Peer-to-Peer Protocols and Grid Services for Resource Discovery on Grids

Domenico Talia ® and Paolo Trunfio @

2DEIS, University of Calabria
Via P. Bucci 41c, 87036 Rende, Italy

Resource discovery is a key issue in Grid environments, since applications are usually
constructed by composing hardware and software resources that need to be found and
selected. Classical approaches to Grid resource discovery, based on centralized or hierar-
chical approaches, do not guarantee scalability in large-scale, dynamic Grid environments.
On the other hand, the Peer-to-Peer (P2P) paradigm is emerging as a convenient model
to achieve scalability in distributed systems and applications. This chapter describes a
protocol and an architecture that adopt a pure-decentralized P2P approach to support
resource discovery in OGSA-compliant Grids. In particular, the chapter describes a mod-
ified Gnutella protocol, named Gridnut, which uses appropriate message buffering and
merging techniques to make Grid Services effective as a way to exchange discovery mes-
sages in a P2P fashion. We present the design of Gridnut, and compare Gnutella and
Gridnut performances under different network and load conditions. The chapter presents
also an architecture for resource discovery that adopts the Gridnut approach to extend
the model of the Globus Toolkit 3 information service.

1. INTRODUCTION

The Grid computing paradigm is today broadly applied to many scientific and engi-
neering application fields, and is attracting a growing interest from business and industry.
At the same time, Peer-to-Peer (P2P) computing is emerging as an important paradigm
for developing distributed systems and applications.

Many aspects of today’s Grids are based on centralized or hierarchical services. How-
ever, as Grids used for complex applications increase their sizes, it is necessary decentralize
their functionalities to avoid bottlenecks and ensure scalability. As argued in [1], [2] and
in other work, a way to improve scalability in large-scale Grids is to adopt P2P models
and techniques to implement non-hierarchical decentralized services.

Within the Grid community, the Open Grid Services Architecture (OGSA) model is be-
ing widely adopted to achieve integration and interoperability among the increasing num-
ber of Grid applications. OGSA defines Grid Services as an extension of Web Services [3]
to take advantage of important Web Services properties, such as service description and
discovery, automatic generation of client and service code, compatibility with emerging
standards and tools, and broad commercial support [4].

The OGSA model does not only support client-server applications, but it provides
an opportunity to integrate P2P models in Grid environments since it offers an open

cooperation model that allows Grid entities to be composed in a decentralized way. A core
Grid functionality that could be effectively redesigned using the P2P paradigm is resource
discovery. Resource discovery is a key issue in Grid environments, since applications
are usually constructed by composing hardware and software resources that need to be
searched, discovered and selected.

Although Grid Services are appropriate for implementing loosely coupled P2P applica-
tions, they appear to be inefficient to support an intensive exchange of messages among
tightly-coupled peers. In fact, Grid Services operations, as other RPC-like mechanisms,
are subject to an invocation overhead that can be significant in terms of memory con-
sumption, processing time, and bandwidth requirements. The number of Grid Service
operations that a peer can efficiently manage in a given time interval depends strongly
on that overhead.

For this reason, pure decentralized P2P protocols based on a pervasive exchange of
messages, such as Gnutella [5], are inappropriate on large OGSA Grids where a high
number of communications take place among hosts. On the other hand, this class of
protocols offer useful properties in dealing with the high heterogeneity and dynamicity of
Grid resources.

To take advantage of the pure decentralized approach and, at the same time, control-
ling the bandwidth consumption rate, we proposed a modified Gnutella protocol, named
Gridnut [6], which uses appropriate message buffering and merging techniques that make
Grid Services effective as a way for exchanging discovery messages among Grid nodes in a
P2P fashion. Gnutella defines both a protocol to discover hosts on the network, based on
the Ping/Pong mechanism, and a protocol for searching the distributed network, based
on the Query/QueryHit mechanism. Here we discuss only the Gridnut discovery protocol,
even if we are also designing the Gridnut search protocol.

We simulated the protocol by implementing a Java prototype of a Gridnut peer, which
can also work as a standard Gnutella peer for comparison purposes. To verify how signifi-
cantly Gridnut reduces the workload of each peer, we evaluated the Gridnut and Gnutella
behaviors in different network topologies and load conditions.

The Gridnut approach can be an effective way to discover active nodes and support re-
source discovery in OGSA Grids. We designed an architecture for resource discovery that
adopts such an approach to extend the model of the Globus Toolkit 3 (GT3) information
service.

The remainder of the chapter is organized as follows. Section 2 presents the main fea-
tures of Grid Services and discusses their performances in supporting the exchange of
messages among tightly-coupled applications. Section 3 discusses the use of P2P models
and techniques for Grid resource discovery. Section 4 presents the design of the Gridnut
protocol focusing on message routing and buffering rules. Section 5 compares the per-
formance of Gridnut and Gnutella protocols under different network and load conditions.
Section 6 discusses a P2P architecture for resource discovery that extends the model of
the GT3 information service. Finally, Section 7 concludes the chapter.

2. GRID SERVICES FEATURES AND PERFORMANCES

The goal of OGSA is to provide a well-defined set of basic interfaces for the develop-
ment of interoperable Grid systems and applications. The attribute “open” is used to
communicate architecture extensibility, vendor neutrality, and commitment to a commu-
nity standardization process [4].

OGSA adopts Web Services as basic technology. Web Services are an important
paradigm focusing on simple, Internet-based standards, such as the Simple Object Ac-
cess Protocol (SOAP) [7] and the Web Services Description Language (WSDL) [8], to
address heterogeneous distributed computing. Web services defines techniques for de-
scribing software components to be accessed, methods for accessing these components,
and discovery mechanisms that enable the identification of relevant service providers.

In OGSA every resource (e.g., computer, storage, program) is represented by a service,
i.e., a network enabled entity that provides some capability through the exchange of
messages. More specifically, OGSA represents everything as a Grid Service: a Web Service
that conforms to a set of conventions and supports standard interfaces. This service-
oriented view addresses the need for standard interface definition mechanisms, local and
remote transparency, adaptation to local OS services, and uniform service semantics [9].

OGSA defines standard mechanisms for creating, naming, and discovering transient
Grid Service instances; provides location transparency and multiple protocol bindings
for service instances; and supports integration with underlying native platform facilities.
OGSA also defines mechanisms required for creating and composing sophisticated dis-
tributed systems, including lifetime management, change management, and notification.

A first specification of the concepts and mechanisms defined in the OGSA is provided
by the Open Grid Services Infrastructure (OGSI) [10], of which the open source Globus
Toolkit 3 [11] is the reference implementation.

The research and industry communities, under the guidance of the Global Grid Forum
(GGF) [12], are contributing both to the implementation of OGSA-compliant services,
and to evolve OGSA toward new standards and mechanisms. As a result of this process,
the WS-Resource Framework (WSRF') was recently proposed as a refactoring and evo-
lution of OGSI aimed at exploiting new Web Services standards, and at evolving OGSI
based on early implementation and application experiences [13].

WSRF provides the means to express state as stateful resources and codifies the re-
lationship between Web Services and stateful resources in terms of the implied resource
pattern, which is a set of conventions on Web Services technologies, in particular XML,
WSDL, and WS-Addressing [14]. A stateful resource that participates in the implied
resource pattern is termed a WS-Resource. The framework describes the WS-Resource
definition and association with the description of a Web Service interface, and describes
how to make the properties of a WS-Resource accessible through a Web Service interface.
Despite OGSI and WSRF model stateful resources differently - as a Grid Service and
a WS-Resource, respectively - both provide essentially equivalent functionalities. Both
Grid Services and WS-Resources, in fact, can be created, addressed, and destroyed, and
in essentially the same ways [15].

As mentioned before, Grid Services operations are subject to an invocation overhead
that can be significant both in terms of memory /processing consumption and bandwidth

requirements. The goal of this section is to evaluate, in particular, the performances of
Grid Services in supporting the exchange of messages among tightly-coupled applications.
To this end we developed a Grid Service S and a client application C":

e S exports one operation, called deliver, which receives in input an array of mes-
sages to be delivered to it.

e (' invokes the deliver operation to deliver one or more messages to .S.

The client C' was executed on a node N,, while the service S was executed on a node N,
using the Globus Toolkit 3. By using a different number of input messages we measured
both the generated network traffic and the execution time needed to complete a deliver
operation. In particular, tests have been performed with a number of messages per oper-
ation ranging from 1 to 1024, where each message has a length of 100 bytes. Each single
test was run 100 times. The traffic and time values reported in each row of Table 1 and
Table 2 are computed as an average of the 100 values measured in the tests.

Table 1
Network traffic generated by a deliver operation for different number of messages.

Number of Mean traffic per ~ Mean traffic
messages per deliver operation per message
deliver operation (byte) (byte)
1 2613 2613.0
2 2740 1370.0
4 2995 748.75
8 3635 454.38
16 4652 290.75
32 6948 217.13
64 11408 178.25
128 20330 158.83
256 37840 147.81
512 72134 140.89
1024 140988 137.68

Table 1 reports the network traffic measured between N, and Ny when the deliver
operation of S is invoked by C'. The second column reports the mean traffic per operation,
whereas the third column reports the mean traffic per message delivered. The values in
the third column are obtained by dividing the mean traffic per operation by the number
of messages per operation.

The traffic per operation is the sum of a fixed part (of about 2500 bytes) and a variable
part that depends from the number of messages. For instance, the delivery of a single
message (100 bytes) generates 2613 bytes of traffic, while the delivery of two messages
(2 x 100 bytes) requires 2740 bytes. The fixed overhead is mainly due to the Grid

Service invocation mechanism, which uses SOAP messages for requests to the server and
responses to the client. Obviously, by increasing the number of messages per operation
the traffic per message decreases, since a single SOAP envelope is used to transport more
application-level messages. In particular, the mean traffic per message passes from 2613
bytes for one message to 137.68 bytes for 1024 messages, as shown in Table 1.

Table 2
Execution time of a deliver operation for different number of messages.

LAN WAN

Number of Mean time Mean time Mean time Mean time
messages per per deliver per message per deliver per message

deliver oper. oper. (msec) (msec) oper. (msec) (msec)

1 5.60 5.60 62.68 62.68

2 5.71 2.86 65.34 32.67

4 5.88 1.47 67.44 16.86

8 6.25 0.781 70.12 8.765

16 7.12 0.445 75.63 4.727

32 8.33 0.260 90.05 2.814

64 11.25 0.176 113.21 1.769

128 16.71 0.131 144.93 1.132

256 28.90 0.113 197.14 0.770

012 55.70 0.109 291.07 0.568

1024 107.38 0.105 558.86 0.546

Table 2 reports the time needed to complete a deliver operation, measured in two
configurations:

e LAN: N, and N, are connected by a 100 Mbps direct link, with an average RTT
(Round Trip Time) equal to 1.41 msec.

e WAN: N.and Ny are connected by a WAN network, with a number of hops equal
to 10, bottleneck bandwidth equal to 1.8 Mbps, and an average RTT equal to 28.3
msec.

For each configuration, execution times are reported in Table 2 both per operation and
per message delivered.

In the LAN configuration the execution time of a deliver operation ranges from 5.60
msec for one message to 107.38 msec for an array of 1024 messages, whereas in the WAN
configuration the execution time passes from 62.68 msec for one message to 558.86 msec
for 1024 messages. As before, the execution time is the sum of a fixed part - that includes
the network latency - and a variable part. As the number of messages per operation
increases, the mean time per message decreases, ranging from 5.60 msec for one message
to 0.105 msec for 1024 messages in the LAN configuration. This is even more evident in

the WAN configuration, in which the mean execution time ranges from 62.68 msec for
one message to 0.546 msec for 1024 messages.

To better evaluate the performances of Grid Services in supporting the delivery of
messages, we can compare two opposite cases: i) n deliver operations are executed to
deliver n messages (one message per operation); ii) one deliver operation is executed to
deliver n messages (n messages per operation).

In the following, the term serial time indicates the sum of the times needed to exe-
cute n operations in sequence, and parallel time indicates the time needed to complete
n operations executed concurrently. All the execution times are referred to the LAN
configuration.

For instance, considering n = 16 messages to be delivered, we have the following per-
formances:

e one message per operation: the overall traffic is 2613 x 16 = 41808 bytes; the serial
time is 5.60 x 16 = 89.6 msec; the parallel time is 65.43 msec.

e 1 messages per operation: the overall network traffic is 4652 bytes (37156 bytes less
than the first case, saving the 88.9% of traffic); the overall execution time is 7.12
msec (58.31 msec less than the parallel time of the first case, saving the 89.1% of
time).

Moreover, considering n = 64 we have:

e one message per operation: the overall traffic is 2613 x 64 = 167232 bytes; the serial
time is 5.60 x 64 = 358.4 msec; the parallel time is 186.6 msec.

e n messages per operation: the overall network traffic is 11408 bytes (saving the
93.2% of traffic); the overall execution time is 11.25 msec (saving the 94.0% of
time).

Tests results show that by decreasing the number of processed Grid Service operations
(for a given number of messages to be delivered), both the overall traffic generated and
the delivery time are substantially reduced. The Gridnut protocol, described in Section 4,
makes use of message buffering and merging techniques that produce significant perfor-
mance improvements, both in terms of number and distribution of Grid Service operations
processed, as discussed in Section 5.

3. P2P AND GRID RESOURCE DISCOVERY

While P2P and Grids share the same focus on harnessing resources across multiple ad-
ministrative domains, they differ in many respects: Grids address support for a variety of
applications and therefore focus on providing infrastructure with quality-of-service guar-
antees to moderate-sized, homogeneous, and partially trusted communities. In contrast,
P2P systems concentrate on providing support for intermittent participation in vertically
integrated applications for significantly larger communities of untrusted, anonymous in-
dividuals.

However, the convergence of the two systems is increasingly visible: the two research
communities started to acknowledge each other by forming multiple research groups that
study the potential lessons that can be exchanged; P2P research focuses more and more on
providing infrastructure and diversifying the set of applications; Grid research is starting
to pay particular attention to increasing scalability.

In [1] Foster and Tamnitchi compare and contrast Grid and P2P computing, reviewing
their target communities, resources, scale, applications, and technologies. On the basis
of this review, they argue that both Grids and P2P networks are concerned, in essence,
with the same general problem: the organization of resource sharing within virtual com-
munities. The complementary nature of the strengths and weaknesses of Grids and P2P
suggests that an integration between the two computing models will tend to accelerate
progress in both disciplines.

As pointed out before, the OGSA model provides an opportunity to integrate P2P
models in Grid environments since it offers an open cooperation model that allows Grid
entities to be composed in a decentralized way. As a significant example, Fox and col-
leagues explored the concept of a Peer-to-Peer Grid designed around the integration of
Peer-to-Peer and OGSA models [16]. A Peer-to-Peer Grid is built in a service model,
where a service is a Web Service that accepts one or more inputs and gives one or more
results. These inputs and results are the messages that characterize the system. All
the entities in the Grid (i.e., users, computers, resources, and instruments) are linked by
messages, whose communication forms a distributed system integrating the component
parts.

In a Peer-to-Peer Grid, access to services can be mediated by “servers in the core,” or
by direct Peer-to-Peer interactions between machines “on the edge.” The server approach
best scales within pre-existing hierarchical organizations, but P2P approaches best sup-
port local dynamic interactions. The Peer-to-Peer Grid architecture is a mix of structured
(Grid-like) and unstructured dynamic (P2P-like) services, with peer groups managed lo-
cally and arranged into a global system supported by core servers. A key component of a
Peer-to-Peer Grid is the messaging subsystem, that manages the communication among
resources, Web Services, and clients to achieve the highest possible system performance
and reliability.

In [2] we outlined some areas where a P2P approach can produce significant benefits
in Grid systems. These include security, connectivity, fault tolerance, access services,
resource discovery and presence management. In particular, the P2P model is proposed
as a practical approach to implement resource discovery on the Grid.

Grid users and applications need to get information about dynamic resources status
such as current CPU load, available disk space, free memory, job queue length, network
bandwidth and load, and other similar information. All this information is necessary
to efficiently configure and run applications on Grids. As the Grid size increases, hier-
archical approaches to Grid information systems, do not guarantee scalability and fault
tolerance. As mentioned before, a practical approach towards scalable solutions is offered
by P2P models. Some P2P systems for resource discovery in distributed systems and
Grid environments have been proposed (see for instance [17] [18] [19] [20]).

P2P resource sharing systems can be classified in two categories: unstructured networks,
in which the placement of data is completely unrelated to the network topology, and

structured networks, in which the topology is tightly controlled and pointers to data items
are placed at precisely specified locations. Structured P2P networks generally make use of
distributed hash tables (DHTS) to perform mappings from keys to locations in an entirely
distributed manner. Examples of unstructured networks are Gnutella and Morpheus [21];
examples of structured networks include Chord [22], CAN [23] and Tapestry [24].

Structured P2P networks are designed to locate objects with complete identifiers. Some
recent structured systems provide support also for keyword search, multi-attribute, and
range queries [25] [20] [26]. However, structured approaches are not well suited to handle
decentralized contents about dynamic Grid resources whose values change continuously
over the time and that need to be computed when requested. For this reason, we adopt an
unstructured P2P approach, which allow for handling highly dynamic information, at the
cost of a high bandwidth requirement for searching the network. To control the bandwidth
consumption we use appropriate buffering and merging techniques, as described in the
next section.

4. PROTOCOL DESIGN

The two basic principles of the Gridnut protocol that make it different from Gnutella
are

1. Message buffering: to reduce communication overhead, messages to be delivered to
the same peer are buffered and sent in a single packet at regular time intervals.

2. Collective Pong: when a peer B must respond to a Ping message received from A,
it waits to receive all the Pong messages from its neighbors, then merge them with
its Pong response and send back the Pong collection as a single message to A.

Each peer in the network executes a Grid Service, called Peer Service, through which
remote peers can connect and deliver messages to it.

The Peer Service is a persistent Grid Service, activated at the peer’s startup and termi-
nated when the peer leaves the network. Each Peer Service is assigned a globally unique
name, the Grid Service Handle (GSH), that distinguishes a specific Grid Service instance
from all other Grid Service instances. This handle is used within a Gridnut network
to uniquely identify both the Peer Service and the peer to which it is associated. For
instance, a valid handle could be:

http://nodel.deis.unical.it:8080/ogsa/services/p2p/PeerService
The Peer Service supports four operations:

e connect: used by a remote peer to connect this peer. The operation receives the
handle of the requesting peer and returns a reject response if the connection is
not accepted (for instance, because the maximum number of connections has been

reached).

e disconnect: used by a remote peer to disconnect this peer. The operation receives
the handle of the requesting peer.

e deliver: used by a connected peer to deliver messages to this peer. The operation
receives the handle of the requesting peer and an array of messages to be delivered
to this peer.

e query: invoked by a client application to submit a query to this peer. Query
responses are returned to the client through a notification mechanism.

4.1. Messages

A peer connects itself to the Gridnut network by establishing a connection with one
or more peers currently in the network (a discussion of the connection and disconnection
phases is given in Section 6). Once a peer joined successfully the Gridnut network, it
communicates with other peers by sending and receiving Ping and Pong messages:

e A Ping is used to discover available nodes on the Grid; a peer receiving a Ping
message is expected to respond with a Pong message.

e A Pong is a response to a Ping; it includes the URL of a set of reachable Peer
Services, each one representing an available peer (or Grid node).

The logical structure of Ping and Pong messages is shown in Figure 1.

Ping: | GUID TTL Hops

Pong: | GUID TTL Hops | Handles

Figure 1. Structure of Gridnut messages.

The meaning of the fields in Figure 1 is the following:

e GUID (Global Unique Identifier): a string identifying the message on the network.

e TTL (Time To Live): the number of times the message will be forwarded by peers
before it is removed from the network.

e Hops: the number of times the message has been forwarded by peers.

e Handles: an array of zero, one or more reachable Peer Services” URLs.

For the purposes of this chapter, Pong messages do not include further information
because here we use the discovery protocol to locate all the active peers (i.e., all the
active nodes on the Grid). The search protocol we are designing (not discussed in the
chapter) will be used for host characterization, discovery of needed services, etc.

10

4.2. Data structures

Each peer uses a set of logical data structures to perform its functions.

A connection list (CL) is used to maintain a reference to all directly connected Peer
Services. Entries into the CL are updated by the connect and disconnect operations.

A routing table (RT) is used to properly route messages through the network. The RT
contains a set of records having a structure [GUID, Handle|, used to route messages with
a given GUID to a Peer Service with a given Handle.

The results of the discovery tasks are stored into a result set (RS).

Finally, each peer uses a set of internal transmission buffers, in which messages are
stored and processed before to deliver them to the proper Peer Service. In particular, a
peer Sy uses two separated transmission buffers for each of its neighbors:

e A pong buffer (B,), in which Pong messages with the same GUID are merged before
the delivery. The notation B,(Sj) indicates the pong buffer in which Sy inserts Pong
messages directed to a Peer Service Sk.

o A fast buffer (By), used for Ping and Pong messages that are to be fast delivered
to a given Peer Service. We use the notation By(S}) to indicate the fast buffer in
which Sy inserts messages directed to a Peer Service S.

A thread T}, is associated to each couple of buffers B,(Sk) and Bf(Si). T} periodically
delivers the buffered messages to Sj, on the basis of the rules described below.

4.3. Routing rules

In Gridnut, like in Gnutella, Ping messages are forwarded to all directly connected
peers, whereas Pong messages are sent along the same path that carried the incoming
Ping message. The Hops value is increased each time a Ping is forwarded, and whenever
a Pong is sent in response to a Ping, the Hops value is assigned to the TTL field, so that
the TTL will hold the number of hops to reach the source of the Ping. Hence, the TTL
will be 0 when the result reaches the source of the discovery message.

However, there are two main differences between Gnutella and Gridnut message routing
and transmission modalities:

1. In Gnutella implementations, messages are sent as a byte stream over TCP sockets,
whereas Gridnut messages are sent through a Grid Service invocation (by means of
the deliver operation).

2. In standard Gnutella implementations (based on version 0.4 of the protocol [5]),
each message is forwarded whenever it is received, whereas Gridnut messages, as
mentioned before, are buffered and merged to reduce the number of Grid Service
invocations and routing operations executed by each peer.

Consider a peer Sy having a set of neighbors 57...5,. When a neighbor delivers an
array of messages to Sy, each message is processed separately by Sy as specified below.
Let us suppose that Sy received from Sy the message Ping[GUID=g, TTL=t, Hops=h)|
(this notation means that g, ¢, and h are the actual values of GUID, TTL and Hops of
this Ping); Sy performs the following operations:

11

t=t-1; h=h + 1;
if (RT contains a record with GUID=g)

insert a Pong [GUID=g, TTL=h, Hops=0, Handles=()] into By(Sj);
else if (¢t == 0)

insert a Pong [GUID=g, TTL=h, Hops=0, Handles=Sy] into Bj(Sy);
else {

insert a record [GUID=g, Handle=S,] into RT;

insert a Pong[GUID=g, TTL=h, Hops=0, Handles=Sp] into B,(Sk);

for (i:1..n; i # k)

insert a Ping [GUID=g, TTL=t, Hops=h] into B[(S;);

}

First of all - as shown above - the TTL and Hops values of this message are up-
dated. Then, if the message is a duplicated Ping (since the routing table already contains
its GUID), a “dummy Pong” (i.e., having Handles=0)) is fast delivered to Sj. Else, if
this Ping terminated its TTL, it is not further forwarded, and a Pong response is fast
delivered to S. In the last case, first the routing table is updated, then a Pong response
is inserted into the pong buffer, and finally the Ping is forwarded to all the neighbors,
except the one from which it was received.

Let us suppose that Sy received from Sy the message Pong|GUID=g, TTL=t, Hops=h,
Handles=H] (where H is a set of Peer Services’ handles); the following operations are
performed by Sp:

t=t-1; h=h + 1;
if (¢ == 0)
insert H into RS;
else if (RT contains a record R with GUID=g) {
S, = value of the Handle field of R;
insert a Pong [GUID=g, TTL=t, Hops=h, Handles=H] into B,(S;);

}

As before, the TTL and Hops fields are updated. Then, if this Pong terminated
its TTL (and so this peer is the final recipient), its handles are inserted into the result
set. Else, the Pong is forwarded, through the corresponding pong buffer, to the proper
peer, as specified by the routing table.

Finally, to start a new discovery task, Sy must perform the following operations:

clear RS;
g = globally unique string;
t = initial TTL;
insert the record [GUID=g, Handle=Sy] into RT;
for (i:1..n)
insert a Ping [GUID=g, TTL=t, Hops=0] into By(S5;);

12

As described above, the result set is reset before anything else. Then, a Ping
message is created (with a new GUID and a proper TTL) and forwarded to all the
neighbors through the corresponding fast buffers. The discovery task is completed when
the result set contains the handles of all the reachable peers in the network.

4.4. Buffering rules

Consider again a peer Sy connected to a set of N peers S;...S5,. Within a pong buffer
B,(Sk), a set of counters are used. A counter C, counts the number of Pong messages
with GUID=g till now inserted in B,(Sk).

When a Pong P, = Pong|GUID=g, TTL=t, Hops=h, Handles=H;]| is inserted into
B,(Sk), the following operations are performed:

Cy=Cy + 15
if (Bp(Sk) contains a Pong Py with GUID=g) {
add H; to the current Handles set of Fj;
if (Cy> N)
mark Pong Py as ready;
}
else {
insert Pong P; into B,(Sy);
if (Cy> N)
mark Pong P, as ready;

}

Whenever a Pong message is marked as ready, it can be delivered to the peer Sk.
To avoid blocking situations due to missed Pong messages, a Pong could be marked as
ready also if a timeout has been reached. In the following we do not consider failure
situations, therefore no timeouts are used.

Differently from a pong buffer, messages inserted into a fast buffer B(Sj) are immedi-
ately marked as ready to be delivered to Sk.

As mentioned before, a thread T}, is used to periodically deliver the buffered messages
to Sg. In particular, the following operations are performed by 7T} every time it is
activated:

get the set of ready messages M from B,(Sy) and By(Sk);
deliver M to S through a single deliver operation;

The time interval I, between two consecutive activations of T) is a system param-
eter. In the worst case, exactly a deliver operation can be invoked by S for each of
its N neighbors. Therefore, the maximum number of deliver operations invoked by Sy
during an interval of time I is equal to (I + I,) x N . Obviously, increasing the value of
I, the number of deliver operations can be reduced, but this could produce a delay in
the delivery of messages. In our prototype we use I, = 5 msec.

13

5. PERFORMANCE EVALUATION

In this section we compare some experimental performance results of Gridnut and
Gnutella protocols. To perform our experiments we developed a Java prototype of a Peer
Service, which can also work as a standard Gnutella peer for comparison purposes. In
our prototype the Peer Service is an object accessed through Remote Method Invocation
(RMI). The goal of our tests is to verify how significantly Gridnut reduces the workload
- number of Grid Service operations - of each peer. In doing this, we compared Gridnut
and Gnutella by evaluating two parameters:

1. ND, the average number of deliver operations processed by a peer to complete a
discovery task. In particular, ND = P = (N x T'), where: P is the total number
of deliver operations processed in the network, N is the number of peers in the
network, and 7' is the overall number of discovery tasks completed.

2. ND(d), the average number of deliver operations processed by peers that are at
distance d from the peer Sy that started the discovery task. For instance: ND(0)
represents the number of deliver operations processed by Sp; ND(1) represents
the number of deliver operations processed by a peer distant one hop from Sj.

Both ND and N D(d) have been evaluated considering seven different network topolo-
gies. We distinguish the network topologies using a couple of numbers { N, C}, where N
is the number of peers in the network, and C' is the number of peers directly connected
to each peer (i.e., each peer has exactly C' neighbors). The network topologies we experi-
mented are characterized by {N, C'} respectively equal to {10,2}, {10,4}, {30,3}, {30,4},
{50,4}, {70,4} and {90,4}. Notwithstanding the limited number of used peers, the num-
ber of exchanged messages among peers was extremely high and performance trends are
evident.

Resulting networks were connected graphs, that is each peer can reach any other peer
in the network in a number of steps lower or equal than TTL.

5.1. Number of deliver operations

For each network topology, we measured ND under four load conditions. We use R
to indicate the number of discovery tasks that are initiated in the network at each given
time interval. The following values for R have been used: 1, 3, 5 and 10. In particular,

e R = 1 indicates that, at each time interval, only one discovery task is initiated,
therefore only messages with a given GUID are simultaneously present in the net-
work;

e R = 10 indicates that, at each time interval, ten discovery tasks are initiated,
therefore messages with up to ten different GUID are simultaneously present in the
network.

Table 3 and Table 4 report the ND measured in Gnutella and Gridnut networks, re-
spectively. N D values are measured for network topologies ranging from {10,2} to {90,4},
under load conditions ranging from R =1 to R = 10.

14

Table 3
ND in Gnutella networks.

{102} {104} {303} {304} {504} {704} {904}
R=1 360 453 491 549 6.00 627 652
R=3 361 454 495 548 601 632 653
R=5 361 455 496 547 601 635 6.54
R=10 3.60 454 499 549 602 635 6.53

In Gnutella (see Table 3), ND is not influenced by the R factor, apart from little
variations due to measurements errors. This is because in Gnutella no buffering strategies
are adopted, and one deliver operation is executed to move exactly one message in the
network. Obviously, the value of N D increases with the size of the network, ranging from
an average value of 3.61 in a {10,2} network, to an average value of 6.53 in a {90,4}
network.

Table 4
ND in Gridnut networks.

{102} {104} {30,3} {304} {50,4} {704} {904}

R=1 2.12 5.91 3.86 5.74 5.75 5.72 2.73
R=3 1.96 4.54 3.48 4.81 4.76 4.70 4.89
R=5 1.85 3.98 3.11 4.28 4.22 4.16 4.03
R=10 1.70 2.93 2.52 3.19 3.22 3.10 291

In Gridnut (see Table 4), ND depends from both network topology and load condition.
For a given value of R, N D mainly depends from the value of C' (number of connections
per peer), whereas it varies a little with the value of N (number of peers). For instance,
if we consider the value of ND for R = 1, we see that it varies in a small range (from 5.72
to 5.91) for all the networks with C' = 4.

If we consider networks with the same value of NV, we see that N D decreases when the
value of C is lower. For instance, the ND for a network {10,2} is lower than the ND
for a network {10,4}, with any value of R. Moreover, because a single deliver operation
is performed to deliver more buffered messages, for a given topology the value of ND
decreases when R increases.

Comparing the results in Tables 3 and 4 we can see that the number of deliver
operations is lower with Gridnut in all the considered configurations. In particular, when
the number of discovery tasks increases, the Gridnut strategy maintains the values of N.D
significantly low in comparison with Gnutella.

5.2. Distribution of deliver operations
Table 5 and Table 6 report the value of ND(d) measured in Gnutella and Gridnut
networks, respectively. Notice that in the {10,4} network the maximum distance between

15

any couple of peers is 2, therefore no values have been measured for d > 2. For analogous
reasons, there are no values for d > 4 in {30,3}, {30,4} and {50,4} networks.

Table 5
ND(d) in Gnutella networks.

{102} {104} {30,3} {304} {504} {704} {904}

d=0 9.00 9.00 29.00 29.00 49.00 69.00 89.00
d=1 4.50 4.08 9.67 7.82 1244 17.28 22.50
d=2 3.50 4.00 4.39 4.32 5.53 6.72 8.20
d=3 2.50 - 3.04 4.00 4.11 4.41 4.46
d=4 2.00 - 3.00 4.00 4.00 4.01 4.02
d=5 2.00 - - - - 4.00 4.00

In Gnutella (see Table 5) the value of N D(0) is always equal to N —1. This is because Sy
receives, through its neighbors, a Pong message from each of other peers in the network,
and each of those messages are delivered to Sy by means of a separated deliver operation.
ND(1) is always greater or equal than ND(0) divided by C. The equality is obtained
only for networks in which C' is sufficiently little compared to N, as in {10,2} and {30,3}
networks. In general, the value of ND(d) decreases when d increases, and it reaches the
minimum value, equal to C', on the peers more distant from Sy.

Table 6
ND(d) in Gridnut networks.

{102} {104} {30,3} {304} {504} {704} {904}

d=0 2.00 4.00 3.00 4.00 4.00 4.00 4.00
d=1 2.00 5.35 3.00 4.51 4.07 4.04 4.22
d=2 2.00 6.76 3.07 5.40 5.20 4.89 4.52
d=3 201 - 4.05 6.40 5.84 5.61 5.50
d=4 234 - 4.80 6.82 6.65 6.32 6.26
d=5 282 - - - - 6.78 6.67

In Gridnut (see Table 6) the value of ND(0) is always equal to C, because Sy must
process exactly a deliver operation for each peer directly connected to it. The value of
ND(d) increases slightly with d, reaching its maximum on the peers more distant from
So. ND(d) increases with d because the number of “dummy Pong” messages increase
moving away from Sy. Anyway, the value of ND(d) remains always of the order of C,
even for d equal to TTL.

Comparing the results in Tables 5 and 6 we can see that Gridnut implies a much
better distribution of deliver operations among peers in comparison with Gnutella. In

16

Gnutella, the peer that started the discovery task and its closest neighbors must process
a number of Grid Service operations that becomes unsustainable when the size of the
network increases to thousands of nodes. In Gridnut, conversely, the number of Grid
Service operations processed by each peer remains always in the order of the number
of connections per peer. This Gridnut behavior results in significantly lower discovery
times since communication and computation overhead due to Grid Services invocations
are considerably reduced as shown in Tables 5 and 6. For example, considering a {90,4}
network with R ranging from 1 to 10, Gnutella discovery experimental times vary from
2431 to 26785 msec, whereas Gridnut times vary from 2129 to 8286 msec.

6. A P2P ARCHITECTURE FOR GRID RESOURCE DISCOVERY

The Gridnut approach can offer an effective model to discover active nodes and support
resource discovery in OGSA Grids. In this section we describe a framework for resource
discovery that adopts such an approach to extend the model of the Globus Toolkit 3
(GT3) information service [27].

In the OGSA framework each resource is represented as a Grid Service, therefore re-
source discovery mainly deals with the problem of locating and querying information
about useful Grid Services.

In GT3 information about resources is provided by Index Services. An Index Service is
a Grid Service that holds information (called service data) about a set of Grid Services
registered to it. A primary function of the Index Service is to provide an interface for
querying aggregate views of service data collected from registered services. There is typ-
ically one Index Service per Virtual Organization (VO). When a VO consists of multiple
large sites, very often each site runs its own Index Service that indexes the various re-
sources available at that site. Then each of those Index Services is included in the VO’s
Index Service.

From the perspective of the GT3 information service, the Grid can be seen as a collection
of VOs, each one indexed by a different Index Service. As mentioned before, Index
Services of different sites can be included in a common higher-level Index Service that
holds information about all the underlying resources. However, for scalability reasons, a
multi-level hierarchy of Index Services is not appropriate as a general infrastructure for
resource discovery in large scale Grids. Whereas centralized or hierarchical approaches can
be efficient to index resources structured in a given VO, they are inadequate to support
discovery of resources that span across many independent VOs. The framework described
here adopts the P2P model to support resource discovery across different VOs.

Figure 2 shows the general architecture of the framework. Some independent VOs are
represented; each VO provides one top-level Index Service (1S) and a number of lower-level
Index Services.

A P2P Layer is defined on top of the Index Services’ hierarchy. It includes two types
of specialized Grid Services: Peer Services (introduced before), used to perform resource
discovery, and Contact Services, that support Peer Services to organize themselves in a
P2P network.

There is one Peer Service per VO. Each Peer Service is connected with a set of Peer Ser-
vices, and exchanges query/response messages with them in a P2P mode. The connected

17

CS = Contact Service - -
PS = Peer Service & Cs .

IS = Index Service

P2P Layer

global query .*

Client |-
Applic. A

local quer)\f\/),,\,r —

Figure 2. Framework architecture.

Peer Services are the neighbors of a Peer Service. A connection between two neighbors
is a logical state that enables they to directly exchange messages. Direct communication
is allowed only between neighbors. Therefore, a query message is sent by a Peer Service
only to its neighbors, which in turn will forward that message to their neighbors. A query
message is processed by a Peer Service by invoking the top-level Index Service of the
corresponding VO. A query response is sent back along the same path that carried the
incoming query message.

To join the P2P network, a Peer Service must know the URL of at least one Peer
Services to connect to. An appropriate number of Contact Services is distributed in the
Grid to support this issue. Contact Services cache the URLs of known Peer Services; a
Peer Service may contact one or more well known Contact Services to obtain the URLs
of registered Peer Services.

As shown in Figure 2, a Client Application can submit both local and global queries
to the framework. A local query searches for information about resources in a given
VO. It is performed by submitting the query to the Index Service of that VO. A global
query aims at discovering resources located in possibly different VOs, and is performed
by submitting the query to a Peer Service at the P2P Layer. As mentioned before, the
Peer Service processes that query internally (through the associated Index Service), and
will forward it to its neighbors as in typical P2P networks.

The main difference between a hierarchical system and the framework described here
is the management of global queries. Basically, in a hierarchical information service two
alternative approaches can be used:

e the query is sent separately to all the top-level Index Services, that must be known

18

by the user;

e the query is sent to one (possibly replicated) Index Service at the root of the hier-
archy, that indexes all the Grid resources.

Both these approaches suffer scalability problems. In the P2P approach, conversely, global
queries are managed by a layer of services that cooperate as peers. To submit a global
query, a user need only to know the URL of a Peer Service in the Grid.

In the next subsection the design of the Peer Service and Contact Service components
is discussed.

6.1. Services design

Both Peer Service and Contact Service instances are identified by a globally unique
GSH.

Each Peer Service supports four operations: connect, disconnect, deliver, and
query, as described in Section 4.

A Contact Service supports just one operation:

e getHandles: invoked by a Peer Service to register itself and to get the handles of
one or more registered Peer Services.

Figure 3 and Figure 4 describe, respectively, the main software components of Peer
Services and Contact Services.

getHandles | Contact
Services

Connection
connection request > Manager connect/disconnect

connect
create/remove
connections

Peer X disconnection request] deliver Peer
X > disconnect Peer Connection > .
Services Service

messages Peer - deliver Peer
Peer Connection .
Manager Service

Peer Service [

deliver

Client Client - deliver Peer |,
X 1 Peer Connection > .
Applic. Manager Service
1 response
notification query Index
Service

Figure 3. Peer Service software components.

The Peer Service (see Figure 3) is composed by three main modules: Connection Man-
ager, Peer Manager, and Client Manager.

The goal of the Connection Manager is to maintain a given number of connections
with neighbor Peer Services. A Peer Connection object is used to manage the connection

19

and the exchange of messages with a given Peer Service. A Peer Connection includes
the Grid Service Reference (GSR) of a given Peer Service, and a set of transmission
buffers for the different kinds of messages directed to it. The Connection Manager both
manages connection/disconnection requests from remote Peer Services, and performs con-
nection/disconnection requests (as a client) to remote Peer Services. Moreover, it may
invoke one or more Contact Services to obtain the handles of Peer Services to connect to.

The Peer Manager is the core component of the Peer Service. It both manages the
messages delivered from other Peer Services, and interacts with the Client Manager com-
ponent to manage client requests and to provide responses. It performs different oper-
ations on delivered messages: some messages are simply forwarded to one or more Peer
Connections, whereas query messages need also a response (that in general is obtained
by querying the local Index Service). Moreover, the Peer Manager generates and submits
query messages to the network on the basis of the Client Manager requests.

The Client Manager manages the query requests submitted by client applications. It
interacts with the Peer Manager component to submit the query to the network, and
manages the delivery of query results to the client through a notification mechanism.

Contact Service

Peer ’7:| request/response | Contact
Services || \&Handles Manager

put/get
handles

Cache | maint. oper.

Manager

Figure 4. Contact Service software components.

The Contact Service (see Figure 4) is composed by two software modules: Contact
Manager and Cache Manager.

The Contact Manager manages the execution of the getHandles operation. Basically,
it receives two parameters: the handle i of the invoker, and the number n of handles
requested by the invoker. The Contact Manager first inserts (or updates) the handle h
into a Cache, then it extracts (if available) n distinct handles from the Cache and returns
them to the invoker. The handles can be extracted from the Cache on the basis of a
given policy (e.g., randomly). If a Peer Service does not receive the requested number of
handles, it can try to invoke the Contact Service later.

The Cache Manager performs maintenance operations on the Cache. For instance, it
removes oldest (not recently updated) handles, performs content indexing, etc.

20

7. CONCLUSIONS

Although P2P and Grid computing are still considered two different research areas,
an integrated approach based on the merging of these two models will be profitable for
the development of scalable distributed systems and applications. As Grids become very
large and pervasive, the use of P2P approaches can be exploited to achieve scalability.

An important Grid functionality that could be effectively redesigned using the P2P
paradigm is resource discovery. To this end, we designed a Gnutella-like discovery pro-
tocol, named Gridnut, which uses appropriate message buffering and merging techniques
to make OGSA-compliant services effective as a way to exchange discovery messages in a
P2P fashion. We compared Gridnut and Gnutella performance considering different net-
work topologies and load conditions. Experimental results show that appropriate message
buffering and merging strategies produce significant performance improvements, both in
terms of number and distribution of Grid Service operations processed.

The Gridnut approach can be an effective way to discover active nodes and support
resource discovery in OGSA Grids. The chapter described an architecture for resource
discovery that adopts such an approach to extend the model of the Globus Toolkit 3
information service. In particular, a P2P Layer of specialized Grid Services is defined to
support discovery queries on Index Services of multiple VOs in a P2P fashion. Since the
proposed architecture adopts a general P2P service-based approach, it can be also used
as a model for designing an information service in future P2P-based Grid programming
environments.

REFERENCES

1. 1. Foster and A. Tamnitchi, On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. Proc. 2nd International Workshop on Peer-to-Peer Systems,
Berkeley, USA (2003).

2. D. Talia and P. Trunfio, Toward a Synergy between P2P and Grids. IEEE Internet
Computing, vol. 7, n. 4, pp. 94-96 (2003).

3. The World Wide Web Consortium, Web Services Activity. http://www.w3.org/
2002 /ws.

4. 1. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid. In: F.
Berman, G. Fox, and A. Hey (eds.), Grid Computing: Making the Global Infrastruc-
ture a Reality, Wiley, pp. 217-249 (2003).

5. Clip2, The Gnutella Protocol Specification v.0.4. http://www9.limewire.com/
developer /gnutella_protocol 0.4.pdf.

6. D. Talia and P. Trunfio, A P2P Grid Services-Based Protocol: Design and Evaluation.
Proc. European Conference on Parallel Computing (EuroPar 2004), Pisa, Italy, LNCS
3149, pp. 1022-1031 (2004).

7. D. Box et al., Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

8. E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, Web Services De-
scription Language (WSDL) 1.1, W3C Note 15 March 2001. http://www.w3.org/
TR,/2001/NOTE-wsdl-20010315.

9.

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

21

I. Foster, C. Kesselman, J. M. Nick and S. Tuecke, Grid Services for Distributed
System Integration. IEEE Computer, vol. 35, n. 6, pp. 37-46 (2002).

S. Tuecke et al., Open Grid Services Infrastructure (OGSI) Version 1.0. http://www-
unix.globus.org/toolkit /draft-ggf-ogsi-gridservice-33_2003-06-27.pdf.

The Globus Alliance, Globus Toolkit 3. http://www.globus.org/toolkit.

The Global Grid Forum (GGF). http://www.ggf.org.

K. Czajkowski et al., The WS-Resource Framework Version 1.0. http://www-
106.ibm.com/developerworks/library /ws-resource/ws-wsrf.pdf.

D. Box et al., Web Services Addressing (WS-Addressing), W3C Member Submis-
sion 10 August 2004. http://www.w3.org/Submission/2004/SUBM-ws-addressing-
20040810.

K. Czajkowski et al., From Open Grid Services Infrastructure to WS-
Resource Framework: Refactoring & Evolution. http://www-106.ibm.com/
developerworks/library /ws-resource /ogsi_to_wsrf_1.0.pdf.

G. Fox, D. Gannon, S. Ko, S. Lee, S. Pallickara, M. Pierce, X. Qiu, X. Rao, A. Uyar,
M. Wang, and W. Wu, Peer-to-Peer Grids. In: F. Berman, G. Fox, and A. Hey (eds.),
Grid Computing: Making the Global Insfrastructure a Reality, Wiley, pp. 471-490
(2003).

A. Tamnitchi, I. Foster, and D. Nurmi, A Peer-to-Peer Approach to Resource Discovery
in Grid Environments. Proc. 11th Int. Symposium on High Performance Distributed
Computing (HPDC 11) (2002).

A. Andrzejak and Z. Xu, Scalable, Efficient Range Queries for Grid Information Ser-
vices. Proc. 2nd Int. Conference on Peer-to-Peer Computing (P2P2002) (2002).

A.R. Butt, R. Zhang, and Y.C. Hu, A Self-Organizing Flock of Condors. Proc. Su-
percomputing Conference (SC2003) (2003).

M. Cai, M. Frank, J. Chen, and P. Szekely, MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. Journal of Grid Computing (to appear).

K. Truelove and A. Chasin, Morpheus Out of the Underworld.
http://www.openp2p.com/pub/a/p2p/2001/07/02/morpheus.html.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. Proc. SIGCOMM 2001, pp.
149-160 (2001).

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A Scalable Content-
Addressable Network. Proc. SIGCOMM 2001, pp. 161-172 (2001).

B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph, Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, Com-
puter Science Division, University of California, Berkeley (2001).

P. Reynolds and A. Vahdat, Efficient Peer-to-Peer Keyword Searching. Proc. Int.
Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil (2003).

A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram, PTree: A P2P Index
for Resource Discovery Applications. Proc. 13th Int. Conference on World Wide Web
(WWW 2004) (2004).

D. Talia and P. Trunfio, Web Services for Peer-to-Peer Resource Discovery on the
Grid. Proc. 6th Thematic Workshop of the EU Network of Excellence DELOS, S.
Margherita di Pula, Italy (2004).

