
Evaluating Resource Discovery Protocols for
Hierarchical and Super-Peer Grid Information Systems

Carlo Mastroianni(1), Domenico Talia(2), Oreste Verta(2)

(1) ICAR-CNR 87036 Rende (CS) Italy
(2) DEIS University of Calabria, 87036 Rende (CS), Italy

mastroianni@icar.cnr.it, {talia,verta}@deis.unical.it

Abstract

Most currently deployed Grids adopt a hierarchical

model for their information system. However,
nowadays the research and development community is
heading towards the use of scalable models of
information services based on decentralized
approaches such as the peer-to-peer paradigm. This is
mainly due to the poor scalability, resiliency and load-
balancing features of the hierarchical model. This
paper evaluates a resource discovery protocol
exploitable in a hierarchical Grid and compares it with
a super-peer based model which has recently been
introduced. Performance analysis, carried out through
simulation, shows that the hierarchical model is
valuable for small and medium sized Grids, while the
super-peer model is better suited for very large Grids.

1. Introduction

The information system is an important pillar of a
Grid. Users turn to it examine the properties of Grid
resources and monitor their availability. The discovery
service, provided by the information system, is used to
discover the hardware and software resources that are
needed to compose and perform a distributed
application on a Grid.

Grid users and applications need to get static and
dynamic information about available Grid resources.
Static information includes CPU speed, operating
system, device technology, available compilers and
libraries. Dynamic information includes node status
such as current CPU load, available disk space, free
memory, job queue length, network bandwidth and
load, and other similar information. All that
information is necessary to efficiently configure and
run applications on Grids.

In most Grid frameworks deployed so far, for
example in those based on the Globus Toolkit 4 [6],

the information system is generally structured
according to centralized or hierarchical approaches,
mostly because of the client/server approach used
today in the largest part of distributed systems and in
Web Services frameworks.

Nowadays, the research and development
community agrees that the adoption of the peer-to-peer
(P2P) paradigm could favour Grid scalability [3, 5, 7].
A hierarchical information system can be viable in a
small-scale Grid or within a single organization, but it
can become impractical in a large multi-institutional
Grid for several reasons, among which:
• fault-tolerance is limited by the presence of a

bottleneck at the tree root;
• a significant amount of memory space must be

reserved in Index Services to maintain information
about a large number of resources, limiting the
scalability of the Grid;

• Index Services belonging to different levels must
carry very different computation and traffic loads,
which leads to challenging problems concerning
load imbalance;

• the hierarchical organization can hinder the
autonomous administration of different
organizations.
Recently, super-peer networks have been proposed

[9, 4] to achieve a balance between the inherent
efficiency of centralized search, and the autonomy,
load balancing and fault-tolerant features offered by
distributed search. A super-peer node acts as a
centralized resource for a number of regular peers,
while super-peers connect to each other to form a
network that exploits P2P mechanisms at a higher
level. Within each Grid organization, one or more
nodes (e.g. those that have the largest capabilities) can
act as super-peers, while the other nodes use super-
peers to access the Grid and search for resources and
services.

The aim of this paper is to discuss the features of
the hierarchical model and evaluate the performance of
a resource discovery protocol based on this model.
Furthermore, a comparison is given with the
performance of a super-peer discovery protocol that
has been presented and discussed in [4]. A simulation
analysis shows that the hierarchical model is valuable
for small and medium sized Grids, while the super-peer
model is better suited for very large Grids. The
outcome of this comparison can be profitably taken
into account in designing and deploying information
systems of Grids, though the choice of the information
system model (hierarchical or peer-to-peer) should be
made also according to a number of further
considerations such as fault-tolerance and
administrative requirements.

The paper is organized as follows. Section 2
discusses the main features of a hierarchical
information system based on the GT4 framework.
Section 3 evaluates, through a simulation analysis, the
performance of the related resource discovery protocol
and evaluates the impact that the Grid size and the
number of levels that compose the information system
hierarchy have on performance results. The
performance comparison between the hierarchical and
the super-peer discovery protocols is discussed in
Section 4. Section 5 discusses related work and Section
6 concludes the paper.

2. Hierarchical Information System

The information system of GT4, based on the Web
Service Resource Framework [8], exploits the
functionalities of Index Services. An Index Service is a
special-purpose Grid service that aggregates and
indexes metadata related to the resources provided by a
set of Grid hosts belonging to a Virtual Organization
(VO). While in a small VO a single Index Service can
be sufficient, in a large VO several Index Services can
be configured and organized in a hierarchy at different
levels.

Figure 1 shows the model discussed in this paper. It
assumes that ordinary Grid hosts belong to level 0,
while each level 1 Index Service aggregates and
publishes all or some of the resources hosted by a
group of ordinary Grid nodes. In particular, a GT4
Index Service can subscribe to metadata information
(resource properties) related to Grid resources by
means of proper software mechanisms such as
information providers and aggregators. In general, an
Index Service belonging to level n aggregates
information managed by a group of level n-1 Index
Services, up to the root Index Service which
aggregates metadata about the resources of the entire

organization. If H is the height of the tree, it is assumed
that the root Index Service belongs to level H-1, while
ordinary Grid nodes belong to level 0.

In general an Index Service cannot subscribe to all
the resources, at least for the following reasons:
i) Since most resources are owned by external

organizations, administrative and security reasons
may require proper authorization procedures;

ii) It is not convenient to publish very dynamic
information which would not be reliable and up-to-
date if retrieved by other Index Services instead of
Grid nodes directly;

iii) Limits in the memory space and access.
It can therefore be assumed that each Index Service

publishes information about a portion of the Grid
resources which are provided by lower level Index
Services and simple Grid nodes.

Fig. 1. Architecture of a hierarchical information
system based on GT4 Index Services.

A query can be issued by an ordinary Grid node to

search for resources belonging to a particular class of
resources. Hosts and Index Services should be grouped
with the purpose of improving the efficiency of
resource discovery queries. In particular, the
organization of Index Services should maximize the
probability that a query will find useful resources
within the local group, i.e. querying the local Index
Service. However, the local Index Service can
propagate the query towards higher level Index
Services, up to the root Index Service, to find more
results.

A resource discovery algorithm that exploits the
features of the GT4 hierarchical information system is
reported in Figure 2. The shown pseudo-code is
executed by a generic Index Service when it receives a
query from an ordinary node or from a child Index
Service. As soon as the query message is received, it is
forwarded to the parent Index Service. Then, a local
search is performed to find useful resources in the local

sub-tree. Finally, a queryHit including information
about the discovered resources is sent to the node from
which the query had been received.

Fig. 2. Resource discovery algorithm executed by
an Index Service.

3. Performance of the Hierarchical Model

Analysis of the hierarchical resource discovery was
performed with an object-oriented event-driven
simulator written in C++. Simulator objects model the
behavior of Grid components and are able to exchange
messages among them. Every time an object receives a
message/event, it performs a related procedure,
according to a finite state automaton, and possibly
sends new messages to other objects. The objects
defined in the simulator are the following:
• IndexService, which executes the resource

discovery algorithm described in Section 2;
• UserAgent, which generates queries on behalf of

users. Each UserAgent object is connected to a
Node object;

• Node, which models an ordinary Grid node,
transmits user queries to the parent Index Service
and receives the related queryHits from it;

• Event, which embodies a message exchanged
between other objects. An Event object is
characterized by its source and destination objects,
its message delivery time and its type (i.e. query,
queryHit, notification);

• Event Dispatcher, which manages events,
stores them in a queue ordered by message delivery
times, and dispatches them to destination objects.

3.1. Parameters and Performance Indices

Table 1 summarizes the simulation parameters used

in the simulation analysis. The fist parameter is the

Grid size N (i.e. the number of nodes including
ordinary Grid hosts and Index Services), which ranges
from 10 to 10,000 to take into account small, medium
and large Grids. The next three parameters of Table 1
are related to the distribution of resources among Grid
hosts and the categorization of such resources.

Table 1. Simulation Parameters.

Parameters Values
Grid size (number of nodes) N 10 to 10000
Overall number of resources vs. the Grid
size, Ntot 5N

Overall number of resource classes vs.
the Grid size, Ncl 5(log2N)2

Percentage of resource published by
Index Services, Pres

25%, 50%
and 100%

Mean Query Generation Time MQGT 300 sec
Tree height (number of levels) H 3,4
Tree order K 2 to 100
Time to live TTL H–1
Mean hop time between hosts and Index
Services 10 ms

Mean hop time between Index Services 50 ms
Mean time for processing a resource 0.2 ms

Grid users generally need to discover resources that
belong to a class of resources, rather than a specific
single resource. A class of resources is defined as the
set of resources that satisfy a number of given
constraints on resource properties. In this paper, it is
assumed, as in [3], that the average number of
elementary resources offered by each single Grid host
remains constant as the Grid size increases. This
average value was set to 5, and a gamma stochastic
function was used to determine the actual number of
resources owned by each node. However, as the Grid
size increases, it becomes more and more unlikely that
a new node connecting to the Grid provides resources
belonging to a new resource class. Therefore, it is
assumed [4] that the overall number of distinct
resource classes offered by the Grid does not increase
linearly with the Grid size. A logarithmic distribution
is adopted: the number of resource classes offered by a
Grid network with N nodes (where N ranges from 10 to
10000) is set to 5*(log2N)^2. As an example, a Grid
having 1024 nodes provides 5120 resources belonging
to 500 different classes. The percentage of Grid
resources published in Index Services, named Pres, is
set to 25%, 50% and 100% in different simulation
runs. During a simulation run, each Grid host generates
a set of queries. The mean query generation time
MQGT, i.e. the average interarrival time between two
successive query requests issued by the same node, is
set to 300 seconds. For each generated query, the

// MyIndex = parent Index Service
// q.sender: child node from which the query q has been
// received
For each incoming query q:
 forward a copy of q to MyIndex
 <ask local information service for resources matching q>(*)
 if <there are such resources> {
 send to q.sender a queryHit with information about
 the discovered resources;
 send notifications to the nodes owning the resources;
 }
(*) to avoid duplications, resources owned by the nodes
belonging to the subtree rooted by q.sender are not
considered

simulator randomly selects the class of the resources
that the user needs to discover.

The value of the tree height H (see Figure 1) was set
to 3 and 4. This choice comes from the observation that
a value of H equal to 2 would reduce the Grid to a
simple Grid Organization, while values of H larger
than 4 would mean the presence of more than 3
hierarchical layers of Index Services, which is very
unlikely in current Grids. The tree order K is chosen as
follows: once the Grid size N and the tree height H are
given, K is set to the minimum value that satisfies the
equation (1) reported below (in which the first member
calculates the overall number of nodes in a complete
tree with height H and order K).

(1) N
K

K H

>
−
−
1
1

Furthermore, it is assumed that the load imbalance
among the Index Services belonging to the same level
is limited. This assumption has been made to evaluate
the performance of an Index Service with a strong
statistical accuracy. However, processing and traffic
loads carried by Index Services belonging to different
levels can differ. In particular, it is assumed that Index
Services have K children, except for level 1 Index
Services that have as many children as are necessary to
let the number of nodes reach the value N. For
example, in a Grid with 2000 nodes and three levels of
Index Services (i.e. with H=4), K is set to 13, since
with this value the first member of equation (1) is
equal to 2380. The upper three levels contain 183
Index Services; to have exactly 2000 nodes, level 0
must contain 1817 Grid hosts. Therefore, the 169 level
1 Index Services are connected to 10.75 hosts on
average. Table 2 reports the values of the parameters
N, H and K that were computed through the tree
building approach described so far. The time to live of
query messages TTL is set to H-1, thus allowing
queries to explore the entire hierarchy.

Finally, it is assumed that the mean hop time (i.e.,
the mean amount of time necessary to send a message
from one node to another) is equal to 10 ms for a hop
between an ordinary node and the parent Index
Service, and to 50 ms for a hop between two connected
Index Services. The mean time needed to compare the
query constraints with the properties of a single
resource stored in the Index Service, hence to verify if
such a resource belongs to the class specified within
the query message, is set to 0.2 ms, in accordance with
the values obtained in real Grids [2].

Table 2. Values of Grid size, tree height and tree
order used in the simulations.

Grid size N Values of K
with H=3

Values of K
with H=4

10 3 2
20 4 3
50 7 4
100 10 5
500 22 8

1000 35 10
2000 45 13
5000 75 17
10000 100 22

The performance indices used to evaluate the

performance of the resource discovery protocol are
shown in Table 3. The mean number of results Nres is
particularly significant since it is generally argued that
the satisfaction of the query depends on the number of
discovered resources sent back to the user that issued
the query: for example, in [10] a resource discovery
operation is considered satisfactory only if the number
of results exceeds a given threshold.

Table 3. Performance indices.

Performance index Definition

Mean number of
results, Nres

Mean number of useful resources
that a node discovers after its
query.

Message load, L Frequency of messages received by
a node (messages/sec).

Response time
Tr, Tr(1)

Mean amount of time (sec) that
elapses between query generation
and reception of a generic result
and of the first result.

Memory space Sm
Amount of memory necessary to
maintain information about
published resources

Since every query can reach the root Index Service,

the Nres index can be obtained with formula (2), as
reported below. Note that Nres increases with the Grid
size, since the overall number of resources Ntot, which
is a linear function of N, increases more rapidly than
the number of resource classes Ncl, which is a
logarithmic function of N.

(2)
Ncl

esPrNtotNres ∗=

The message load L, defined as the frequency of
messages received by a single Grid node, should
obviously be kept as low as possible. This performance
index often counterbalances the number of results, in

the sense that high success probabilities are achievable
at the cost of having high elaboration loads.

Response times are related to the time to
satisfaction experienced by a user. Finally, the memory
space Sm is the amount of memory that must be
reserved by a node to maintain information about the
published Grid resources. Here, a further assumption is
that, for each resource, the related metadata
information requires 10 KB of data on average.

3.2. Performance Results

This section focuses on two performance indices,

load and response times, whereas the other two indices
(number of results and memory size) are discussed in
section 4, where their values are compared to those
obtained with the super-peer model.

Figures 3 and 4 report the load experienced by hosts
belonging to all the different levels of the Grid
hierarchy. Figures are related, respectively, to Grids
having 3 and 4 levels. While the message load
experienced by ordinary hosts is relatively low and
approaches a saturation level, the message load at
Index Services increases about linearly with the Grid
size, so confirming the poor scalability properties of
the hierarchical architecture. It is also interesting to
notice that the root node suffers the largest load for
small- and medium-sized Grids but, in very large
Grids, the load experienced by the Index Services
located immediately below the root node (i.e.
belonging to level H-2) approaches or even exceeds
(with H =4) the load of the root node. The reason is that
the H-2 level Index Services receive query messages
from an increasing number of child nodes, as well as
queryHit messages from the root Index Service,
whereas the root node receives only query messages. In
conclusion, intermediate Index Services undergo a very
heavy load that can be even worse than that of the root
node, which is an interesting and perhaps non
predictable outcome of the simulation analysis.

Figure 5 reports the average response times, versus
the Grid size, obtained with hierarchical Grids having a
tree height equal to 4, for different values of the
percentage of resources published by Index Services,
Pres. As the Grid size increases, and consequently the
number of resources that must be considered when
processing a query, response times become longer, up
to almost 20 seconds for a Grid with 10,000 nodes. In
large Grids, the value of Pres has a strong impact on
response times since processing times are the major
component of the response time, whereas delay times
are negligible being in the order of milliseconds.

Fig. 3. Message load of Index Services belonging
to different levels in a Grid with tree height H=3.

Fig. 4. Message load of Index Services belonging
to different levels in a Grid with tree height H=4.

Fig. 5. Average response times in a Grid with tree
height H=4.

The response time of the first result is shown in Figure
6. This trend is similar to that of the average response
time only for small Grids; in fact, when the overall
number of resources is small, it is very likely that the

first result is found in the root Index Service. However,
as the Grid size increases, a query issued by an
ordinary host has more and more chances to find
results in its parent Index Service, which makes the
response time of the first result decrease to a very
small value. In fact, a very abrupt curve drop is
observed between values of the Grid size comprised
between 100 and 200. Finally, for even larger Grids,
the response time of the first result increases again, the
consequence of larger processing times experienced by
the Index Services located at level 1. The impact of
processing time is also the reason for which the
response time of the first result increases with the value
of Pres.

Fig. 6. Response times of the first result in a Grid
with tree height H=4.

4. Comparison between the Hierarchical
and the Super-Peer Model

This section discusses and compares the results

obtained with the hierarchical model and the results
obtained with an information model based on the
super-peer approach.

In a super-peer network, for each Grid organization,
a subset of powerful nodes having high availability
properties can be identified; these nodes can be elected
as super-peers, so exploiting their advanced
computational performance. A super-peer network can
be seen as a P2P network that interconnects super-
peers, where each super-peer acts also as a server for a
number of ordinary peers. A super-peer accomplishes
two main tasks: it is responsible for the
communications with the other Grid organizations, and
it maintains metadata about all the nodes of the local
organization. When a peer needs to explore the
network to find useful resources, it sends a query
message to the local super-peer, which performs the
following operations: (i) it searches the information
system of the local organization and returns discovered

results; (ii) it forwards the query to neighbour super-
peers which in turn will perform similar operations.
Whenever a resource matching the query criteria is
found in a remote Grid organization, a queryHit is
generated and is forwarded along the same path to the
requesting node.

Here it is assumed that each super-peer is
connected, on average, to 9 ordinary peers (thus
forming clusters of 10 nodes on average), and to 4
adjacent super-peers. The TTL value is used as a
parameter: larger values of TTL allow for a wider
exploration of the network. Further details about the
super-peer protocol can be found in [4].

Figure 7 compares the number of results obtained
after issuing a query, with the hierarchical model
(labelled with HR) and with the super-peer model
(labelled with SP). For the hierarchical model, results
were obtained with different values of Pres, the
percentage of resources published by an Index Service.
With the super-peer model, the number of reachable
resources depends on the network topology and the
TTL value. The values of Nres obtained in the
hierarchical model with Pres =100% can be considered
as an upper bound for the values achievable with both
the architectures, since all the useful resources can be
directly found in the root Index Service. It is worth
mentioning that a Pres equal to 100% is not likely in
real Grids, while values of 50% or 25% are more
realistic. Indeed the Index Services generally belong to
different administrative domains, and an Index Service
cannot publish all the information maintained by
another Index Service. Conversely, this is not an issue
in super-peer networks, because each super-peer only
publishes information related to the resources of the
local Grid organization.

With the super-peer model, the number of results
can be increased by increasing the TTL value, thus
permitting to explore a larger number of super-peers. It
is interesting to note that if a proper value of the TTL
parameter (i.e., 5) is set in the super-peer model, the
average number of results exceeds the one achieved by
using the hierarchical model with Pres=25%, for all
the considered values of the Grid size. Of course if
Pres is even lower than 25%, the use of the super-peer
model becomes more and more effective.

In Figure 8, the load of a generic super-peer is
compared with the load experienced by the Index
Services located at the two highest layers of the
hierarchy. The figure shows that the super-peer load
increases with the TTL value and in most cases it is
higher than the load at the root Index Service. The
reason is that the root Index Service receives only
query messages, while a super-peer receives also
queryHit messages coming from the neighbour super-

peers. However, as the Grid size increases, the super-
peer load reaches a saturation level whereas the root
Index Service load increases with a notably slope and
exceeds the super-peer load for Grids having 10000
nodes or more. Figure 8 also shows the very high load
that is carried - in very large Grids - by the Index
Services located below the root node of the hierarchy
(level 2), which confirms the better scalability features
of the super-peer model.

Fig. 7. Mean number of results obtained with the
hierarchical model (HR) and the super-peer model
(SP).

An interesting consideration concerns the memory

space. In the super-peer model the amount of memory
that must be reserved on a super-peer to maintain
information about Grid resources does not depend on
the Grid size but exclusively on the number of peers
connected to the super-peer. With the discussed
assumptions (cluster size equal to 10, mean size of a
metadata document equal to 10 KB, and mean number
of resources published by each peer equal to 5), Sm is
equal to about 500 Kbytes at a super-peer, while it is
equal to Sm = 5 * N * Pres * 10 KB at the root Index
Service of the hierarchical architecture. For example,
with N=10,000 and Pres=0.50, Sm is equal to 250
Mbytes. Therefore, the hierarchical model requires a
much larger amount of main memory. Even if such an
amount of memory space can be available in the server
machine that runs the Index Service, the analysis of
metadata information may require a large amount of
time. Having assumed that the time to process a single
resource is set to 0.2 ms, Figure 9 reports the response
times experienced with the two models, with
Pres=50% in the hierarchical model. As the Grid size
increases it is clear that the Index Services of the
hierarchical framework spend a lot of time in
processing a large number of resources, leading to

average response times which are much longer that
those experienced in the super-peer model.

In conclusion, the hierarchical model can be deemed
suitable only for small- and medium-sized Grids.
However in a large Grid the advantage related to the
larger number of results that can be obtained with the
hierarchical model is often surmounted by its larger
costs in terms of processing load and response times
with respect to the super-peer model.

Fig. 8. Message load experienced by the Index
Services belonging to the two highest levels of the
hierarchical model (HR) and by super-peers (SP).

Fig. 9. Average response times obtained with the
hierarchical model (HR) and the super-peer model
(SP).

5. Related Work

In most of the Grid frameworks deployed so far, the

information system is generally structured according to
centralized or hierarchical approaches. For example,
the recently released Globus Toolkit 4 is based on the
Web Service Resource Framework (WSRF) [8], which
fully exploits the Web services paradigm. The central

component in the GT4 information system [6] is the
Index Service, which collects information about Grid
resources and makes this information available to users
and applications. An Index Service can register to
information published by other Index Services,
offering the possibility to build an overall information
system according to a hierarchical, peer-to-peer or
hybrid architecture. However, the hierarchical model is
still the most frequently used in currently deployed
GT4 Grids, mostly because of the client/server
approach used today in the largest part of distributed
systems and in Web services frameworks.

Nowadays, the research and development
community agrees that the adoption of the P2P
paradigm could favour Grid scalability [5, 7]. The
super-peer model has been originally proposed in [9] to
achieve a balance between the inherent efficiency of
centralized search, and the autonomy, load balancing
and fault-tolerant features offered by distributed
search. This model was adopted in [4] to design a P2P-
based Grid information service. The super-peer model
is advantageously exploited in the Grid context
because it is naturally appropriate for large scale Grid
environments. In fact, a large-scale Grid can be viewed
as a network interconnecting in a P2P fashion a
number of small-scale, proprietary Grid organizations.

In a Grid, users often need to find a number of
resources belonging to a given class, so that they can
subsequently select the best resource for their job. A
resource class can be seen as a set of resources
satisfying a given set of constraints on the values of
resource parameters. The work reported in this paper
assumes that a given classification of resources is
available and known to the user. Classes can be
determined with the use of Hilbert curves that
represent the different parameters on a single
dimension [1].

6. Conclusions

This paper discusses and evaluates a resource
discovery protocol for a Grid information system
designed according to a hierarchical approach.
Comparison has been done with a decentralized
discovery protocol suited for the recently introduced
super-peer model. Performance comparison shows that
the hierarchical model is valuable for small and
medium sized Grids, while the super-peer model is
more effective in very large Grids. The reported
analysis, in terms of average number of results,
processing and memory load and response times, can

be profitably used by designers and developers of the
information system of Grids. In addition to these
results, a number of further considerations (concerning
fault-tolerance, scalability, data registry size, load
balancing, administrative features, etc.), generally
favour the use of the super-peer paradigm, especially
for very large multi-institutional Grids.

Acknowledgements

This research work is carried out under the FP6
Network of Excellence CoreGRID funded by the
European Commission (Contract IST-2002-004265)

References

[1] A. Andrzejak and Z. Xu, “Scalable, efficient range
queries for grid information services”, Proc. of the 2nd IEEE
International Conference on Peer-to-Peer Computing,
Linkping University, Sweden, 2002.
[2] P. Hasselmeyer, “Dynamic Distributed Registries and
Protocols”, the NextGRID Project: Architecture for Next
Generation Grid, Work Package 5, Grid Dynamics,
Document P.5.2.1, September 2005.
[3] A. Iamnitchi, I. Foster, J. Weglarz, J. Nabrzyski, J.
Schopf and M. Stroinski, “A Peer-to-Peer Approach to
Resource Location in Grid Environments”, eds. Grid
Resource Management, Kluwer Publishing , 2003.
[4] C. Mastroianni, D. Talia and O. Verta, “A Super-Peer
Model for Resource Discovery Services in Large-Scale
Grids”, Future Generation Computer Systems, Elsevier
Science, Vol. 21, No. 8, 2005, pp. 1235-1456.
[5] D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto and
F. Silvestri, “A Grid information Service Based on Peer-to-
Peer”, Proc. of the 11th International EuroPar Conference,
Lisbon, Portugal, August-September 2005, pp. 454-464.
[6] J. M. Schopf, M. D'Arcy, N. Miller, L. Pearlman, I.
Foster and C. Kesselman, “Monitoring and Discovery in a
Web Services Framework: Functionality and Performance of
the Globus Toolkit's MDS4”, Argonne National Laboratory
Technical Report ANL/MCS-P1248-0405, April 2005.
[7] D. Talia and P. Trunfio, “Towards a Synergy between
P2P and Grids”, IEEE Internet Computing 7(4), 2003, pp.
94-96.
[8] The Web Services Resource Framework,
http://www.globus.org/wsrf.
[9] B. Yang and H. Garcia-Molina, “Designing a Super-Peer
Network”, Proc. of the 19th International Conference on Data
Engineering, Los Alamitos, CA, USA, March 2003.
[10] B. Yang and H. Garcia-Molina, “Efficient Search in
Peer-to-Peer Networks”, Proc. of the 22nd International
Conference on Distributed Computing Systems, Wien,
Austria, July 2002.

