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Abstract—MapReduce is a programming model widely used
in data centers for processing large data sets in a highly
parallel way. Current MapReduce systems are based on master-
slave architectures that do not cope well with dynamic node
participation, since they are mostly designed for conventional
parallel computing platforms. On the contrary, in Internet-
based computing environments, node churn and failures -
including master failures - are likely to happen since nodes
join and leave the network at an unpredictable rate. The goal
of this work is enabling the use of MapReduce in dynamic
distributed environments so as to combine the effectiveness
of a well-established programming model with the scalability
of a large-scale computing infrastructure. This paper presents
an adaptive MapReduce framework, called P2P-MapReduce,
which exploits a peer-to-peer model to manage intermittent
node participation, master failures and job recovery in a
decentralized but effective way, so as to provide a more robust
MapReduce middleware that can be effectively exploited in
Internet-scale dynamic distributed environments.

Keywords-Internet computing; Peer-to-peer computing;
MapReduce

I. INTRODUCTION

Internet-based computing approaches have proven ef-
fective over the years as demonstrated by projects like
SETI@home [1], Folding@home [2], and Boinc [3]. The
key principle of such projects is the use of large collections
of unreliable hosts, available through the Internet, to run
applications that need huge amounts of resources (processing
and/or storage) to be executed. As compared to conven-
tional high-performance computing systems, Internet-wide
decentralized systems are more scalable, motivating their use
as efficient platforms for parallel and distributed computing
applications.

Despite many successful experiences, Internet-based com-
puting systems are still far from being generally accepted as
a viable alternative to more conventional computing plat-
forms, like clusters and massively parallel machines. One of
the main reasons for this is the lack of programming models
for large-scale distributed computing systems that are both
effective and flexible (in terms of supported applications)
as those adopted in conventional systems. One of the most
successful programming models currently used in clusters

and data centers is MapReduce [4]. In MapReduce, users
specify the computation in terms of a map function that
processes a key/value pair to generate a list of intermediate
key/value pairs, and a reduce function that merges all inter-
mediate values associated with the same intermediate key.
The success of this model derives from its simplicity: indeed,
it is relatively simple to implement parallel versions of a
wide range of data-intensive applications using MapReduce.

The goal of our work is enabling the use of MapReduce
in dynamic Internet-based environments, so as to combine
the effectiveness of a well-established programming model
with the scalability of a large-scale computing infrastructure.
Current MapReduce implementations (e.g., Google’s Map-
Reduce [5] and Apache Hadoop [6]) are based on a master-
slave model. A job is submitted by a user node to a master
node that selects idle workers and assigns to each one a map
or a reduce task. When all map and reduce tasks have been
completed, the master node returns the result to the user
node. The failure of a worker is managed by re-executing
its task on another worker, while master failures are not
explicitly managed as designers consider failures unlikely
in reliable centralized environments.

On the contrary, node churn and failures - including
master failures - are likely to happen in dynamic distributed
environments where computing nodes may join and leave
the system at an unpredictable rate. Therefore, providing
effective mechanisms to manage master churn and failures
is fundamental to exploit the MapReduce model in the
implementation of data-intensive applications in large-scale
dynamic environments where current MapReduce imple-
mentations could be unreliable. This paper presents an
adaptive MapReduce framework, called P2P-MapReduce,
which exploits a peer-to-peer model to manage intermittent
node participation, master failures and job recovery in a de-
centralized but effective way, so as to provide a more robust
MapReduce middleware that can be effectively exploited in
Internet-scale dynamic distributed environments.

In an early version of this work [7] we presented a prelim-
inary architecture of the P2P-MapReduce framework, while
in a more recent paper [8] we introduced its main software



modules. This paper extends our previous work by pro-
viding a more detailed description of the P2P-MapReduce
implementation, as well as an extensive evaluation of its
performance in different scenarios.

The remainder of this paper is organized as follows.
Section II provides a background on the MapReduce pro-
gramming model. Section III describes the P2P-MapReduce
architecture and its implementation. Section IV evaluates the
performance of P2P-MapReduce compared to a centralized
implementation of MapReduce. Finally, Section V concludes
the paper.

II. THE MAPREDUCE PROGRAMMING MODEL

As mentioned before, MapReduce applications are based
on a master-slave model. This section briefly describes the
various operations that are performed by a generic applica-
tion to transform input data into output data according to
that model.

Users define a map and a reduce function [4]. The map
function processes a (key, value) pair and returns a list of
intermediate (key, value) pairs:

map (k1,v1) → list(k2,v2).

The reduce function merges all intermediate values having
the same intermediate key:

reduce (k2, list(v2)) → list(v3).

The whole transformation process can be described
through the following steps (see Figure 1):
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Figure 1. Execution phases in a generic MapReduce application

1) A master process receives a job descriptor which
specifies the MapReduce job to be executed. The job
descriptor contains, among other information, the lo-
cation of the input data, which normally is a directory
in a distributed file system.

2) According to the job descriptor, the master starts a
number of mapper and reducer processes on different
machines. At the same time, it starts a process that
reads the input data from its location, partitions that

data into a set of splits, and distributes those splits to
the various mappers.

3) After receiving its data partition, each mapper process
executes the map function (provided as part of the job
descriptor) to generate a list of intermediate key/value
pairs. Those pairs are then grouped on the basis of
their keys.

4) All pairs with the same keys are assigned to the same
reducer process. Hence, each reducer process executes
the reduce function (defined by the job descriptor)
which merges all the values associated to the same
key to generate a possibly smaller set of values.

5) The results generated by each reducer process are then
collected and delivered to a location specified by the
job descriptor, so as to form the final output data.

Besides the original MapReduce implementation by
Google [5], several other MapReduce implementations have
been realized within other systems, including Hadoop [6],
GridGain [9], Skynet [10], MapSharp [11] and Disco [12].
Another system sharing most of the design principles of
MapReduce is Sector/Sphere [13], which has been designed
to support distributed data storage and processing over large
Cloud systems. Sector is a high-performance distributed file
system; Sphere is a parallel data processing engine used
to process Sector data files. Some other works focused on
providing more efficient and flexible implementations of
MapReduce. As an example, Zaharia et al. [14] studied
how to improve the Hadoop’s scheduler in heterogeneous
environments, by designing a new scheduling algorithm
that significantly improves response times in heterogeneous
settings. Another example is the Hadoop Online Prototype
(HOP) proposed by Condie et al. [15], which modifies the
Hadoop MapReduce framework to supports online aggrega-
tion, allowing users to see early returns from a job as it is
being computed.

Several applications of the MapReduce paradigm have
been demonstrated. Ref. [16] discusses some examples
of interesting applications that can be expressed as Map-
Reduce computations, including: performing a distributed
grep; counting URL access frequency; building a reverse
Web-link graph; building a term-vector per host; building
inverted indexes, performing a distributed sort. Ref. [6] men-
tions many significant types of applications that have been
(or are being) implemented by exploiting the MapReduce
model, including: machine learning and data mining, log
file analysis, financial analysis, scientific simulation, image
retrieval and processing, blog crawling, machine translation,
language modelling, and bioinformatics.

III. P2P-MAPREDUCE: ARCHITECTURE AND
IMPLEMENTATION

The objective of the P2P-MapReduce framework is two-
fold: i) handling master failures by dynamically replicating
the job state on a set of backup masters; ii) supporting



MapReduce applications over dynamic distributed environ-
ments composed by nodes that join and leave the system at
unpredictable rates.

To achieve these goals, P2P-MapReduce exploits the peer-
to-peer paradigm by defining an adaptive architecture in
which each node can act either as a master or a slave.
The role assigned to a given node depends on the current
characteristics of that node, and so it can change dynamically
over time. Thus, at each time, a limited set of nodes is
assigned the master role, while the others are assigned the
slave role.

Moreover, each master node can act as backup node for
other master nodes. A user node can submit the job to
one of the master nodes, which will manage it as usual
in MapReduce. That master will dynamically replicate the
entire job state (i.e., the assignments of tasks to nodes, the
locations of intermediate results, etc.) on its backup nodes.
In case those backup nodes detect the failure of the master,
they will elect a new master among them that will manage
the job computation using its local replica of the job state.

The remainder of this section describes the architecture of
the P2P-MapReduce framework and its current implemen-
tation.

A. Architecture

The P2P-MapReduce architecture includes three basic
roles, shown in Figure 2: user (U ), master (M ) and slave (S).
Master nodes and slave nodes form two logical peer-to-peer
networks called M-net and S-net, respectively. As mentioned
above, computing nodes are dynamically assigned the master
or slave role, hence M-net and S-Net change their compo-
sition over time. The mechanisms used for maintaining this
infrastructure are discussed in Section III-B.
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Figure 2. Basic architecture of a P2P-MapReduce network

In the following we describe, through an example, how
a master failure is handled in the P2P-MapReduce archi-
tecture. We assume the initial configuration represented
in Figure 2, where U is the user node that submits a
MapReduce job, nodes M are the masters and nodes S are
the slaves.

The following steps are performed to submit the job and
to recover from a master failure (see Figure 3):

1) U queries M-net to get the list of the available masters,
each one characterized by a workload index that

measures how busy the node is. U orders the list by
ascending values of workload index and takes the first
element as primary master. In this example, the chosen
primary master is M1; thus, U submits the MapReduce
job to M1.

2) M1 chooses k masters for the backup role. In this
example, assuming that k = 2, M1 chooses M2 and
M3 for this role. Thus, M1 notifies M2 and M3 that
they will act as backup nodes for the current job (in
Figure 3, the apex “B” to nodes M2 and M3 indicates
the backup function). This implies that whenever the
job state changes, M1 backs up it on M2 and M3,
which in turn will periodically check whether M1 is
alive.

3) M1 queries S-net to get the list of the available slaves,
choosing (part of) them to execute a map or a reduce
task. As for the masters, the choice of the slave nodes
to use is done on the basis of a workload index. In this
example, nodes S1, S3 and S4 are selected as slaves.
The tasks are started on the slave nodes and managed
as usual in MapReduce.

4) The primary master M1 fails. Backup masters M2 and
M3 detect the failure of M1 and start a distributed
procedure to elect a new primary master among them.

5) The new primary master (M3) is elected by choosing
the backup node with the lowest workload index. M2

continues to play the backup function and, to keep
k backup masters active, another backup node (M4,
in this example) is chosen by M3. Then, M3 binds to
the connections that were previously associated to M1,
and proceeds to manage the MapReduce job using its
local replica of the job state.

6) As soon as the MapReduce job is completed, M3

returns the result to U .
It is worth noticing that the master failure and the sub-

sequent recovery procedure are transparent to the user. It
should also be noted that a master node may play at the
same time the role of primary master for one job and that
of backup master for another job.

B. Implementation

We implemented a prototype of the P2P-MapReduce
framework using the JXTA framework [18]. JXTA provides
a set of XML-based protocols that allow computers and
other devices to communicate and collaborate in a peer-
to-peer fashion. Each peer provides a set of services made
available to other peers in the network. Services are any type
of programs that can be networked by a single or a group
of peers.

In JXTA there are two main types of peers: rendezvous
and edge. The rendezvous peers act as routers in a network,
forwarding the discovery requests submitted by edge peers
to locate the resources of interest. Peers sharing a common
set of interests are organized into a peer group. To send
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Figure 3. Steps performed to submit a job and to recover from a master failure

messages to each other, JXTA peers use asynchronous
communication mechanisms called pipes. Pipes can be either
point-to-point or multicast, so as to support a wide range of
communication schemes. All resources (peers, services, etc.)
are described by advertisements that are published within the
peer group for resource discovery purposes.

In the following we briefly describe how the JXTA
components are used in the P2P-MapReduce system
to implement basic mechanisms for resource discovery,
network maintenance, job submission and failure recovery.
Then we describe the state diagram that steers the behavior
of a generic node and the software modules provided by
each node in a P2P-MapReduce network.

1) Basic mechanisms:

Resource discovery

All master and slave nodes in the P2P-MapReduce system
belong to a single JXTA peer group called MapReduce-
Group. Most of these nodes are edge peers, but some of them
also act as rendezvous peers, in a way that is transparent to
the users. Each node exposes its features by publishing an
advertisement containing basic information such as its Role
and WorkloadIndex.

An edge peer publishes its advertisement in a local cache
and sends some keys identifying that advertisement to a ren-
dezvous peer. The rendezvous peer uses those keys to index
the advertisement in a distributed hash table called Shared
Resource Distributed Index (SRDI), that is managed by all
the rendezvous peers of MapReduceGroup. Queries for a
given type of resource (e.g., master nodes) are submitted to
the JXTA Discovery Services that uses SRDI to locate all the
resources of that type without flooding the entire network.

Note that M-net and S-net, represented in Figure 2, are
“logical” networks in the sense that queries to M-net (or
S-net) are actually submitted to the whole MapReduceGroup
but restricted to nodes having the attribute Role set to
"Master" (or "Slave") using the SRDI mechanisms.

Network maintenance

Network maintenance is carried out cooperatively by all
nodes on the basis of their role. The maintenance task of
each slave node is to check periodically the existence of
at least one master in the network. In case no masters are
found, the slave promotes itself to the master role. In this
way, the first node joining the network always assumes the
master role. The same happens to the last node remaining
into the network.
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Figure 4. UML State Diagram describing the behavior of a generic node

The maintenance task of master nodes is to ensure the
existence of a given percentage p of masters on the total
number of nodes. This task is performed periodically by
one master only (referred to as the coordinator), which
is elected for this purpose among all masters using the
“bully” election algorithm [17]. The coordinator has the
power of changing slaves into masters, and viceversa.
During a maintenance operation, the coordinator queries all
nodes and orders them by ascending values of workload
index: the first p percent of nodes must assume (or
maintain) the master role, while the others will become
or remain slaves. Nodes that have to change their role
are notified by the coordinator in order to update their status.

Job submission and failure recovery

To describe the JXTA mechanisms used for job sub-
mission and master failure recovery, we take the six-step
example presented in Section III-A as reference:

1) The user node invokes the Discovery Service to obtain
the advertisements of the master nodes published in
MapReduceGroup. Based on the WorkloadIndex,
it chooses the primary master for its job. Then, it
opens a bidirectional pipe (called PrimaryPipe) to the
primary master and submits the job descriptor.

2) The primary master invokes the Discovery Service to
choose its backup masters and opens a multicast pipe
(BackupPipe) to the backup masters. The BackupPipe
has two goals: replicating job state information to the
backup nodes and allowing backup nodes to detect a
primary master failure in case the BackupPipe con-

nection times out.
3) The primary master invokes the Discovery Service

to select the slave nodes to use for the job. Slave
nodes are filtered on the basis of WorkloadIndex
attribute. The primary master opens a bidirectional
pipe (SlavePipe) to each slave and starts a map or
a reduce task on it.

4) The backup masters detect a primary master failure
(i.e., a timeout on the BackupPipe connection) and
start a procedure to elect the new primary master (to
this end, they connect each other with a temporary
pipe and exchange information about their current
WorkloadIndex).

5) The backup master with the lowest WorkloadIndex
is elected as the new primary master. This new primary
master binds the pipes previously associated to the
old primary master (PrimaryPipe, BackupPipe and
SlavePipes), chooses (and connects to) a substitute
backup master, and then continues to manage the
MapReduce job using its replica of the job state.

6) The primary master returns the result of the Map-
Reduce job to the user node through the PrimaryPipe.

The primary master detects the failure of a slave by
getting a timeout to the associated SlavePipe connection.
If this event occurs, a new slave is selected and the failed
map or reduce task is assigned to it.

2) State diagram:

The behavior of a generic node is modelled as a state
diagram that defines the different states that a node can



assume, and all the events that determine the transitions from
a state to another one. Figure 4 shows such state diagram
modelled using the UML State Diagram formalism.

The state diagram includes two macro-states, SLAVE and
MASTER, which describe the two roles that can be assumed
by each node. The SLAVE macro-state has three states,
IDLE, CHECK_MASTER and ACTIVE, which represent
respectively: a slave waiting for task assignment; a slave
checking the existence of a master; a slave executing tasks.

The MASTER macro-state is modelled with three par-
allel macro-states, which represent the different roles a
master can perform concurrently: possibly acting as a pri-
mary master for one or more jobs (MANAGEMENT); pos-
sibly acting as a backup master for one or more jobs
(RECOVERY); coordinating the network for maintenance
purposes (COORDINATION).

The MANAGEMENT macro-state contains two states:
NOT_PRIMARY, which represents a master node currently
not acting as a primary master for any job, and PRIMARY,
which, in contrast, represents a master node currently man-
aging at least one job as a primary master.

Similarly, the RECOVERY macro-state includes two states:
NOT_BACKUP (the node is not managing any job as backup
master) and BACKUP (at least one job is currently being
backed up on this node).

Finally, the COORDINATION macro-state includes four
states: NOT_COORDINATOR (the node is not acting
as the coordinator), COORDINATOR (the node is act-
ing as the coordinator), WAITING_COORDINATOR and
ELECTING_COORDINATOR for nodes currently participat-
ing to the election of the new coordinator, as mentioned in
Section III-B1.

The combination of the concurrent states
[NOT_PRIMARY, NOT_BACKUP, NOT_COORDINATOR]
represents the abstract state MASTER.IDLE. The transition
from master to slave role is allowed only to masters in the
MASTER.IDLE state that receive a becomeSlave message
from the coordinator. Similarly, the transition from slave to
master role is allowed to slaves that receive a becomeMaster
and are not in ACTIVE state.

3) Software modules:

This section briefly describes the software modules inside
each node and how those modules interact each other in
a P2P-MapReduce network. Figure 5 shows such modules
and interactions using the UML Deployment/Component
Diagram formalism.

Each node includes three software modules/layers: Net-
work, Node and MapReduce:

• The Network module is in charge of the interactions
with the other nodes using the pipe communication
mechanisms provided by the JXTA framework. Addi-
tionally, this module allows the node to interact with

Node 1
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Node 3

<<JXTA Pipe>> <<JXTA Pipe>>

Data

store

Network module

Node module

FSM

MapReduce 

module

JXTA 

Discovery 

Service

Figure 5. UML Deployment/Component Diagram describing the software
modules inside each node and the interactions among nodes

the JXTA Discovery Service for publishing its features
and for querying the system (e.g., when looking for idle
slave nodes).

• The Node module controls the lifecycle of the node
in its various aspects, including network maintenance,
job management, and so on. Its core is represented by
the FSM component which implements the logic of
the finite state machine described in Figure 4, steering
the behavior of the node in response to local events
or messages coming from remote nodes (e.g., tasks
assignments, discovery requests, etc.).

• The MapReduce module manages the local execution
of jobs (when the node is acting as a master) or tasks
(when the node is acting as a slave). Currently this
module is built around the local execution engine of
the Hadoop system [6].

While the current implementation is based on JXTA for
the Network layer and on Hadoop for the MapReduce layer,
the layered approach described in Figure 5 is thought to be
independent from a specific implementation of the Network
and MapReduce modules. In other terms, it may be possible
to adopt alternative technologies for the Network and Map-
Reduce layers without affecting the core implementation of
the Node module.

IV. EVALUATION

We carried out a set of experiments to evaluate the
behavior of the P2P-MapReduce framework compared to
a centralized implementation of MapReduce, considering
dynamic node participation.



 0

 20

 40

 60

 80

 100

120 60 30

Pe
rc

en
ta

ge
 o

f 
co

m
pl

et
ed

 jo
bs

Leaving rate (seconds)

N=1000, JT=A, SR=180

10099.5 10098.5 10096.5

Centralized
Adaptive

 0

 20

 40

 60

 80

 100

120 60 30

Pe
rc

en
ta

ge
 o

f 
co

m
pl

et
ed

 jo
bs

Leaving rate (seconds)

N=1000, JT=B, SR=180

100
92.0

100

85.5

100

71.5

Centralized
Adaptive

(a) (b)

 0

 20

 40

 60

 80

 100

120 60 30

Pe
rc

en
ta

ge
 o

f 
co

m
pl

et
ed

 jo
bs

Leaving rate (seconds)

N=2000, JT=A, SR=90

10099.5 10099.5 10098.5

Centralized
Adaptive

 0

 20

 40

 60

 80

 100

120 60 30

Pe
rc

en
ta

ge
 o

f 
co

m
pl

et
ed

 jo
bs

Leaving rate (seconds)

N=2000, JT=B, SR=90

10097.5 100
95.5

100

90.0

Centralized
Adaptive

(c) (d)

Figure 6. Percentage of completed jobs in four configurations: (a) N=1000, JT=A; (b) N=1000, JT=B; (c) N=2000, JT=A; (d) N=2000, JT=B

The evaluation has been carried out by implementing a
simulator of the system in which each node is simulated by
an independent thread. Each thread executes the algorithms
specified by the state diagram in Figure 4, and communicates
with the other threads by invoking local routines having the
same interface of the JXTA pipes. Table I shows the main
parameters used during the simulation.

Table I
SIMULATION PARAMETERS

Symbol Description Values
N Total number of nodes in the network 1000, 2000

LR
Leaving rate: avg. amount of time (secs.)
between two “node leaving” events 30, 60, 120

JR
Joining rate: avg. amount of time (secs.)
between two “node joining” events equal to LR

SR
Submission rate: avg. amount of time
(secs.) between two job submissions

180 (N=1000)
90 (N=2000)

JT Job type A, B (see Table II)

As shown in the table, we simulated MapReduce networks
of two sizes: N=1000 and N=2000 nodes (including both
slaves and masters). To simulate dynamic node participation,
a joining rate JR and a leaving rate LR have been defined.
On average, every JR seconds one node joins the network,
while every LR seconds another node (out of all N nodes)

abruptly leaves the network so as to simulate an event of
failure (or a graceless disconnection). In our simulation
JR=LR in order to keep the total number of nodes and the
master/slave ratio approximatively constant during the whole
simulation. In particular, we used three values for JR and
LR: 30, 60 and 120, so as to evaluate the system under
different churn rates. Every SR seconds (average value) a
user entity submits one job to the system. The value of such
submission rate is 180 seconds for networks with N=1000
nodes, while it is reduced to 90 seconds for networks with
N=2000 nodes in order to keep approximatively the same
level of load per node in both scenarios.

Each job submitted to the system is characterized by two
parameters: number of slaves and total computing time.
In order to simulate jobs characterized by realistic com-
binations of these parameters, we referred to the statistics
presented in Ref. [4] about a large set of MapReduce jobs
run at Google during some observation periods. On March
2006, the average completion time per job has been 874
seconds, using 268 slaves on average. Assuming that each
machine is fully assigned to one job, the total computing
time is 874 × 268 seconds (65.06 hours). On September
2007, the average job completion time has been 395 seconds
using 394 machines, with a total computing time of 43.23
hours. We used these statistics to define two job types (JT),
A and B, as detailed in Table II.
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Figure 7. Amount of lost computing time caused by master failures in a centralized scenario for: (a) N=1000; (b) N=2000

Table II
JOB TYPES AND ASSOCIATED PARAMETERS (AVERAGE VALUES)

Type Number of
slaves

Total computing
time (hours)

A 394 43.23
B 268 65.06

Hence, the jobs submitted to the system simulator belong
either to type A or B. For a given submitted job, the system
calculates the amount of time that each slave (assigned to
that job) needs to complete its task as the ratio between the
total computing time and the number of slaves required by
that job. Note that every node, other than managing a job
(as a master) or a task (as a slave), executes the network
maintenance operations described above, i.e., election of the
coordinator, choice of backup masters, and so on.

The main goal of our simulations is evaluating the number
of jobs failed versus the total number of jobs submitted to
the system, and the corresponding amount of computing time
lost as a consequence of these failures. For the purpose of
our simulations, a “failed” job is a job that does not complete
its execution, i.e., does not return a result to the submitting
user entity. The failure of a job is always caused by a not-
managed failure of the master responsible for that job. The
failure of a slave, on the contrary, never causes a failure
of the whole job because its task is re-assigned to another
slave.

This evaluation is performed when the system is in steady
state, that is when M-net and S-net are formed and the
desired value of N has been reached. The system has been
evaluated in two scenarios: i) centralized, where there is
only one primary master and there are not backup masters;
ii) adaptive, where there are 0.01×N masters and each job
is managed by one master which dynamically replicates the
job state on one backup master.

Figure 6 compares the percentage of completed jobs in
the centralized and adaptive scenarios after the execution of
200 jobs, considering four combinations of network sizes

and job types: (a) N=1000, JT=A; (b) N=1000, JT=B; (c)
N=2000, JT=A; (d) N=2000, JT=B.

As expected, in the centralized scenario the number of
completed jobs decreases as the leaving rate increases, for
each of the considered configurations. We can observe that,
fixed the values of N and LR, the percentage of completed
jobs is lower when we submit jobs having JT=B. For exam-
ple, when N=1000 and LR=60, the percentage of completed
jobs passes from 98.5% for JT=A to 85.5% for JT=B. This
is motivated by the fact that longer jobs (as jobs of type B
are compared to jobs of type A) are statistically more subject
to be affected by a failure of the associated master.

In contrast to the centralized scenario, the adaptive sce-
nario is able to complete all the jobs for all the considered
leaving rates, even if we used just one backup per job. It
is worth recalling here that when a backup master becomes
primary master as a consequence of a failure, it chooses
another backup in its place to maintain the desired level of
reliability, as discussed in Section III-B1.

We also evaluated the impact of job failures in a central-
ized scenario in terms of lost computing time, defined as the
total amount of time spent by slaves working on tasks that
were part of failed jobs. Figure 7 reports the lost computing
time caused by master failures in a centralized scenario
related to the same experiments of Figure 6, for different
combinations of network sizes, job types, and leaving rates.
The lost computing time follows a similar trend as the
percentage of failed jobs, and it results affected by the same
dependence from the job type. For example, when N=2000
and LR=60, the amount of lost computing time jobs passes
from 41.02 hours for JT=A to 215.22 hours for JT=B.

From the results discussed above, we see that a master
failure causes loss of dozens or hundreds CPU hours for
a typical MapReduce job. Moreover, when the number of
available machines per user is limited (as in a typical P2P
systems where resources are shared among thousands of
users), a master failure produces also a significant loss of
user time, since the job completion time increases as the
number of machines decreases.
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After evaluating the capability of the P2P-MapReduce
system to manage job submission and recovery under dif-
ferent levels of churn, we evaluated the system behavior
when performing the network management tasks described
in Section III-B1. In particular, we assessed that the system
ensures a desired master/slave ratio and balances the load
among the available masters. Figs. 8 and 9 report the
number of masters and slaves observed during the simulation
of a P2P-MapReduce network with N=1000, LR=30 and
JT=A. The simulation trace shows a period of around 38000
seconds, including an initial phase (of 1000 seconds) which
is only used to build the network, and a second phase (of
around 37000 seconds) in which 200 jobs are executed while
nodes join and fail at the desired rate.

Figure 8 shows the number of masters and primary
masters observed during the simulation. The system was
always able to maintain the desired number of masters,
which is set to 0.01×N. This corresponds to an average
value of 10 masters when the system is in steady state (i.e.,
after the first 1000 seconds of simulation), while during the
initial phase masters increase from 1 to 10 proportionally to
the current number of nodes. Indeed, it can be observed that
whenever the number of masters decreases as a consequence
of a failure, the coordinator replaces it by promoting a slave
to that role. Moreover, the figure shows that the number of

primary masters ranges around an average of 4.95, which is
equal to the measured average number of jobs concurrently
running in the system. This result shows that the system
balances the master load by assigning each new job to
the master with lowest workload. Hence, in the simulated
scenario, each master manages either 0 or 1 job at one time.
In other simulation scenarios - not discussed here for the
sake of space - in which the number of running jobs was
greater than the number of masters, the system was always
able to evenly distribute the load (i.e., the number of jobs)
among the available masters.

Finally, Figure 9 shows the number of slaves and active
slaves observed during the same simulation. A slave is
considered active when it is currently executing a task. We
see that the number of slaves always ranges around an
average of 990 according to the fact that LR is equal to
JR (and so the number of nodes remains approximatively
the same along the time) and that the system enforces 10
nodes (out of 1000) to act as masters. The number of active
slaves varied significantly during the simulation depending
on the dynamics of the job submission, hovering around an
average of 841.

As a concluding remark, the experimental results dis-
cussed throughout this section demonstrate that using an
adaptive approach it is possible to extend the MapReduce



architectural model making it suitable for highly-dynamic
distributed environments where nodes participate intermit-
tently to the system, causing failures that must be effectively
managed to avoid a critical loss of computing resources and
user time.

V. CONCLUSION

Providing effective mechanisms to manage node churn
and failures, job recovery and intermittent node participation
is fundamental to exploit the MapReduce model in the
implementation of data-intensive applications in Internet-
based computing environments where current MapReduce
implementations could be unreliable.

The P2P-MapReduce model presented in this paper ex-
ploits an adaptive model to perform job state replication,
manage master failures and allow intermittent node par-
ticipation in a decentralized but effective way. Using a
P2P approach, we extended the MapReduce architectural
model making it suitable for highly dynamic large-scale
environments where failures must be managed to prevent
a critical waste of computing resources and time.
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