
An Evaluation of Sampling Algorithms for

Estimating the Size of a Chord Network

Gabriele Falace

DEIS, University of Calabria

Rende (CS), Italy

Email: falace@si.deis.unical.it

Paolo Trunfio

DEIS, University of Calabria

Rende (CS), Italy

Email: trunfio@deis.unical.it

Abstract—Due to the decentralized nature of structured P2P
systems, there is no a direct way for a single node of getting
aggregate statistics about the whole network, such as its current
size. In this paper we focus on the problem of estimating the
size of one of the most popular structured P2P networks, Chord,
using a sampling-based approach. With this approach, a node
calculates an estimate of the network size after having queried
a small number of its successors about some of their properties.
We formally define three sampling-based algorithms that exploit
well-known structural properties of a Chord network to derive
an estimate of its size. An experimental evaluation was carried
out through simulations to evaluate the accuracy of the three
algorithms in different network scenarios. The evaluation allowed
us to identify, among the three algorithms, a Ring Density
Estimation (RDE) technique that was able to estimate the size
of all the Chord networks considered with an average error of
2% or less, using only a few tens of sample nodes. Moreover, the
simulation results showed that the RDE accuracy is not affected
by dynamic network conditions, even in the presence of high
nodes failure rates.

Keywords—Structured peer-to-peer networks; distributed hash
tables; Chord; sampling algorithms; network size estimation;
simulation analysis

I. INTRODUCTION

Structured P2P systems, like Chord [1], Pastry [2], and

Tapestry [3], have attracted wide research interests due to their

efficiency and scalability in supporting resource discovery over

large-scale distributed networks. Most structured P2P systems

use a Distributed Hash Table (DHT) to assign to each node

the responsibility for a specific part of the resources in the

network. When a node wants to discover a resource identified

by a given key, the DHT locates the node responsible for that

key in O(logn) hops using only O(log n) neighbors per node,

where n is the network size.

Due to the decentralized nature of structured P2P systems,

there is no a direct way for a single node of getting aggregate

statistics about the whole network, such as the total number of

nodes currently present in the system. Even if a node may not

be interested in knowing the network size for ordinary lookup

operations, there are several practical cases in which such

information is of great importance. For example, an estimate of

the network size can be used for choosing the most appropriate

length of the successor-list [4], calculating the popularity of a

resource to minimize network traffic [5][6], or tuning the rates

at which the network topology is maintained [7].

In this paper we focus on the problem of estimating the

size of one of the most popular structured P2P networks,

Chord, using a sampling approach in which a node calculates

an estimate of the network size after having queried a small

number of its successors about some of their properties. This

approach is very efficient since the number of messages ge-

nerated equals the number of nodes in the sample, and avoids

unnecessary traffic because the estimations are performed

only on-demand. We formally define three sampling-based

algorithms that exploit well-known structural properties of a

Chord network to derive an estimate of its size.

An experimental evaluation was carried out through sim-

ulations to evaluate the accuracy of the three algorithms in

different network scenarios. The evaluation allowed us to iden-

tify, among the three algorithms, a Ring Density Estimation

(RDE) technique that was able to estimate the size of all

the Chord networks considered with an average error of 2%

or less, using only a few tens of sample nodes. Moreover,

the simulation results showed that the RDE accuracy is not

affected by dynamic network conditions, even in the presence

of high nodes failure rates.

The remainder of the paper is organized as follows. Section

II presents a background on Chord and discusses related work.

Section III describes the three sampling algorithms and their

performance in static network conditions. Section IV presents

an experimental comparison of the algorithms in the presence

of nodes failures. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides a short background on the Chord

system and discusses some related work aimed at evaluating

the size of P2P networks, including Chord networks.

A. Chord Networks Basics

Chord [1] uses a consistent hash function to assign to each

node an m-bit identifier, which represents its position in a

circular identifier ring ranging from 0 and 2m−1. Each node,

N , maintains a finger table with m entries, numbered from 1

to m. The i-th entry in the finger table of node N , denoted as

finger[i], contains two fields: start, which is equal to N+2i−1

mod 2m, and node, which is the first node whose identifier is

equal to or follows start. Node finger[i].node is called the i-th

finger of node N .

N also knows its successor, which is the next node on the

identifier ring (i.e., finger[1].node) and its predecessor, which

is the previous node on the circle. In addition, to cope with

possible failures, N maintains a successor-list of its r nearest

successors on the Chord ring1. If N notices that its successor

has failed, it replaces the failed successor with the first live

node in its successor-list.

Figure 1 shows an example of Chord network with m = 4

bits and n = 5 nodes. For each of the five nodes in the network,

with identifiers 0, 3, 6, 10 and 13, the corresponding finger

table is shown. Since m = 4, each finger table includes four

entries. For instance, let us consider the finger table of node

3. The start fields point at exponentially increasing distance

from 3 (4=3+1, 5=3+2, 7=3+4, and 11=3+8), while the node

fields contain the first node found in clockwise direction along

the ring starting from the corresponding start (6, 6, 10, and

13).

start node

4 6

5 6

7 10

11 13

finger table

0

4

8

12

14

10

13

11

15

9

1

7

2

6

3

5

start node

1 3

2 3

4 6

8 10

finger table

start node

14 0

15 0

1 3

5 6

finger table

start node

11 13

12 13

14 0

2 3

finger table

start node

7 10

8 10

10 10

14 0

finger table

Figure 1. An example of Chord network with m = 4 bits and n = 5 nodes.

B. Estimating the Size of a P2P Network

There are a several works in literature that studied how

to estimate the size of a fully-decentralized P2P network.

Some of them [8][9][10] focused on finding solutions for

unstructured P2P networks, like Gnutella [11]. Basically, these

works use gossip-based techniques in which each node pe-

riodically exchanges some information with its neighbors, in

order to derive a global estimate of the network size. The most

important problem of gossip-based techniques on unstructured

networks is the large amount of messages needed to obtain

an accurate estimate, as highlighted in the experimental study

proposed by Le Merrer et al. [12].

In the context of structured P2P networks, two significant

studies related to our work are those proposed by Shafaat et

al. [7], and by Binzenhöfer et al. [4]. Both of them estimate

1According to Stoica et al. [1], it is safe to choose r = O(log
2
n).

the network size starting from an evaluation of the density

of nodes on the identifier circle. This approach is also at the

basis of the LEA and RDE algorithms described in this paper.

However, the sampling approach differs from those used in

[7] and [4] as outlined in the following.

In [7], each node propagates its estimate using a gossip-

based algorithm inspired from the approach in [10], but

adapted to the structured overlay. After a certain number of

rounds, the estimated size converges to the real size with

the desired level of accuracy. Differently from the sampling

approach, this algorithm requires that all nodes in the network

are involved in the procedure, which may be too costly if just

a single node is interested in estimating the network size. On

the other hand, this algorithm fits well and is very effective

in those scenarios where all nodes need an estimate of the

network size.

Using the technique proposed in [4], a node estimates the

density of nodes on the identifier circle starting from some

statistics that can be deducted from its finger table. Given

such density estimate, the overall network size estimate can

be easily calculated. Differently from the sampling approach,

this technique has the advantage of not producing messages

at all, but the accuracy of the estimates can be low for some

classes of applications, since the estimated sizes generally lie

in between 0.5n and 2n, where n is the actual ring size.

III. SAMPLING-BASED SIZE ESTIMATION

The three algorithms described in the following share the

same sampling approach. The node wishing to estimate the

network size, hereafter referred to as the requesting node,

submits a request that is forwarded in clockwise direction

along the ring, from each node to its successor, until k nodes

are reached (i.e., k is the sample size). Each node receiving

the request, referred to as a responding node, performs some

algorithm-specific computations and then forwards the request

to its successor until the k-th node is reached. The k-th node

replies directly to the requesting node with some summary

information. This information is then used by the requesting

node to derive an estimate of the network size, on the basis

of the specific algorithm employed.

For each of the three algorithms defined in this paper, we

will discuss: i) the property of Chord networks exploited by

the algorithm; ii) the algorithm pseudo-code; iii) an experi-

mental evaluation of the accuracy achieved by the algorithm.

The experimental evaluation was performed using a cus-

tom network simulator written in Java. For each algorithm,

simulations have been conducted for network sizes (n) of

1000, 2000, 4000, 8000 and 16000 nodes, and sample sizes

(k) ranging from 10 to 100 nodes, with steps of 10 nodes.

According to [1], we used m = 160 bits for the node identifiers,

which are uniformly distributed across the identifier space. For

each combination 〈n,k〉, 100 independent simulation runs were

executed; at each run, the algorithm was started by a different

requesting node.

The simulation results discussed in the remainder of this

section are obtained in static network conditions. Static con-

ditions means that, once created, the network does not change

its composition, i.e., there are no nodes that leave or join

the Chord ring over the time. Under static conditions the

finger tables of all nodes are always in a consistent state. An

evaluation of the algorithms in the presence of node failures

that produce finger table inconsistencies will be presented in

Section IV.

A. Distinct Fingers Averaging

A well known property of Chord networks is that, if the

identifier space is not fully populated (i.e., the number of

nodes, n, is lower than 2m), the finger table contains redundant

fingers. In a network of n nodes, the number u of unique (i.e.,

distinct) fingers of a generic node is likely to be log
2
n [1].

Based on this basic property, we define a simple Distinct

Fingers Averaging (DFA) size estimation algorithm that first

calculates the average number of distinct fingers ū from a

sample of k nodes, and then estimates the number of nodes

in the network, n̂, as 2ū.

The pseudo-code of the DFA algorithm is shown in Figure 2.

First, the requesting node N sends a DFA REQUEST message

to itself. The request includes three fields: i) the identifier of

the requesting node (N); ii) the number of nodes to which the

request must still be forwarded to (initially equal to k); iii)
the sum usum of all the values of u of the nodes that have

already processed the request (initially equal to 0).

Distinct Fingers Averaging (DFA) Algorithm
Input: sample size k > 0
Output: estimated network size n̂

⊲ Requesting node N :

send DFA REQUEST[N ,k,0] to N ;
receive DFA RESPONSE[usum] from S;
ū := usum ÷ k;
n̂ := 2

ū;

⊲ Responding node R:

receive DFA REQUEST[N ,k,usum] from S;
usum := usum + distinct fingers();
if k > 1 then

send DFA REQUEST[N ,k-1,usum] to successor(R);
else

send DFA RESPONSE[usum] to N ;
end if

⊲ Function distinct fingers():

u := 0;
F := -1;
for i := 1 to m do

if finger[i].node 6= F then
u := u+1;
F := finger[i].node;

end if
end for
return u;

Figure 2. Distinct Fingers Averaging (DFA) Algorithm.

Each responding node R, after having received a

DFA REQUEST, calculates the new value of usum by adding

the number of distinct fingers in its finger table, calculated

through the distinct fingers function, to the old value of usum

carried by the request. Then, if k > 1, the request is forwarded

to the next node along the ring, with the new value of usum

and with k decreased by 1. Otherwise, a DFA RESPONSE,

containing the new value of usum, is sent directly to the

requesting node N .

As soon as N receives the DFA RESPONSE, it calculates

the average number of unique fingers ū and then estimates

the network size n̂ as discussed earlier. For example, let us

consider again the small Chord network in Figure 1. Assume

that node 3 wants to estimate the network size on a sample of

three nodes (k = 3) using the DFA algorithm. Nodes 3, 6 and

10 compute their values of u, which are respectively equal to

3, 2 and 3, and so usum = 8. Therefore, node 3 calculates ū

= 2.67 and finally n̂ = 6.35.

As mentioned before, an evaluation was carried out using

a custom network simulator for different combinations of n

and k values. Figure 3 presents an extract of the simulation

results for the DFA algorithm. In particular, Figure 3a shows

the estimated network size when n = 4000 and k passes from

10 to 100, while Figure 3b shows the estimated network size

when k is fixed to 80 and n ranges from 1000 to 16000. The

values are obtained by averaging the results of 100 simulation

runs. Error bars represent the standard deviations from the

means.

As shown in Figure 3a, when n = 4000, the average value

of n̂ passes from 5378 using k = 10, to 5014 using k = 100.

Therefore, the average relative error passes from 34% with k

= 10, to 25% with k = 100. Even if the average relative error

decreases only a little as the value of k increases, we note that

the standard deviations decrease significantly by increasing the

sample size, thus motivating the use of larger samples (e.g., k

= 80-100).

Finally, Figure 3b shows that, fixed the sample size (k =

80), on average DFA overestimates the network size of 24-

28%, independently from the value of n.

B. Local Estimates Averaging

The second algorithm is based on the approach proposed

by Binzenhöfer et al. [4], already mentioned in Section II-B.

Based on this approach, a node can locally estimate the

network size by observing the difference between the start

and node values of each entry in its finger table. For instance,

node 3 in the Chord network of Figure 1 can derive the

following information from its finger table: from finger[1],

there is only one node (i.e., node 6) in the interval [4,6]; from

finger[3], there is one node (10) in [7,10]; from finger[4],

there is one node (13) in [11,13]. Therefore, it is possible

to derive three estimates of the ring density: ρ1 = 1 ÷ (6-

4+1) = 0.33, ρ2 = 1 ÷ (10-7+1) = 0.25, ρ3 = 1 ÷ (13-11+1)

= 0.33. Given the average of these values, ρ̄ = 0.31, a local

 0

 2000

 4000

 6000

 8000

 10000

100908070605040302010

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Sample size (k)

Alg=DFA; n=4000

Real size
Estimated size

 0

 5000

 10000

 15000

 20000

 25000

160008000 4000 20001000

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Network size (n)

Alg=DFA; k=80

Real size
Estimated size

(a) (b)

Figure 3. Network size estimated by the DFA algorithm: (a) n = 4000, k = from 10 to 100; (b) k = 80, n = from 1000 to 16000.

estimate of the network size is n̂local = ρ̄·2m = 4.89. The Local

Estimates Averaging (LEA) algorithm aims at improving the

accuracy that can be achieved by a single local estimation, by

calculating the average of the local estimates computed on a

sample of k nodes.

Figure 4 shows the pseudo-code of the LEA algorithm. Sim-

ilarly to the DFA algorithm, a LEA REQUEST is forwarded k

times along the ring starting from the requesting node N . The

request includes three fields: i) the identifier of the requesting

node; ii) the forwarding counter (initially set to k); iii) the

sum n̂sum of all the local size estimates made by the nodes

that have already processed the request (initially 0).

Each responding node calculates the new value of n̂sum

by adding the network size estimate calculated on its finger

table through the local estimation function, to the old value

of n̂sum carried by the request message received. Then, either

the request is forwarded to the next node along the ring (if k

is still greater than 1), or a LEA RESPONSE, containing the

overall n̂sum, is sent to the requesting node N .

When N receives the response, it can estimate the network

size, n̂, as n̂sum ÷ k. As an example, let us assume that node

3 of Figure 1 wants to estimate the network size on a sample

of three nodes using the LEA algorithm. Nodes 3, 6 and 10

compute their n̂local, which are respectively equal to 4.89, 4.67

and 6.22, and so n̂sum = 15.78. Finally, node 3 calculates n̂

= 5.26.

Figure 5 presents an extract of the simulation results for the

LEA algorithm: Figure 5a shows the estimated network size

with n = 4000 and k ranging from 10 to 100; Figure 5b shows

the estimated network size with k = 80 and n ranging from

1000 to 16000.

The simulation results show that the average estimates

obtained with LEA are significantly better than those obtained

using DFA. For example, with n = 4000 (see Figure 5a), the

average relative error was under 14% even for the lower values

of k. However, the standard deviations with LEA resulted to

be much higher, which means that is very likely for a node

to obtain a highly inaccurate network size estimate using this

Local Estimates Averaging (LEA) Algorithm
Input: sample size k > 0
Output: estimated network size n̂

⊲ Requesting node N :

send LEA REQUEST[N ,k,0] to N ;
receive LEA RESPONSE[n̂sum] from S;
n̂ := n̂sum ÷ k;

⊲ Responding node R:

receive LEA REQUEST[N ,k,n̂sum] from S;
n̂sum := n̂sum + local estimation();
if k > 1 then

send LEA REQUEST[N ,k-1,n̂sum] to successor(R);
else

send LEA RESPONSE[n̂sum] to N ;
end if

⊲ Function local estimation():

ρsum := 0;
u := 0;
F := -1;
for i := 1 to m do

if finger[i].node 6= F then
u := u+1;
F := finger[i].node;
S := finger[i].start;
l := [(F - S) mod 2

m] + 1;
ρ := 1 ÷ l;
ρsum := ρsum + ρ;

end if
end for
ρ̄ := ρsum ÷ u;
n̂local := ρ̄ · 2m;
return n̂local;

Figure 4. Local Estimates Averaging (LEA) Algorithm.

algorithm, in particular with k < 70.

Figure 5b shows that, fixed the sample size, the average

accuracy of the estimate is basically independent from the net-

work size, with a relative error ranging between 10 and 17%.

We note, however, that the standard deviations significantly

increase with the network size.

 0

 2000

 4000

 6000

 8000

 10000

100908070605040302010

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Sample size (k)

Alg=LEA; n=4000

Real size
Estimated size

 0

 5000

 10000

 15000

 20000

 25000

160008000 4000 20001000

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Network size (n)

Alg=LEA; k=80

Real size
Estimated size

(a) (b)

Figure 5. Network size estimated by the LEA algorithm: (a) n = 4000, k = from 10 to 100; (b) k = 80, n = from 1000 to 16000.

C. Ring Density Estimation

The third algorithm, called Ring Density Estimation (RDE),

shares with LEA the idea of calculating the ring density to

derive an estimate of the network size. In LEA, each node

in the sample estimates a ring density value for each distinct

entry in its finger table. In RDE, the ring density ρ is calculated

only once, at the end of the sampling procedure, by dividing

the number of nodes in the sample, k, by the length l of the

Chord ring arc that begins at the requesting node and ends

at the k-th node in the sample. The value of l is therefore

calculated as [(S - N) mod 2m] + 1, where N is the identifier

of the requesting node and S is the identifier of the k-th node

in the sample.

The pseudo-code of the RDE algorithm is shown in Figure

6. In this case, the minimum value of k is 2, because at

least two nodes are required to get an arc length greater

than one. The RDE REQUEST includes only two fields: i)
the identifier of the requesting node (N); ii) the forwarding

counter (initially k).

Ring Density Estimation (RDE) Algorithm
Input: sample size k > 1
Output: estimated network size n̂

⊲ Requesting node N :

send RDE REQUEST[N ,k-1] to successor(N); // k > 1
receive RDE RESPONSE[S] from S;
l := [(S - N) mod 2

m] + 1;
ρ := k ÷ l;
n̂ := ρ · 2m;

⊲ Responding node R:

receive RDE REQUEST[N ,k] from S;
if k > 1 then

send RDE REQUEST[N ,k-1] to successor(R);
else

send RDE RESPONSE[R] to N ;
end if

Figure 6. Ring Density Estimation (RDE) Algorithm.

Differently from the DFA and LEA algorithms, the re-

sponding nodes do not perform local computations. In fact,

when a node receives a request, it either forwards the request

to the next node along the ring (if k > 1), or sends a

RDE RESPONSE with its identifier to the requesting node.

As soon as N receives the response, which includes the

identifier of the last responding node S, it calculates: i) the

length l of the arc from N to S; ii) the ring density ρ; iii) the

estimated number of nodes, n̂, as ρ · 2m. As an example, let

us assume that node 3 of Figure 1 wants to estimate n̂ using

the RDE algorithm with k = 3. The request reaches node 10,

which responds to node 3. Node 3 calculates l = 10-3+1 = 8,

ρ = 3 ÷ 8 = 0.375, and finally n̂ = 0.375 · 16 = 6.

Figure 7 presents an extract of the simulation results for the

RDE algorithm. As for DFA and LEA, Figure 7a shows the

estimated network size with n = 4000 and k ranging from 10

to 100, while Figure 7b shows the estimated network size with

k = 80 and n ranging from 1000 to 16000.

The simulation results show that the average estimates

obtained with the RDE algorithm are much more accurate

than those produced by DFA and LEA. For example, with

n = 4000 (see Figure 7a), the average value of n̂ passes from

4464 using k = 10, to 3999 using k = 100. Thus, the average

relative error passes from 12% with k = 10, to almost 0% with

k = 100. Also the standard deviations decrease significantly

by increasing the sample size.

Finally, Figure 7b shows that, with k = 80, the estimates

obtained with RDE are always very accurate and improve as

the network size increases. For example, the relative error is

about 2% with n = 1000, 1% with n = 4000, and less than

0.5% with n = 16000.

IV. EVALUATION IN THE PRESENCE OF FAILURES

The experimental results discussed throughout the previous

section showed that, in static network conditions, the RDE

algorithm outperforms both DFA and LEA. In particular, RDE

was able to estimate the size of all the Chord networks

considered with an average error of 2% or less, using only

a few tens of sample nodes.

 0

 2000

 4000

 6000

 8000

 10000

100908070605040302010

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Sample size (k)

Alg=RDE; n=4000

Real size
Estimated size

 0

 5000

 10000

 15000

 20000

 25000

160008000 4000 20001000

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Network size (n)

Alg=RDE; k=80

Real size
Estimated size

(a) (b)

Figure 7. Network size estimated by the RDE algorithm: (a) n = 4000, k = from 10 to 100; (b) k = 80, n = from 1000 to 16000.

The goal of this section is evaluating the performance of the

three algorithms in dynamic network conditions. In a dynamic

network, nodes can leave and join the network at any time.

As the network evolves, finger table inconsistencies eventually

arise due to node failures (or graceless disconnections) or

in the face of concurrent joins. In Chord networks, incon-

sistencies are fixed periodically through the execution of a

stabilization procedure that refreshes finger table entries and

corrects successor/predecessor identifiers if they are found to

be uncorrect.

To evaluate the performance of the three algorithms in the

presence of finger table inconsistencies for a given value of n,

we proceed as follows. First, using the simulator, we initialize

a random Chord network of size n. After initialization, the

network is in stable conditions and all the finger tables are

in consistent state. Then, we remove a given percentage p of

nodes from the network so as to simulate their failures, without

executing the periodical stabilization procedure. In this way, a

certain level of finger table inconsistency arises, proportionally

to the value of p.

Given n and p, we execute the three algorithms with the

desired sample size and compare the network size estimates

obtained, as well as the resulting relative error. Figure 8

presents an extract of the comparison between the three

algorithms in dynamic conditions, with a percentage p of failed

nodes ranging from 0 to 30%. As for the results discussed in

the previous section, the results presented here are obtained

by averaging the results of 100 simulation runs.

Figures 8a and 8b compare size estimates and corresponding

relative errors obtained by DFA, LEA and RDE using k =

80, in a network having an initial size of 4000 nodes, with

increasing percentages of failed nodes. Figure 8a shows that

DFA and LEA produce the same estimates (about 5000 and

3600 nodes, respectively) independently from the fact that

an increasing number of nodes leaves the network. This is

because DFA and LEA perform their estimations based on

finger tables information. Since finger tables were last updated

when the network was in stable conditions (i.e., with p = 0%),

such algorithms continue to produce always the same estimate.

As a consequence, the relative errors of DFA and LEA tend to

increase as the percentage of failed nodes increase, as shown in

Figure 8b. Note that the relative error of LEA has a minimum

around p = 10%, when the actual network size is 3600, since

this value equals the network size initially estimated by LEA.

While DFA and LEA suffer from finger table inconsis-

tencies, the RDE algorithm confirms its accuracy even in

presence of node failures. In fact, differently from the other

two algorithms, RDE does not rely on finger tables to derive

its estimates, and therefore does not suffer from the inaccurate

information they may contain. We recall that each node

needs to know only its actual successor to run the RDE

algorithm. Using the Chord successor-list (see Section II-A),

it is guaranteed with high probability that a node knows its

actual successor even in the presence of high failures rates.

As shown by Figures 8a and 8b, the values of n̂ estimated by

RDE follow the actual values of n, with an average relative

error of 1% or less.

Similar results were obtained by increasing the network

size from 4000 to 16000 nodes, as shown by Figures 8c

and 8d. In fact, also in this case DFA and LEA produce the

same estimates (about 19900 and 13600 nodes, respectively)

independently from the percentage of nodes failed, while the

estimates generated by RDE follow the real network sizes with

a constant relative error of about 0.5%. On the basis of the

simulation results presented above, we conclude that the RDE

accuracy is not influenced by dynamic network conditions,

even in the presence of high nodes failure rates.

V. CONCLUSIONS

In this paper we focused on the problem of estimating

the size of a Chord network using a sampling-based ap-

proach. Sampling algorithms are efficient since the number

of messages generated is equal to the number of nodes in the

sample, and avoid unnecessary traffic because the estimations

are performed only on-demand. We formally defined three

algorithms based on well-known structural properties of Chord

 0

 2000

 4000

 6000

 8000

 10000

302520151050

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Percentage of failed nodes

n=4000, k=80

Real size
DFA
LEA
RDE

 0

 20

 40

 60

 80

 100

302520151050

R
e
la

ti
v
e
 e

rr
o
r

Percentage of failed nodes

n=4000, k=80

 DFA
 LEA
 RDE

(a) (b)

 0

 5000

 10000

 15000

 20000

 25000

302520151050

E
s
ti
m

a
te

d
 n

e
tw

o
rk

 s
iz

e

Percentage of failed nodes

n=16000, k=80

Real size
DFA
LEA
RDE

 0

 20

 40

 60

 80

 100

302520151050

R
e
la

ti
v
e
 e

rr
o
r

Percentage of failed nodes

n=16000, k=80

 DFA
 LEA
 RDE

(c) (d)

Figure 8. Comparison of size estimates and corresponding relative errors obtained by DFA, LEA and RDE using k = 80, with a percentage of failed nodes
ranging from 0 to 30%): (a) estimated size with n=4000; (b) relative error with n=4000; (c) estimated size with n=16000; (d) relative error with n=16000.
Error bars are omitted for the sake of readability.

networks: Distinct Fingers Averaging (DFA), Local Estimates

Averaging (LEA), and Ring Density Estimation (RDE).

A simulation analysis was carried out to evaluate and com-

pare the accuracy of the three algorithms in different network

scenarios. The simulation results demonstrated that DFA and

LEA tend respectively to overestimate and underestimate the

network size, and are sensitive to finger tables inconsistencies

arising from dynamic network conditions. On the contrary, the

RDE algorithm was able to estimate the size of all the Chord

networks considered with an average error of 2% or less, using

only a few tens of sample nodes.

Finally, the simulation results demonstrated that the accu-

racy of the RDE algorithm is not affected by dynamic network

conditions, even in the presence of high nodes failure rates.

Based on these results, we conclude that RDE technique can be

practically used as a simple but accurate strategy for estimating

the size of a Chord ring in a wide range of network scenarios.

REFERENCES

[1] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. of ACM SIGCOMM 2001.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” Proc. of
Middleware 2001.

[3] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications, vol.
22, no. 1, 2004.

[4] A. Binzenhöfer, D. Staehle, and R. Henjes, “Estimating the size of a
Chord ring,” Tech. Rep. 348, Institute of Computer Science, University
of Würzburg, 2005.

[5] D. Talia and P. Trunfio, “Enabling dynamic querying over distributed
hash tables,” Journal of Parallel and Distributed Computing, vol. 70, no.
12, 2010.

[6] C. Comito, D. Talia, and P. Trunfio, “Selectivity-based XML query
processing in structured peer-to-peer networks,” Proc. of the 14th Int.
Database Engineering and Applications Symposium (IDEAS), 2010.

[7] T. M. Shafaat, A. Ghodsi, and S. Haridi. “A practical approach to
network size estimation for structured overlays,” Proc. of the 3rd Int.
Workshop on Self-Organizing Systems (IWSOS), 2008.

[8] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating
aggregates on a peer-to-peer network,” Tech. Rep., Stanford University,
2003.

[9] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” Proc. of the 44th Annual Symposium on Foun-
dation of Computer Science, 2003.

[10] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. on Computer Systems, vol.
23, no. 3, 2005.

[11] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella Net-
work,” IEEE Internet Computing, vol. 6, no. 1, 2002.

[12] E. Le Merrer, A-M. Kermarrec, and L. Massoulie, “Peer to peer size
estimation in large and dynamic networks: a comparative study,” Proc.
of the 15th IEEE Int. Symposium on High Performance Distributed
Computing, 2006.

