

Let us suppose that S0 received from Sk the message Pong[GUID=g, TTL=t, 
Hops=h, Handles=H] (where H is a set of servents’ handles); the following operations 
are performed by S0: 



 
t = t - 1; h = h + 1; 
if (t == 0) 

insert H into RS; 
else if (RT contains a record R with GUID=g) { 

Sr = value of the Handle field of R;  
insert a Pong [GUID=g, TTL=t, Hops=h, Handles=H] into Bp(Sr);  

} 

Finally, to start a new discovery task, S0 must perform the following operations:  
clear RS; 
g = globally unique string; t = initial TTL; 
insert the record [GUID=g, Handle=S0] into RT; 
for (i:1..n) 

insert a Ping [GUID=g, TTL=t, Hops=0] into Bf (Si); 

The discovery task is completed when the RS contains the handles of all the 
reachable servents in the network. 

2.5   Buffering Rules 

Let consider again a servent S0 connected to a set of N servents S1...Sn. 
Within a pong buffer Bp(Sk), a set of counters are used. A counter Cg counts the 

number of Pong messages with GUID=g till now inserted in Bp(Sk). 
When a Pong P1 having GUID=g and containing a set H1 of Handles is inserted 

into Bp(Sk), the following operations are performed: 
Cg = Cg + 1; 
if (Bp(Sk) contains a Pong P0 with GUID=g) { 

add H1 to the current Handles set of P0;  
if (Cg >= N) 

mark P0 as ready; 
} 
else { 

insert P1 into Bp(Sk); 
if (Cg >= N) 

mark P1 as ready; 
} 

Whenever a Pong message is marked as ready, it can be delivered to the servent Sk. 
To avoid blocking situations due to missed Pong messages, a Pong could be marked 
as ready also if a timeout has been reached. In the following we do not consider 
failure situations, therefore no timeouts are used.  

Differently from a pong buffer, messages inserted into a fast buffer Bf_(Sk) are 
immediately marked as ready to be delivered to Sk. 

As we have mentioned before, a thread Tk is used to periodically deliver the 
buffered messages to Sk. In particular, the following operations are performed by Tk 
every time it is activated: 
get the set of ready messages M from Bp(Sk) and Bf (Sk); 
deliver M to Sk through a single deliver operation;   

The time interval Ia between two consecutive activations of Tk is a system parameter. 
In the worst case, exactly a deliver operation can be invoked by S0 for each of its N 
neighbors. Therefore, the maximum number of deliver operation invoked by S0 



during an interval of time I is equal to (I  /  Ia) × N. Obviously, increasing the value of 
Ia the number of deliver operations can be reduced, but this could produce a delay 
in the delivery of messages. In our prototype we use Ia=5 msec. 

3   Performance Evaluation 

In this section we compare some experimental performance results of Gridnut and 
Gnutella protocols. To perform our experiments we developed a Java prototype of a 
Gridnut servent, which can also work as a standard Gnutella servent for comparison 
purposes. In our prototype the Peer Service is an object accessed through Remote 
Method Invocation (RMI). The goal of our tests is to verify how significantly Gridnut 
reduces the workload - number of Grid Service operations - of each peer. In doing 
this, we compared Gridnut and Gnutella by evaluating two parameters: 
1) ND, the average number of deliver operations processed by a servent to 

complete a discovery task. In particular, ND = P / (N × T_), where: P is the total 
number of deliver operations processed in the network, N is the number of 
servents in the network, and T is the overall number of discovery tasks completed. 

2) ND(d_), the average number of deliver operations processed by servents that are 
at distance d from the servent S0 that started the discovery task. For instance: 
ND(0_) represents the number of deliver operations processed by S0; ND(1_) 
represents the number of deliver operations processed by a servent distant one 
hop from S0. 
Both ND and ND(d_) have been evaluated considering seven different network 

topologies. We distinguished the network topologies using a couple of numbers 
{N,C}, where N is the number of servents in the network, and C is the number of 
servents directly connected to each servent (i.e., each servent has exactly C 
neighbors). The network topologies we experimented are characterized by {N,C} 
respectively equal to {10,2}, {10,4}, {30,3}, {30,4}, {50,4}, {70,4} and {90,4}. 
Notwithstanding the limited number of used servents, the number of exchanged 
messages among servents was extremely high and performance trends are evident. 

Resulting networks were completely connected, i.e., each servent can reach any 
other servent in the network in a number of steps lower or equal than TTL. 

3.1   Number of Deliver Operations 

For each network topology, we measured ND under four load conditions. We use R to 
indicate the number of discovery tasks that are initiated in the network at each given 
time interval. The following values for R have been used: 1, 3, 5 and 10. In particular, 
• R=1 indicates that, at each time interval, only one discovery task is initiated, 

therefore only messages with a given GUID are simultaneously present in the 
network;  

• R=10 indicates that, at each time interval, ten discovery tasks are initiated, 
therefore messages with up to ten different GUID are simultaneously present in the 
network. 



Table 1a and Table 1b report the ND measured in Gnutella and Gridnut networks, 
respectively. ND values are measured for network topologies ranging from {10,2} to 
{90,4}, under load conditions ranging from R=1 to R=10.  

Table 1a. ND in Gnutella networks Table 1b. ND in Gridnut networks 

{N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4} {N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4} 
R=1 3.60 4.53 4.91 5.49 6.00 6.27 6.52 R=1 2.12 5.91 3.86 5.74 5.75 5.72 5.73 
R=3 3.61 4.54 4.95 5.48 6.01 6.32 6.53 R=3 1.96 4.54 3.48 4.81 4.76 4.70 4.89 
R=5 3.61 4.55 4.96 5.47 6.01 6.35 6.54 R=5 1.85 3.98 3.11 4.28 4.22 4.16 4.03 
R=10 3.60 4.54 4.99 5.49 6.02 6.35 6.53 R=10 1.70 2.93 2.52 3.19 3.22 3.10 2.91 

 
In Gnutella (see Table 1a), ND is not influenced by the R factor, apart from little 

variations due to measurements errors. This is because in Gnutella no buffering 
strategies are adopted, and one deliver operation is executed to move exactly one 
message in the network. Obviously, the value of ND increases with the size of the 
network, ranging from an average value of 3.61 in a {10,2} network, to an average 
value of 6.53 in a {90,4} network. 

In Gridnut (see Table 1b), ND depends from both network topology and load 
condition. For a given value of R, ND mainly depends from the value of C (number of 
connections per servent), whereas it varies a little with the value of N (number of 
servents). For instance, if we consider the value of ND for R=1, we see that it varies 
in a small range (from 5.72 to 5.91) for all the networks with C=4.  

If we consider networks with the same value of N, we see that ND decreases when 
the value of C is lower. For instance, the ND for a network {10,2} is lower than the 
ND for a network {10,4}, with any value of R. Moreover, because a single deliver 
operation is performed to deliver more buffered messages, for a given topology the 
value of ND decreases when R increases. 

 

 
Fig. 3. Comparison between ND in Gridnut networks and ND in Gnutella 

networks 

Figure 3 compares the values of ND in Gridnut and Gnutella in five network 
topologies: {10,2}, {30,3}, {50,4}, {70,4} and {90,4}. For Gridnut networks the 
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values of ND when R=1, 3, 5, and 10 are represented, whereas for Gnutella networks 
the average of the ND values measured when R=1, 3, 5, and 10 is represented. 

We can see that the number of deliver operations is lower with Gridnut in all the 
considered configurations. In particular, when the number of discovery tasks 
increases, the Gridnut strategy maintains the values of ND significantly low in 
comparison with Gnutella. 

3.2   Distribution of Deliver Operations 

Table 2a and Table 2b report the value of ND(d_) measured in Gnutella and Gridnut 
networks, respectively. Notice that in the {10,4} network the maximum distance 
between any couple of servents is 2, therefore no values have been measured for d > 
2. For analogous reasons, there are no values for d > 4 in {30,3}, {30,4} and {50,4} 
networks. 

Table 2a. ND(d) in Gnutella networks Table 2b. ND(d) in Gridnut networks 

{N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4} {N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4} 
d=0 9.00 9.00 29.00 29.00 49.00 69.00 89.00 d=0 2.00 4.00 3.00 4.00 4.00 4.00 4.00 
d=1 4.50 4.08 9.67 7.82 12.44 17.28 22.50 d=1 2.00 5.35 3.00 4.51 4.07 4.04 4.22 
d=2 3.50 4.00 4.39 4.32 5.53 6.72 8.20 d=2 2.00 6.76 3.07 5.40 5.20 4.89 4.52 
d=3 2.50 – 3.04 4.00 4.11 4.41 4.46 d=3 2.01 – 4.05 6.40 5.84 5.61 5.50 
d=4 2.00 – 3.00 4.00 4.00 4.01 4.02 d=4 2.34 – 4.80 6.82 6.65 6.32 6.26 
d=5 2.00 – – – – 4.00 4.00 d=5 2.82 – – – – 6.78 6.67 

 
In Gnutella (see Table 2a) the value of ND(0_) is always equal to N-1. This is 

because S0 receives, through its neighbors, a Pong message from each of other 
servents in the network, and each of those messages are delivered to S0 by means of a 
separated deliver operation. ND(1_) is always greater or equal than ND(0_) divided 
by C. The equality is obtained only for networks in which C is sufficiently little 
compared to N, as in {10,2} and {30,3} networks. In general, the value of ND(d_) 
decreases when d increases, and it reaches the minimum value, equal to C, on the 
servents more distant from S0.  

In Gridnut (see Table 2b) the value of ND(0_) is always equal to C, because S0 must 
process exactly a deliver operation for each servent directly connected to it. The 
value of ND(d_) increases slightly with d, reaching its maximum on the servents more 
distant from S0. ND(d_) increases with d because the number of “dummy Pong” 
messages increase moving away from S0. Anyway, the value of ND(d_) remains 
always of the order of C, even for d equal to TTL. 

Comparing the results in Tables 2a and 2b, we can see that Gridnut implies a much 
better distribution of deliver operations among servents in comparison with 
Gnutella. In Gnutella, the servent that started the discovery task and its closest 
neighbors must process a number of Grid Service operations that becomes 
unsustainable when the size of the network increases to thousands of nodes. In 
Gridnut, conversely, the number of Grid Service operations processed by each 
servent remains always in the order of the number of connections per peer. This 
Gridnut behaviour results in significantly lower discovery times since communication 



and computation overhead due to Grid Services invocations are considerably reduced 
as shown in Tables 2a and 2b. For example, considering a {90,4} network with R 
ranging from 1 to 10, Gnutella discovery experimental times vary from 2431 to 
26785 msec, whereas Gridnut times vary from 2129 to 8286 msec. 

4   Conclusions 

The Gridnut protocol modifies the Gnutella discovery protocol to make it suitable for 
OGSA Grids. It uses message buffering and merging techniques to make Grid 
Services effective as a way for exchanging messages among Grid nodes in a P2P 
mode. We compared Gridnut and Gnutella performance considering different 
network topologies and load conditions. Experimental results show that appropriate 
message buffering and merging strategies produce significant performance 
improvements, both in terms of number and distribution of Grid Service operations 
processed. 

We are extending Gridnut to support also distributed search by modifying the 
original Query/QueryHit Gnutella mechanism. In doing this, the buffering mechanism 
is maintained, whereas the collection mechanism is modified since the number of 
responding nodes will be limited by the query constraints. 

The Gridnut protocol can be an effective way to discover active nodes in a OGSA 
Grids. Currently we are designing a Presence Management Service (PMS_) that uses 
Gridnut as mechanism to discover active Grid nodes in a P2P fashion. Presence 
management is a key aspect in large-scale Grids, in which hosts join and leave the 
network dynamically over the time, as in typical P2P environments. The PMS allows 
users and schedulers to efficiently locate active nodes and support execution of large-
scale distributed applications in dynamic Grid environments. 
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