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Abstract

Dynamic querying (DQ) is a search technique used in unstructured peer-to-
peer (P2P) networks to minimize the number of nodes that is necessary to
visit to reach the desired number of results. In this paper we introduce the use
of the DQ technique in structured P2P networks. In particular, we present
a P2P search algorithm, named DQ-DHT (Dynamic Querying over a Dis-
tributed Hash Table), to perform DQ-like searches over DHT-based overlays.
The aim of DQ-DHT is twofold: allowing arbitrary queries to be performed
in structured P2P networks and providing dynamic adaptation of the search
according to the popularity of the resources to be located. DQ-DHT has been
particularly designed for use in those distributed environments, like compu-
tational grids, where it is necessary to support arbitrary queries for searching
resources on the basis of complex criteria or semantic features. This paper
describes the DQ-DHT algorithm using Chord as basic overlay and analyzes
its performance in comparison with DQ in unstructured networks.

Key words: Dynamic Querying, Distributed Hash Tables, Structured
Peer-to-Peer Networks

1. Introduction

Information services are fundamental components of distributed systems
as they allow us to locate the resources needed to execute large-scale parallel
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and distributed applications based on application requirements and resource
availability. Designing a decentralized but efficient information service is a
significant strand of research, with many researches demonstrating the use
of peer-to-peer (P2P) models and techniques as an effective alternative to
centralized and hierarchical solutions [1]. Such P2P systems are typically
classified as structured or unstructured, based on the way nodes are linked
to each other and information about resources is placed across the resulting
overlay.

Structured systems, like Chord [2], Pastry [3], and Tapestry [4], use a
Distributed Hash Table (DHT) to assign to each node the responsibility for
a specific part of the resources. When a peer wishes to locate a resource
identified by a given key, the DHT allows us to locate the node responsible
for that key in O(logN) hops using only O(logN) neighbors per node. In
unstructured systems, like Gnutella [5] and Kazaa [6], links among nodes can
be established arbitrarily and data placement is unrelated to the topology
of the resulting overlay. To locate a given resource, the query must be dis-
tributed through the network to reach as many nodes as needed. Each node
reached by the query processes it on the local resources and, in the case of
match, replies to the query initiator.

Thanks to the DHT infrastructure, searching in structured systems is
more efficient - in terms of traffic generated - than searching in unstructured
systems. As compared to unstructured P2P systems, however, structured
systems provide a limited support to complex queries. Although several ex-
tensions to basic DHT schemes have been proposed to support, for instance,
range queries [7], multi-attribute search [8], and keyword-based search [9],
DHT-based lookups still do not support arbitrary queries (e.g., regular ex-
pressions [10]) since it is infeasible to generate and store keys for every query
expression. On the other hand, unstructured systems can do it effortlessly
since all queries are processed locally on a node-by-node basis [11].

Even if the lookup mechanisms of DHT-based systems do not support
arbitrary queries, it is possible to exploit their structure to distribute any
kind of information across the overlay with minimal cost. For example, in [12]
a technique to perform an efficient broadcast over a DHT is proposed. Using
such a technique, a broadcast message originating at an arbitrary node in
the DHT overlay reaches all other nodes without redundant messages in
O(logN) steps. It can be used to broadcast arbitrary types of queries, which
can then be processed locally by single nodes as in unstructured systems.
We elaborate on such an approach by proposing a P2P search algorithm,
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named DQ-DHT (Dynamic Querying over a Distributed Hash Table), to
provide efficient execution of arbitrary queries in structured P2P networks.
DQ-DHT is based on a combination of the broadcast technique mentioned
above with the dynamic querying (DQ) technique [13] used in unstructured
networks.

The goal of DQ in unstructured networks is to minimize the number
of nodes that is necessary to visit in an unstructured network to obtain
the desired number of results. Using the DQ technique, the query initiator
starts the search by sending the query to a few of its neighbors and with a
small time-to-live (TTL). The main goal of this “probe” query is to estimate
the popularity of the resource to be located. If such an attempt does not
produce a sufficient number of results, the search initiator sends the query
towards the next neighbor with a new TTL. Such TTL is calculated taking
into account both the desired number of results and the resource popularity
estimated during the previous phase. This process is repeated until the
expected number of results is received, or there are no more neighbors to
query.

Similarly to DQ, DQ-DHT performs the broadcast in an iterative way
until the target number of results is obtained. At each iteration, a new
subset of nodes is queried on the basis of the estimated resource popularity
and the desired number of results. In contrast to DQ, DQ-DHT exploits the
structural properties of the DHT to avoid message duplications and ensure
higher success rate.

DQ-DHT has been particularly designed to serve as resource discovery
mechanism for decentralized infrastructures like computational grids. Large-
scale grids are typically organized into multiple domains, often referred to
as virtual organizations (VOs) [14]. Within each VO, one node is typically
designated as information server to answer queries about all the resources be-
longing to that domain. Since information servers are highly reliable nodes,
it is possible to build a P2P network of information servers having a signif-
icantly lower churn rate than typical P2P networks. Thus, we consider a
scenario in which the DHT overlay is composed of information servers only,
which ensures a high stability of the overlay even in large-scale networks.

In this paper we describe the DQ-DHT algorithm using Chord as the
DHT overlay. We analyze the performance of DQ-DHT through simulations
under different algorithm configurations. We also compare the performance
of DQ-DHT with that of DQ in unstructured networks. The simulation re-
sults show that DQ-DHT generates much less network overhead (i.e., number

3



of messages) than DQ, with a comparable - and in some cases better - search
time, and with a higher success rate when the resource to be found is rare.
An early version of this paper appeared as [15]. This new version includes
additional experiments on the precision of the formulas used in DQ-DHT, a
more detailed discussion of the algorithm, an extended performance evalua-
tion, and a related work section.

The rest of the paper is organized as follows. Section 2 provides a back-
ground on the technique of broadcast over a DHT exploited by DQ-DHT.
Section 3 describes the DQ-DHT algorithm. Section 4 analyzes its perfor-
mance and compares DQ-DHT with DQ. Section 5 discusses related work.
Finally, Section 6 concludes the paper.

2. Background on broadcast over a Chord overlay

As outlined above, DQ-DHT combines the DQ technique with a technique
for efficient broadcast over a DHT. In order to better explain how DQ-DHT
works, this section provides a background on the Chord-based implementa-
tion of the broadcast algorithm designed by El-Ansary et al., as proposed
in [12].

Chord uses a consistent hash function to assign to each node an m-bit
identifier, which represents its position in a circular identifier space ranging
from 0 to 2m − 1. Each node, x, maintains a finger table with m entries.
The jth entry in the finger table at node x contains the identity of the first
node, s, that succeeds x by at least 2j−1 positions on the identifier circle,
where 1 ≤ j ≤ m. Node s is called the jth finger of node x. If the identifier
space is not fully populated (i.e., the number of nodes, N , is lower than 2m),
the finger table contains redundant fingers. In a network of N nodes, the
number u of unique (i.e., distinct) fingers of a generic node x is likely to be
log2 N [2]. In the following, we will use the notation Fi to indicate the ith

unique finger of node x, where 1 ≤ i ≤ u.
To broadcast data item D, a node x sends a Broadcast message to

all its unique fingers. The Broadcast message contains D and a limit
argument, which is used to restrict the forwarding space of a receiving node.
The limit sent to Fi is set to Fi+1, for 1 ≤ i ≤ u − 1. The limit sent to the
last unique finger, Fu, is set to the identifier of the sender, x. When a node
y receives a Broadcast message with a data item D and a given limit, it is
responsible for forwarding D to all its unique fingers in the interval ]y, limit [.
When forwarding the message to Fi, for 1 ≤ i ≤ u − 1, y supplies it a new
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limit, which is set to Fi+1 if it does not exceed the old limit, or the old limit
otherwise. As before, the new limit sent to Fu is set to y. As shown in [12], in
a network of N nodes, a broadcast message originating at an arbitrary node
reaches all other nodes in O(log2N) steps and with exactly N − 1 messages.

Figure 1a shows an example of broadcast in a fully populated Chord
ring, where u = m = 4. For each node, the corresponding finger table is
shown. The Broadcast messages are represented by rectangles containing
the data item D and the limit parameter. The entire broadcast is completed
in u = 4 steps, represented with solid, dashed, dashed-dotted, and dotted
lines, respectively.
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Figure 1: (a) Example of broadcast in a fully populated Chord ring; (b) corresponding
spanning tree.

In this example, the broadcast is initiated by Node 2, which sends a
Broadcast message to all nodes in its finger table (Nodes 3, 4, 6 and 10 )
(step 1 ). Nodes 3, 4, 6 and 10 in turn forward the Broadcast message
to their fingers under the received limit value (step 2 ). The same procedure
applies iteratively, until all nodes in the network are reached (steps 3 and
4 ).

The overall broadcast procedure can be viewed as the process of passing
the data item through a spanning tree that covers all nodes in the net-
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work [12]. Figure 1b shows the spanning tree corresponding to the example
of broadcast shown in Figure 1a. The root of the spanning tree is the node
that initiates the broadcast (Node 2 ). The tree is composed of four subtrees,
each one having, as root, one of the fingers of Node 2 (that is, Nodes 3, 4,
6 and 10 ). Since the spanning tree corresponds to the lookup tree, which is
a binomial tree in a (fully populated) Chord network [16], also the spanning
tree associated with the broadcast over a fully populated Chord ring is a
binomial tree.

3. Dynamic Querying over a DHT

As mentioned earlier, the goal of DQ-DHT is twofold: allowing arbitrary
queries in a Chord DHT and supporting dynamic adaptation of the search
based on the popularity of the resources to be located. To support dynamic
search adaptation, DQ-DHT performs the search in an iterative way, similarly
to the original DQ algorithm introduced in Section 1. In the following, the
DQ-DHT algorithm is briefly described.

Let x be the node that initiates the search, U the set of unique fingers
not yet visited, and Rd the desired number of results. Initially U includes
all unique fingers of x. Like in DQ, the search starts with a probe query,
aimed at evaluating the popularity of the resource to be located. To this
end, node x selects a subset V of U and sends the query to all fingers in
V . These fingers will in turn forward the query to all nodes in the portions
of the spanning tree they are responsible for, following the DHT broadcast
algorithm described above. When a node receives a query, it checks for local
items matching the query criteria and, for each matching item, sends a query
hit directly to x. The fingers in V are removed from U to indicate that they
have been already visited.

After sending the query to all nodes in V , x waits for an amount of time
TL, which is the estimated time needed by the query to reach all nodes, up
to a given level L, of the subtrees rooted at the unique fingers in V , plus the
time needed to receive a query hit from those nodes. Then, if the current
number of received query hits Rc is equal or greater than Rd, x terminates.
Otherwise, an iterative procedure takes place.

At each iteration, node x:

1. calculates the item popularity P as the ratio between Rc and the num-
ber of nodes already theoretically queried;
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2. calculates the numberHq of hosts in the network that should be queried
to hit Rd query hits based on P ;

3. chooses, among the nodes in U , a new subset V ′ of unique fingers
whose associated subtrees cumulatively contain the minimum number
of nodes that is greater than or equal to Hq;

4. sends the query to all nodes in V ′;

5. waits for an amount of time needed to propagate the query to all nodes
in the subtrees associated to V ′.

The iterative procedure above is repeated until the desired number of
query hits is reached, or there are no more fingers to contact. Note that,
if the item popularity is properly estimated after the probe query, only one
additional iteration may be sufficient to obtain the desired number of query
hits.

An important point in DQ-DHT is estimating the number of nodes present
in the different subtrees, and at different levels, of the spanning tree asso-
ciated with the broadcast process. In the next section we discuss how we
calculate such properties of the spanning tree and introduce some functions
that are used in the algorithm (described in Section 3.2).

3.1. Properties of the Spanning Tree Associated to the Broadcast Process

As recalled in Section 2, the spanning tree associated with the broadcast
over a fully populated Chord ring is a binomial tree. A binomial tree of
order i ≥ 0, Bi, consists of a root with i subtrees, where the jth subtree is a
binomial tree of order j − 1, with 1 ≤ j ≤ i. Given a binomial tree Bi, the
following properties can be proven [17]: 1) the number of nodes in Bi is 2

i;
2) the depth of Bi is i; 3) the number of nodes at level l in Bi is given by the
binomial coefficient

(
i
l

)
.

Given the binomial tree properties, we calculate the properties of the
spanning tree associated with a broadcast initiated by a node having u unique
fingers as shown in Table 1. Basically, we correct the binomial tree properties
by a factor c = N/2u, where N is the number of nodes in the network (which
can be estimated [18]), to compensate the fact that the value of u may be
different from the value of log2N in the case of not fully populated rings.
Note that, since the value of Di may be not an integer, we use the generalized
binomial coefficient to calculate N l

i .
To verify the validity of the formulas defined in Table 1 in the case of not

fully populated Chord rings, we employed a custom-made network simulator
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Table 1: Properties of the spanning tree rooted at a node with u unique fingers F1..Fu.

Notation Description Value
Ni Number of nodes in the subtree rooted at Fi, where 1 ≤ i ≤ u 2i−1 × c

Di Depth of the subtree rooted at Fi, where 1 ≤ i ≤ u log2 Ni

N l
i

Number of nodes at level l of the subtree rooted at Fi, where
1 ≤ i ≤ u and 0 ≤ l ≤ Di

(
Di

l

)

(the same used for the performance evaluation presented in Section 4.1).
Through the simulator we built several random Chord overlays and compared
the real properties of the broadcast spanning tree with the values computed
using the formulas in Table 1. The results of an extract of such experiments
are presented in Figure 2 and Figure 3.
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Figure 2: Comparison between computed and real values of Ni and N l
i for different values

of i and l in a Chord DHT with N = 10000 from a node with u = 14. Lines represent
the computed values. Single points with error bars are the real values. The error bars
represent the standard deviations obtained from 100 simulation runs.

Figure 2a shows the comparison of computed and real (i.e., measured)
values of Ni for different values of i, in a Chord DHT with N = 10000 from
a node with u = 14. As shown by the graph, the means of the real values
(represented as points) are very close to the computed values (represented as
lines) for any value of i. The graph in Figure 2b considers the same DHT of
Figure 2a, but shows the comparison of computed and real values of N l

i for
different values of i, with l ranging from 1 to 4. As before, the mean of the
real values resulted very close to the computed values for any value of i and
l.
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Figure 3: Computed and real values of Ni and N l
i for different values of i and l in a Chord

DHT with N = 20000 from a node having u = 15.

Figures 3a and Figures 3b show the comparison of computed and real
values of Ni and N l

i in a Chord overlay with N = 20000 from a node having
u = 15. The results are almost identical to those obtained with N = 10000
(except for the scale factor), with the computed values very close to the real
ones.

In summary, the experimental results presented in Figure 2 and Figure 3
demonstrate that the formulas in Table 1 can also be used to estimate -
with high accuracy - the properties of the spanning tree associated with the
broadcast process in Chord DHTs.

Based on the spanning tree properties defined in Table 1, we define in
Table 2 some aggregate functions operating on a set of unique fingers. Such
functions are used in the DQ-DHT algorithm presented in the next section.

3.2. The DQ-DHT Algorithm

DQ-DHT defines two procedures: SubmitQuery, executed by a node to
submit a query, and ProcessQuery, executed by a node receiving a query
to process.

SubmitQuery (see Fig. 4) receives the query Q and the desired number
of results Rd. It makes use of the functions defined in Table 2, and it is
assumed that the procedure is executed by a node x.

The procedure starts by initializing to 0 the current number of results
Rc (line 1 ). The value of Rc is incremented by 1 whenever a query hit is
received. A set U is initialized to contain all unique fingers of node x (line
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Table 2: Aggregate functions operating on a set V of n unique fingers with indices i1..in ∈
[1, u].

Function Returned result Value

N(V )
Total number of nodes in the sub-
trees associated with the unique fin-
gers in V

∑
i=i1..in

Ni

D(V )
Depth of the subtree associated with
the unique finger with highest index
in V

Di where i = max(i1..in)

N(V, L)
Total number of nodes from level 0
to level L of the subtrees associated
with the unique fingers in V

∑
i=i1..in

li∑
l=0

N l
i where li = min(L,Di)

2 ), and Ht is set to N(U), which corresponds to the total number of hosts
that can be queried in the network (line 3 ). The first subset V of fingers to
visit is selected from U (line 4 ), and U is updated accordingly (line 5 ).

Afterwards, an integer L between 0 and D(V ) is chosen (line 6 ). The
value of L represents the last level of the subtrees associated with V from
which to wait a response before estimating the item popularity. The amount
of time TL needed to receive a response from those levels is then calculated
as TH × (L+ 2), where TH is the average time to pass a message from node
to node (line 7 ). The value L + 2 is obtained by counting one hop to pass
the message from x to the fingers, L hops to propagate the message up to
level L, and an additional hop to return the query hit to node x.

Then, Q is sent to all fingers in V invoking the subroutine Send described
below (line 8 ). After the wait (line 9 ), the number of nodes visited Hv

is initialized to N(V, L) (line 10 ). While the popularity will be estimated
considering only levels from 0 to L, the query continues to be forwarded up to
level D(V ). The additional amount of time Tr that would be necessary to get
a response from the remaining levels is therefore proportional to D(V ) − L
(line 11 ).

After this first phase, an iterative process takes place while Rc < Rd and
there are more fingers to visit (U ̸= Ø) (line 12 ). If at least one result has
been received, node x estimates the item popularity P (line 14 ), and the
estimated number Hd of hosts to obtain Rd results based on P (line 15 ).
Otherwise (i.e., Rc = 0), Hd is set to Ht + 1, meaning that it is likely that
more than all available hosts must be contacted to hit Rd results (line 17 ).

IfHd <N(V ), it is expected to receive enough results from the fingers that

10



procedure SUBMITQUERY(Q,Rd)

1: Rc ⇐ 0
2: U ⇐ all unique fingers of node x
3: Ht ⇐ N(U)
4: V ⇐ a subset of U
5: U ⇐ U \ V
6: L ⇐ an integer ∈ [0, D(V )]
7: TL ⇐ TH × (L + 2)
8: SEND(Q,V )
9: sleep(TL)

10: Hv ⇐ N(V, L)
11: Tr ⇐ TH × (D(V ) − L)
12: while Rc < Rd and U 6= Ø do

13: if Rc > 0 then

14: P ⇐ Rc/Hv

15: Hd ⇐ Rd/P
16: else

17: Hd ⇐ Ht + 1
18: end if

19: if Hd ≤ N(V ) then

20: sleep(Tr)
21: Hv ⇐ N(V )
22: Tr ⇐ 0
23: else

24: Hq ⇐ Hd− N(V )
25: if Hq > N(U) then

26: V ′ ⇐ U
27: else

28: V ′ ⇐ subset of U with min. N(V ′) ≥ Hq

29: end if

30: U ⇐ U \ V ′

31: TV ′ ⇐ TH × (D(V ′) + 2)
32: SEND(Q,V ′)
33: sleep(max(TV ′ , Tr))
34: Hv ⇐ N(V )+ N(V ′)
35: V ⇐ V ′

36: Tr ⇐ 0
37: end if

38: end while

subroutine SEND(Q,V = {Fi1 ..Fin})

1: for i = i1 to in do

2: if i < u then

3: limit ⇐ Fi+1

4: else

5: limit ⇐ x
6: end if

7: send message M = {x,Q, limit} to node Fi

8: end for

Figure 4: The SubmitQuery procedure.

have been already contacted. Note that this may happen only if L < D(V ),
because P is estimated on the basis of the results arriving from nodes up to
level L of the subtrees associated with V . Thus, only in this case, the search
initiator must wait for the additional amount of time Tr (line 20 ). After the
wait, the value of Hv is updated to include all nodes in V (line 21 ), and Tr

is set to 0 (line 22 ).
Otherwise (Hd > N(V )), the number of nodes to be queried Hq is given

by Hd minus the number of nodes already queried (line 24 ). If Hq is greater
than the number of nodes available, the new set V ′ of fingers to visit is
set to U (line 26 ). Else, V ′ is the subset of U with the minimum value of
N(V ′) which is greater than or equal to Hq (line 28 ). The elements in V ′

are removed from U (line 30 ), and the time TV ′ needed to receive response
from all levels of the subtrees associated with V ′ is calculated (line 31 ).

After sending the query to all nodes in V ′ (line 32 ), x performs a wait
(line 33 ), updates the number of hosts visited (line 34 ), and sets V to V ′

(line 35 ). The waiting time on line 33 is the maximum between TV ′ and
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Tr, for managing the case in which the time Tr needed to visit the levels
remaining from the previous phase is greater than the time TV ′ needed to
receive a response from all levels in V ′. As for lines 19-22, this may happen
only on the first iteration since after that the timeout is always set to be
proportional to D(V ′), and so Tr = 0 (line 36 ).

The subroutine Send forwards the query Q to a set of unique fingers V .
Basically, it implements the procedure executed by a node x to perform a
broadcast (see Section 2). The only difference is that we do not send the
message to all unique fingers of x, but only to those in V . The message M
sent by x to a node y includes the Id of the querying node (x), the query
to be processed Q, and the limit parameter used to restrict the forwarding
space of node y.

ProcessQuery (see Fig. 5) is executed by a node y that receives a
message M containing the Id of the search initiator x, the query to process
Q, and the limit parameter.

procedure PROCESSQUERY(M = {x,Q, limit})

1: for i = 1 to u do

2: if Fi ∈]y, limit[ then

3: if i < u then

4: oldLimit ⇐ limit

5: limit ⇐ Fi+1

6: if limit /∈]y, oldLimit[ then

7: limit ⇐ oldLimit

8: end if

9: else

10: limit ⇐ y
11: end if

12: send message M = {x,Q, limit} to node Fi

13: else

14: exit for

15: end if

16: end for

17: for each local item matching Q do

18: send query hit to node x
19: end for

Figure 5: The ProcessQuery procedure.

The procedure sends the query to all nodes in the portion of the spanning
tree node y is responsible for (lines 1-16 ), following the broadcast algorithm
described in Section 2. Then, it processes the query against its local re-
sources, and for each matching item sends a query hit directly to the search
initiator (lines 17-19 ).

3.2.1. Example

Figure 6 illustrates an example of a two-iteration DQ-DHT search in a
fully populated Chord network with 128 nodes. The root of the binomial
tree represents the search initiator, x, and its children represent the fingers
F1...F7 of x. In this example the query to process is indicated as Q and the
desired number of results is Rd = 22.
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L = 3

x

F1 F2 F3 F4
F5

F6
F7

Iteration 1:

V = fingers to contact = { F5 }

L = level to reach = 3

Rc = # results received (up to L=3) = 6
Hv = # hosts visited (up to L=3) = N(V,L) = 15
P = probability of match = Rc / Hv = 0.4

Hq = hosts to query = Rd / P – N(V) = 39

Q

Search initiator

[Query = Q; Rd = 22]

(a)

F1 F2 F3 F4
F5

F6
F7

L = 5

Q

Iteration 2:

V = fingers to contact = { F1, F2, F3, F6 }

L = level to reach = 5

Search initiator

[Query = Q; Rd = 22]

Q

Rc = # results received = 23 ≥ Rd

x

(b)

Figure 6: Example of a two-iteration DQ-DHT search in a fully populated Chord network
with N = 128: (a) iteration 1; (b) iteration 2. Filled black circles are nodes that produced
a query hit after receiving the query; empty bold circles are nodes that received the query
but did not produce a query hit; empty circles are nodes that did not receive the query.

Figure 6a shows the first iteration of search (probe query) where the
following algorithm parameters are used: V = {F5} and L = 3 (Section 4.1
discusses how those parameters should be chosen in different scenarios). After
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sending Q to F5, x waits for an amount of time proportional to L = 3 before
counting the number of results received. The filled black circles represent
the nodes, in the subtree rooted at F5, which have sent a query hit to x in
response to Q. Thus, after the first iteration, the number of results is Rc = 6.
Since Rc < Rd, x proceeds by calculating the resource popularity P and the
number Hq of hosts to query to obtain a minimum of Rd results, as shown
in the figure.

The second iteration is shown in Figure 6b. Given Hq = 39, node x
chooses the new set of fingers to contact as V = {F1, F2, F3, F6} since the
total number of nodes in the subtrees associated with the fingers in V (which
is equal to

∑
i∈{1,2,3,6} 2

i−1 = 39) is the minimum value, greater than or equal
to Hq, that can be obtained from the fingers not previously contacted. Then,
Q is sent to all fingers in V and, after a waiting period proportional to L = 5
(depth of the subtree associated with F6), the search is concluded because
other 17 nodes (filled black circles in the figure) have sent a query hit to x,
reaching the goal of obtaining at least Rd results.

4. Performance Evaluation

We evaluate DQ-DHT in terms of two performance parameters: number
of messages (Nm) and search time (Ts). Nm is the total number of messages
generated during the search process, while Ts is the amount of time needed
to receive the desired number of results.

The system parameters are the number of nodes in the network (N) and
the resource replication rate (r), where r is the ratio between the total number
of resources satisfying the query criteria and N . The algorithm parameters
are the initial set of unique fingers to visit (V ), the initial number of levels
(L), and the desired number of results (Rd). Even if it is possible to choose
V to include an arbitrary subset of the unique fingers of the querying node,
we consider the case in which V = {Fi}, i.e., V includes only the ith unique
finger, where 1 ≤ i ≤ u. This permits us to have, after the probe query, still
u − 1 unique fingers from which to choose the new set of subtrees to query,
this way improving the granularity of search.

To analyze the message and time complexity of the algorithm we consider
the following worst case scenario: at each iteration (including the probe
query) the querying node chooses exactly one unique finger to contact, among
those not yet contacted. Therefore, the overall search process will complete
in u iterations. Since all subtrees are queried one after another, Nm = N−1,
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and so the message complexity is O(N). In the same scenario the search
time is the sum of the times needed to query all subtrees in sequence, i.e.,
Ts = TH ×

∑u
i=1(Di + 2), where TH is the average time per hop. From

Table 1, Di = logNi = log(2i−1 × c) = i− 1 + log c, where c = N/2u. Thus,
Ts = TH ×

∑u
i=1(i+1+ log c) = TH × (1

2
u2+ 3

2
u+(log c)u). Since on average

u = logN , we obtain that Ts = TH × (1
2
log2 N + 3

2
logN). Therefore, the

time complexity in the worst case is O(log2N).
The worst case scenario considered above is based on the very pessimistic

assumptions that, at each iteration, the current estimated value of the re-
source popularity determines the inclusion in the next set V of exactly one
unique finger among those still available. In a more typical scenario, as-
suming a uniform distribution of the matching resources across nodes, the
popularity can be estimated with enough accuracy during the probe query,
thus allowing most searches to complete in two iterations. In such two-
iteration scenario the maximum search time is the sum of the probe query
time (which is proportional to L+2) plus the time to cover the deepest sub-
tree that can be chosen for the second iteration (i.e., the subtree associated
with Fu): Ts = TH × ((L+2)+ (Du +2)). Since on average Du = logN − 1,
Ts = TH × ((L+2)+(logN+1)) and so the time complexity in such scenario
is O(logN).

4.1. Simulation Analysis

We experimentally evaluated the behavior of DQ-DHT in different sce-
narios using a custom-made discrete-event simulator written in Java. The
tests have been performed in a randomly generated Chord network with N
ranging from 10000 to 50000, and a value of r ranging from 0.25 % to 32
%. Moreover, different combinations of the algorithm parameters V , L, and
Rd have been experimented. All the results presented in the following are
calculated as an average of 100 independent simulation runs, where at each
run the search is initiated by a randomly chosen node.

We ran a first set of simulations to evaluate the behavior of DQ-DHT
varying the initial set V of unique fingers to contact. To this end, we fixed the
number of nodes (N = 50000) and the desired number of results (Rd = 100).
At each run, we chose V to include one of the fingers between F8 to F14, with
the initial value of L set to 5. The graphs in Fig. 7 show number of messages
and search time as a function of the replication rate. The search time is
expressed in time units, where one time unit corresponds to the average time
to pass a message from node to node.
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Figure 7: Effect of varying the initial set V , with L = 5 and Rd = 100, in a network with
N = 50000: (a) number of messages; (b) search time.

As expected, Fig. 7a shows that the number of messages decreases as the
replication rate increases, for any value of V . When V = {F8}, the average
number of messages passes from 48735 for r = 0.25%, to 360 for r = 32%. In
the opposite case, V = {F14}, the number of messages passes from 46473 for
r = 0.25%, to 8159 for r = 32%. For high values of r (i.e., r = 16 − 32%),
in most cases the probe query is sufficient to obtain the desired number of
results, and so the number of messages corresponds to the number of nodes
in the subtree associated with the finger in V .

For values of r lower than 2%, typically at least one additional iteration
after the probe query is needed. In these cases, the generated number of
messages depends on the accuracy of the popularity estimation, which is
better when a higher number of nodes is queried during the probe query
(that is, when V includes a finger with a high index). For instance, when
r = 1%, the average number of messages is 25207 for V = {F8}, 14341 for
V = {F11}, and 13169 for V = {F14}.

This suggests to start the search by contacting a finger with a high index
(e.g., F14), when it is known that the resource is “rare.” When there is no
information about the popularity of the resource to be found, an intermediate
finger (e.g., F11) should be used.

As shown in Fig. 7b, also the search time decreases as the replication
rate increases, for any value of V . When V = {F8}, the average search time
passes from 22.3 for r = 0.25%, to 16.1 for r = 32%. When V = {F14}, the
search time ranges from 24.4 for r = 0.25%, to 5.2 for r = 32%.
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Figure 8: Effect of varying the initial value of L, with V = {F11} and Rd = 100, in a
network with N = 50000: (a) number of messages; (b) search time.

The graph shows that with low values of r it is convenient to contact a
finger with a high index, which leads to a lower search time with respect to
fingers with a lower index. However, since the main objective of DQ-DHT is
reducing the number of messages, an intermediate finger (e.g., F11) should be
preferred in most cases, even if this may result to an increased search time.

We ran a second set of simulations to evaluate the effect of varying the
initial value of L in the same scenario (N = 50000 and Rd = 100). According
to the results discussed above, we chose an intermediate finger for the probe
query (V = {F11}), and varied L from 2 to 8. The results are presented by
the graphs in Fig. 8.

Fig. 8b shows that lower values of L generate lower search times. For
instance, when r = 1% the average search time passes from 17.1 with L = 2,
to 25.2 with L = 8. This is mainly due to the fact that the wait after the
probe phase is proportional to L, as described in Section 3.2.

On the other hand, Fig. 8a shows that very low values of L produce a
significant increase in the number of messages. For example, when r = 1% the
average number of messages passes from 14259 with L = 8, to 34654 with L =
2. The excess of messages in the second case is due to the reduced accuracy
in the estimation of the resource popularity that is obtained considering only
a few levels of the subtrees associated with V .

In general, intermediate values of L produce the best compromise between
number of messages and search time. For the scenario analyzed here (V =
{F11}), the best result is obtained with L = 4, which generates a number of
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Figure 9: Performance of the algorithm by varying the value of Rd, with N = 50000,
V = {F11} and L = 4: (a) number of messages; (b) search time.

messages similar to that produced by higher values of L, but with a quite
lower search time, as shown by the graphs in Fig. 8.

A third set of experiments has been performed to evaluate the perfor-
mance of the algorithm by varying the value of Rd. In particular, fixed
N = 50000, V = {F11} and L = 4, we varied the desired number of results
from 25 to 125 and measured the number of messages and search time as a
function of the replication rate. The results are reported in Fig. 9.

As shown in Fig. 9a, the number of messages is almost proportional to the
value of Rd for replication rates greater than or equal to 1%. For example,
when r = 1%, the average number of messages is 19884 for Rd = 125 and 5021
for Rd = 25. With very low replication rates (i.e., r ≤ 0.5%), the number
of messages still decreases with lower values of Rd, but less proportionally.
This is due to the fact the popularity estimation is less accurate, causing
more nodes than needed to be contacted. For example, when r = 1% the
average number of messages is 49964 for Rd = 125 and 26736 for Rd = 25.

Fig. 9b shows the search time obtained in the same scenarios. It can
be observed that it decreases significantly when the value of Rd decreases.
For example, when r = 4%, the average search time passes from 20.5 for
Rd = 125 to 10.3 for Rd = 25. This confirms the good performance of
the algorithm taking also into account that, independently from the desired
number of results, there is a fixed cost of six time units (L+2) that are spent
to perform the probe querying phase.

Finally, we performed a set of simulations to evaluate the behavior of

18



 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
u
m

b
e
r 

o
f 
m

e
s
s
a
g
e
s

Replication rate (%)

Rd=25, V={F11}, L=4

N=50000
N=40000
N=30000
N=20000
N=10000

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
e
a
rc

h
 t
im

e
 (

ti
m

e
 u

n
it
s
)

Replication rate (%)

Rd=25, V={F11}, L=4

N=50000
N=40000
N=30000
N=20000
N=10000

(a) (b)

Figure 10: Performance of the algorithm by varying the value of N , with Rd = 25,
V = {F11} and L = 4: (a) number of messages; (b) search time.

DQ-DHT by varying the size of the network. In particular, we varied the
value of N from 10000 to 50000, fixing Rd = 25, V = {F11} and L = 4. Note
that the value of Rd chosen is equal to the number of matching resources that
are available in the smallest network (N = 10000) with the lowest replication
rate (r = 0.25%).

Fig. 10 shows how the number of messages and search time vary as a
function of N . Ideally, both the number of messages and the search time
should be independent from the network size since the number of nodes to
be contacted depends only from Rd and from the replication rate. Fig. 10b
shows that the search time is actually independent from the network size, for
any value of r.

Fig. 10a shows that also the number of messages is independent from the
network size, except for very low replication rates. As highlighted earlier,
this is due to the fact that the popularity estimation is less accurate when
r ≤ 0.5%, causing more nodes than needed to be contacted. Since the number
of messages in DQ-DHT cannot be greater than N , this overshooting of the
search space is more evident in larger networks.

Based on the results and the analysis presented above, we conclude this
section by highlighting which criteria should be followed to choose V and L
to maximize the algorithm performance.

• When it is known that the resource to be found is rare, V should include
a finger with a high index (e.g., F14). The relatively large number of
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messages generated during the probe query will be compensated by
the higher accuracy in the popularity estimation, which in turn will
contribute to limit the amount of messages generated during the next
rounds of search.

• In the absence of information about the popularity of the resource to
be found, V should include a finger with a lower index (e.g., F11),
which avoids overshooting of the search space during the probe phase,
allowing at the same time a good estimation of the resource popularity
in most scenarios.

• The value of L should be chosen taking into account that higher val-
ues produce higher delays, while lower values produce lower accuracy
and therefore more messages. The experimental results showed that
intermediate values (e.g., L = 4) provide a good compromise between
number of messages and search time.

It is worth noticing that the number of nodes to be contacted during
the probe phase is determined (through the choice of V and L) only on the
basis of the desired accuracy in the popularity estimation. Therefore, the
criteria mentioned above should be considered as independent from both the
desired number of results and the network size. Indeed, the results presented
in Figs. 9 and 10 confirm that the algorithm performs well under various
combinations of N and Rd values, using parameters chosen according to the
criteria above.

4.2. Comparison with Dynamic Querying in Unstructured Networks

In this section we compare the performance of DQ-DHT with that of DQ
in unstructured networks. Since DQ-DHT is designed to work on a DHT-
based network, while DQ works on unstructured networks, we adopted the
following approach to compare the two systems. First, we built a random
Chord network with N = 50000 nodes, and measured the average number
of unique fingers across all nodes, which resulted to be ū = 15.94. Then, we
built an unstructured overlay among the same nodes, in which each node is
connected to ū other random nodes, on the average.

As before, we measured the number of messages and the search time.
In addition, we evaluated the following performance parameters: duplication
rate, defined as the percentage of duplicate messages on the total number of
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messages and success rate, defined as the percentage of successful searches
on the total number of searches performed.

For DQ in unstructured networks, we implemented the DQ+ algorithm
proposed by Jiang and Jin in [19], which is an enhanced version of the original
algorithm proposed by Fisk in [13]. The main difference between DQ+ and
the original DQ algorithm is briefly described in the following.

In the original DQ, after each iteration, the querying node calculates the
total number Ht of hosts to query to reach the desired number of results.
Then, it calculates the number Hn of hosts to query per neighbor as Ht/n,
where n is the number of neighbors that have not yet received the query.
Finally, it calculates the minimum TTL to reach Hn hosts through the next
neighbor and sends the query towards that neighbor.

DQ+ adopts a “greedy” strategy. After each iteration, the querying node
estimates the total number Ht of host to query, and then calculates the
minimum TTL to reach Ht hosts via the next neighbor alone. To avoid
overshooting of the search space, DQ+ uses a confidence interval method to
estimate the popularity of the searched item. The simulation results pre-
sented in [19] show that DQ+ reduces the latency by more than four times
with respect to the original DQ algorithm.

The initial parameters of DQ+ are the number of neighbors contacted
during the probe phase, n, and the TTL used for the probe query, t. We
experimented two configurations: i) n = 3 and t = 2; ii) n = 3 and t = 3.
The former is the configuration suggested in [13]; the latter is a variation
of the former aimed at increasing the number of nodes contacted during the
probe phase, in order to improve the accuracy of the resource popularity
estimation. In both cases, the maximum value of TTL allowed after the
probe query is 5.

For DQ-DHT we chose the following configurations: i) V = {F14} and
L = 5; ii) V = {F11} and L = 4. The first configuration aims at minimizing
the search time, but at the cost of a higher number of messages. The second
configuration provides a better balance between number of messages and
search time, as discussed above.

The results of the comparison between DQ-DHT and DQ+ are presented
in Fig. 11. The simulations have been conducted with a value of r ranging
from 0.25 % to 32 %, and Rd fixed to 100. Moreover, each result is obtained
as the average of 100 independent simulation runs.

As shown in Fig. 11c, the success rate for replication rates greater than or
equal to 0.5% is 100% with both DQ+ and DQ-DHT. However, for r = 0.25%,
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Figure 11: Comparison between DQ-DHT and dynamic querying in unstructured networks
(DQ+) with N = 50000 and Rd = 100: (a) number of messages; (b) search time; (c)
success rate; (d) duplication rate.

DQ-DHT has a success rate of 100%, while DQ+ has a success rate of only
8.5%. This is due to the incomplete network coverage of the constrained
flooding implemented by DQ+, which in some cases fails to find the desired
number of results even if they are actually available in the network. On
the contrary, DQ-DHT ensures a complete network coverage and therefore
maintains a success rate of 100% even in presence of very low replication
rates.

The search time in DQ+ and DQ-DHT is compared in Fig. 11b. As
already discussed above, the search time in DQ-DHT strongly depends on
the choice of the initial set V . With V = {F14} the search time of DQ-
DHT is comparable with (and in some cases better than) the search time of
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DQ+. This is obtained at the cost of more messages than the case in which
V = {F11}, but they are much less than those generated by DQ+ for values
of r < 2%.

Fig. 11a shows the number of messages generated by the two algorithms.
DQ-DHT with V = {F11} produces less messages than DQ+ for all values of
r ≤ 16%, while they generate approximatively the same number of messages
for r = 32%. For values of r lesser than 2% DQ-DHT outperforms DQ+ by
more than a factor of 2. For instance, for r = 1% DQ-DHT with V = {F11}
generates 15025 messages, while DQ+ with t = 3 produces 40155 messages.

Note that, for low replication rates, DQ-DHT generates less messages
with V = {F14}, while it works better with V = {F11} for high replication
rates. This is due to the fact that with V = {F14} the minimum number of
messages sent to the network is higher, and so more messages than needed
are generated when the resource to be found is popular. On the other hand,
a high number of messages ensures a better accuracy in the estimation of the
resource popularity, leading to less messages when the resource to be found
is rare.

The greater number of messages generated by DQ+ with respect to DQ-
DHT is mainly due to the message duplication caused by flooding. The
percentage of duplicate messages on the total number of messages is shown
in Fig. 11d. As expected, the duplication rate of DQ+ increases as the
replication rate decreases, reaching approximatively the value of 44% with
r = 0.25%. DQ-DHT does not suffer the message duplication problem, as
each node receives the query at most once. Therefore, the duplication rate
for DQ-DHT is 0% for any value of r.

To better evaluate the behavior of DQ-DHT when the desired number of
results is lower, we ran a second set of simulations to compare DQ-DHT and
DQ+ by reducing the value of Rd to 50. Fig. 12 shows the result of such
comparison in terms of number of messages and search time. For the sake
of space, we do not include graphs about success rate and duplication rate,
which are briefly discussed below. By comparing Fig. 12a-b with Fig. 11a-b,
we observe that the relative performances of the two algorithms are similar
to those obtained with Rd = 100, both in terms of number of messages and
search time.

In terms of success rate, DQ+ reaches in this case the same performance of
DQ-DHT (100% of success). This is due to the fact that, being the desired
number of results lower, DQ+ can find enough relevant nodes even if its
flooding strategy does not guarantee complete network coverage. On the
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Figure 12: Comparison between DQ-DHT and DQ+ with N = 50000 and Rd = 50: (a)
number of messages; (b) search time.

other hand, DQ-DHT still outperforms DQ+ in terms of duplication rate,
which reaches the value of 38% with DQ+, while it is always 0% with DQ-
DHT.

In summary, the simulation results presented throughout this section
show that DQ-DHT produces much less network overhead (i.e., number of
messages) than DQ+, with a comparable - and in some cases better - search
time, and with a higher success rate when the resource to be found is rare.

5. Related Work

The work most related to DQ-DHT is the Structella system designed by
Castro et al. [20]. Structella replaces the random graph of Gnutella with
the structured overlay of Pastry [3], while retaining the content placement
and discovery mechanisms of unstructured P2P systems to support complex
queries. Two discovery mechanisms are implemented in Structella: con-
strained flooding and random walks.

Constrained flooding is based on the algorithm of broadcast over Pastry
presented in [21]. A node x broadcasts a message by sending the message to
all the nodes y in the Pastry’s routing table. Each message is tagged with the
routing table row r of node y. When a node receives a message tagged with
r, it forwards the message to all nodes in its routing table in rows greater
than r. To constrain the flood, an upper bound is placed on the row number
of entries to which the query is forwarded.
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Random walks in Structella are implemented by walking along the ring
formed by neighboring nodes in the identifier space. When a node receives a
query in a random walker, it uses the Pastry’s leaf set to forward the query
to its left neighbor in the identifier space. It also evaluates the query against
the local content and sends matching content back to the query originator.
A random walker is terminated when it finds matching content. Multiple
concurrent random walkers can be used to improve search time.

DQ-DHT and Structella share the same goal of supporting complex queries
in structured networks. However, DQ-DHT has been designed to find an ar-
bitrary number of resources matching the query criteria, while Structella is
designed to discover just one of such resources. In Structella in fact, with
both constrained flooding and random walks, a node stops forwarding a query
if it has matching content. This functional difference makes DQ-DHT and
Structella not comparable, so we cannot provide a comparison of their per-
formance.

A way to let Structella return an arbitrary number of results instead of
just one could be modifying its random walks algorithm, using the same
termination mechanisms proposed for random walks in unstructured net-
works [22]. Unfortunately, a direct interaction between querying node and
walkers may be infeasible in some networks (e.g., due to firewalls) and gen-
erates overload of the querying node if too many walkers are used or the
communication with them is too frequent [22]. It is worth noticing that DQ-
DHT, on the contrary, does not require any remote interaction to terminate
the search.

A few other research works broadly relate to our system for their combined
use of structured and unstructured P2P techniques.

Loo et al. [23] propose a hybrid system in which DHT-based techniques
are used to index and search rare items, while flooding techniques are used
for locating highly replicated content. Search is first performed via conven-
tional flooding techniques of the overlay neighbors. If not enough results are
returned within a predefined time, the query is reissued as a DHT query.
This allows fast searches for popular items and at the same time reduces the
flooding cost for rare items.

A critical point in such system is identifying which items are rare and
must be published using the DHT. Two techniques are proposed. A first
heuristic classifies as rare the items that are seen in small result sets. How-
ever, this method fails to classify those items that have not have been pre-
viously queried and found. Another proposal is to base the publishing on
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well-known term frequencies, and/or by maintaining and possibly gossiping
historical summary statistics on item replicas.

Another example is the work by Zaharia and Keshav [24], who focus on
the problem of selecting the best algorithm to be used for a given query in a
hybrid network allowing both unstructured search and DHT-based lookups.
A gossip-based algorithm is used to collect global statistics about document
availability and keyword popularity that allow peers to predict the best search
technique for a given query.

Each peer starts by generating a synopsis of its own document titles and
keywords and labels it as its “best” synopsis. In each round of gossip, it
chooses a random neighbor and sends the neighbor its best synopsis. When
a node receives a synopsis, it fuses this synopsis with its best synopsis and
labels the merged synopsis as its best synopsis. This results in every peer
getting the global statistics after O(logN) rounds of gossip.

Given a query composed of a set of keywords, a peer estimates the ex-
pected number of documents matching such a set of keywords using the
information in its best synopsis. If this number is over a given threshold,
many matches are expected, so the peer floods the query. Otherwise, it uses
the DHT to search for each keyword, requesting an in-network join, if that is
possible. The flooding threshold is dynamically adapted by computing the
utility of both flooding and DHT search for a randomly chosen set of queries.

It is worth noticing that the last two systems do not support arbitrary
queries since information about resources is published and searched using
DHT-based mechanisms. DQ-DHT, on the contrary, supports arbitrary
queries in an easy way since content placement is unrelated to the DHT
overlay and query processing is performed on a node-by-node basis.

6. Conclusions

A way to support arbitrary queries in structured networks is implementing
unstructured search techniques on top of DHT-based overlays. Following this
approach, we proposed DQ-DHT: a P2P search algorithm that combines the
dynamic querying technique with an algorithm for efficient broadcast over
a DHT. DQ-DHT has been particularly designed to be used in large-scale
distributed systems, like computational grids, where it is necessary to support
arbitraries queries for searching resources on the basis of complex criteria or
semantic features.
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The behavior of DQ-DHT has been analyzed through a simulator by
varying its initial configuration, in order to understand which are the best
parameters to use based on user/system requirements and objectives (i.e.,
minimizing the number of messages or the search time). We also compared
the performance of DQ-DHT with that of the enhanced dynamic querying in
unstructured networks (DQ+). The simulation results show that DQ-DHT
generates much less network overhead than DQ+, with a comparable (and
in some cases better) search time, and with a higher success rate when the
resource to be found is rare.
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