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Abstract

The number of available Internet services increases every day. This trend demands dis-
tributed models and architectures to support scalability as well as semantics to enable
efficient publication and retrieval of services. Two common approaches toward this goal
are semantic overlay networks (SONs) and distributed hash tables (DHTs) with semantic
extensions. SONs enable semantic-driven query answering but are less scalable than DHTs,
which, in their turn, feature efficient but semantic-free query answering based on exact
match. This paper presents a strategy and a system, called ERGOT, that combine DHTs
and SONs to enable semantic-based service discovery in distributed infrastructures such as
Grids and Clouds. ERGOT uses semantic annotations that enrich service specifications in
two ways: (i) services are advertised in the DHT on the basis of their annotations, thus allow-
ing us to establish a SON between service providers; (ii) annotations enable semantic-based
service matchmaking, using a similarity measure between service requests and descriptions.
An extensive evaluation of the system is presented and discussed. The experimental evalu-
ation we carried out confirmed the efficiency of the implemented strategy in terms of both
accuracy of search and network traffic.

Keywords: Semantic Web services, Semantic Overlay Networks, Distributed Hash Tables,
Semantic Similarity.

1. Introduction

The main aim of the service oriented architecture (SOA) model is to allow developers and
end-users to dynamically discover and assemble software modules (represented as services)
to fulfill their needs. The SOA paradigm is therefore a viable model for the modular
composition and reuse of third-party software components on a large scale. One of the
stumbling blocks toward this goal, however, is the difficulty for potential users to discover
new services of interest, particularly when such services are independently deployed by a
large set of providers, on open large-scale computer networks.

Several approaches have been designed to provide effective service discovery, ranging
from distributed architectures to mitigate centralization of service registries such as UDDI,
to architectures leveraging Semantic Web technologies for providing semantic-based service
descriptions and matchmaking. Regarding the former, most proposals for distributed and
federated registries rely on peer-to-peer (P2P) protocols and distributed hash tables (DHTs).
This is the case of DUDE, for example [1], which extends UDDI to multiple registries
that form a federation with a DHT as a rendezvous point, as well as of the DHT-based
Web service discovery system proposed in [31]. On the other hand, semantic-based service
discovery is based on several techniques, e.g., information retrieval [9], rough set theory [19]
or logic-based reasoning to infer semantic relations (e.g., exact, subsume) between a user
request and a service profile [14]. Semantically rich service description annotation models,
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such as OWL-S, SAWSDL, and WSMO provide the necessary underpinning for machine-
processable annotations.

Both these areas suffer from some drawbacks. DHT-based search is efficient but is lim-
ited to exact terms, for instance the service name, and thus it does not fit well with semantic
similarity search models, where service parts are described using multiple annotations. On
the other hand, semantic service matchmaking usually requires logical reasoning, which
makes it difficult to perform numeric result ranking. Therefore a definition of semantic
similarity that takes into account the different annotations of a service request and descrip-
tion (e.g., operations, input, output) is mandatory. Finally, mapping the semantic search
paradigm on a P2P network can be costly in terms of network traffic, if no attention is paid
to how peers are connected with one another.

1.1. Contributions and Outline

The main goal of this work is to investigate and identify synergies between distributed
service registries and semantic service discovery. Our hypothesis is that a P2P-based federa-
tion of registries can benefit from semantic annotations of service descriptions. Specifically,
we propose to use P2P advertising of service descriptions to incrementally build a semantic
overlay network (SON) between service providers. A SON is a virtual network designed
to connect peers that are semantically related, that is, their respective content, service de-
scriptions in our case, are semantically similar. The similarity between service descriptions
is assessed on the basis of their annotations to ontology concepts.

Once a SON is available, it can be used to resolve service requests effectively, by ensuring
that messages are routed between semantically relevant peers. This paper introduces a
decentralized system based on these principles, called ERGOT (Efficient Routing Grounded
On Taxonomy). ERGOT builds upon three main elements.

1. A DHT protocol, used to advertise semantic service descriptions annotated using
ontology concepts. We assume that semantic annotations of service descriptions are
expressed in W3C’s standard SAWSDL1.

2. A SON, which enables the clustering of peers that have semantically similar service
descriptions. The SON is constructed incrementally, as a by-product of service adver-
tising via a DHT.

3. A measure of semantic similarity between service descriptions, which overcomes the
exact-term search limitations of DHTs. This measure combines the feature-based and
information content-based similarity models [24].

ERGOT can be used in scenarios where a large number of services, published by different
providers, need to be dynamically discovered and integrated into complex distributed ap-
plications. Examples include e-commerce and e-science applications, where the single com-
ponents are available as services independently specified by their providers. This requires
the availability of efficient mechanisms for semantic-based service matching and discovery,
as needed, for instance, by workflow-based computing systems [8].

Consider for instance the case of a bioinformatics researcher who wants to make a
comparison of genes from different species to find similarities between protein functions. To
this end, the researcher could be interested in finding the widest possible set of sequence
analysis services that may be used to support her/his task. Given the wide variety of
sequence analysis methods and implementations, standard search methods based on service
names and parameters would return only a small subset of all the relevant services available
from the bioinformatics community. In this scenario, the ERGOT system could be used

1Semantic Annotated WSDL: http://www.w3.org/2002/ws/sawsdl
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by service providers to advertise descriptions of their sequence analysis services annotated
with ontology concepts, and by interested users to locate all the sequence analysis services
that may be useful for the research they want to perform. As outlined before and detailed
in the remainder of the paper, the combined use of DHT and SON approaches, together
with a semantic similarity measure of service descriptions, enables ERGOT to perform this
kind of semantic discovery task with high recall and low network traffic.

A preliminary version of the present work was given in [26]. In the present version we
make the following contributions.

1. The various components of the ERGOT architecture are described in more detail.
Besides, descriptions are accompanied by concrete examples.

2. An extensive evaluation campaign is conducted to compare ERGOT both with Chord
and with unstructured P2P models in the manner of Gnutella. This latter evaluation
is very important for showing the effectiveness of the SON, constructed by a content-
similarity principle, as compared to the Gnutella topology, where links between peers
do not take into account the semantics of contents.

3. A more detailed analysis of the related literature is conducted to underline the contri-
bution of the present work, which to the best of our knowledge, is the first approach
combining structured P2P network models and SONs.

The remainder of the paper is organized as follows. Section 2 gives a background on DHTs
and SONs. Section 3 discusses related work. Section 4 presents an overview of ERGOT,
introduces the notation used throughout the paper and describes the semantic similarity
measure used to match service profiles. Section 5 discusses the implementation of the sys-
tem. Section 6 provides an experimental evaluation of ERGOT. Finally, Section 7 concludes
the paper.

2. DHTs and SONs: background and comparison

Distributed hash tables (DHTs) and semantic overlay networks (SONs) are the two
technologies at the core of our proposal. We provide a brief summary of them here.

DHTs have gained recognition as a prominent network paradigm for data distribution
and indexing, due to their scalability properties and efficiency in retrieving content. For the
sake of explanation we are going to use the well-known Chord DHT model [33] as a reference.
In Chord, each data item is associated with a key. Each peer can be used both to publish
new data items on the network, using the put(key, value) primitive, and to submit search
requests through the get(key) primitive. The hashing and routing mechanisms employed
by Chord makes exact, key-based queries efficient. In Chord both network peers and data
items are assigned an m-bit hash value (a node’s id could be computed by hashing the
peer’s IP address). With this provision, the network has a ring topology consisting of at
most 2m nodes. Chord adopts a simple rule to assign values to nodes: a put(key, value)
operation assigns value to the peer whose id is the successor of key. This is illustrated in
Fig. 1, where key 12 is assigned to node N13. A get(key) operation can be initiated by any
peer, and is routed around the ring with the help of a finger table associated with each
peer. The finger table for a node contains the Chord ids of the node’s neighbors. Neighbors
are nodes located on the ring at exponentially increasing distance from a given node. This
guarantees that any query is answered in O(logN) hops, where N is the number of nodes
in the network [33]. In Fig. 1, the request posed by N6 for key 12 is routed at first hop
to the node in N6’s finger table closest to (but not higher than) 12, that is, N10 which, in
its turn, by looking at its finger table can easily find the peer responsible for key 12 (i.e.,
N13). DHTs only support key-based, exact queries, a serious limitation for semantic-based
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searches where one is interested also in retrieving contents “semantically similar” to what
is expressed in the request.

SONs provide a first step in this direction, although they do not directly address the
problem. Originally proposed by Crespo and Garcia-Molina [7], the SON is a paradigm for
organizing peers and enhancing content-based search. The main idea is that, by clustering
the peers according to the semantic similarity of content they share, the clusters can then be
exploited to speed up query routing while providing good recall. In particular, annotating
contents with concepts drawn from a common ontology provides the necessary underpinning
for partitioning an otherwise unstructured P2P network into SONs. An example of a SON is
shown in Fig. 2, where contents shared by peers are semantically annotated. For instance,
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Figure 1: An example of Chord DHT
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Figure 2: An example of SON

node N4 shares contents related to Rock whereas N2 has expertise in History. In the lower
part of Fig. 2, nodes form an unstructured P2P network in the manner of Gnutella, where
neighbor nodes are determined by querying some cache servers maintaining IP addresses of
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Table 1: Comparison between DHTs and SONs
DHTs SONs

Content Placing Fixed, based on hashing Each peer is responsible for its content

Content Retrieval Exact lookup Flexible (based on similarity)

Network Structure Fixed Variable

Lookup cost O(logN) Variable

Topology Management Stabilization protocol Semantic links need to be rearranged

Semantics None Exploit a semantic artifact (e.g., an ontology)

online nodes. In this case it may happen that peers sharing semantically similar contents are
not connected with one another. For instance although N3 and N4 share contents related
to Rock and Jazz respectively, which are semantically related since they are two musical
genres, they are not directly connected. In the top part of Fig. 2, a SON is shown in which
peers determine their neighbors according to a criterion of semantic similarity between their
respective contents. In this case, N3 and N4 have a link that can result in being very useful
in performing content lookup. In [7] the effectiveness of these ideas as compared to the
Gnutella flooding-based approach is discussed.

Table 1 provides a comparison of the relative merits of DHTs and SONs. DHTs are
very scalable, and they guarantee efficient lookup, but only for exact queries where the
“identity” of the content one is looking for is known a priori. SONs, on the other hand, are
more flexible as they can perform semantic-based query answering, but their performance
is affected by the overlay topology. Moreover, an intrinsic initial cost for building the SON
has to be taken into account.

Although DHTs and SONs have been (separately) exploited in recent service discovery
initiatives (see Section 3), no attempt has been made to combine the two approaches even
though several considerations suggest that useful synergies can be found.

3. Related Work

Service discovery has been addressed from different, not necessarily disjoint, perspectives
thus giving birth to several strands of research. Some of these focus on mitigating central-
ization by adopting decentralized architectures while other focus on defining semantically
rich data models (e.g., OWL-S, SAWSDL and WSMO). In the remainder of this section
we provide a comprehensive overview about service discovery initiatives from a network-
architecture perspective. Table 2 summarizes the systems analyzed and compares them with
ERGOT in terms of network architecture, support of semantics, ranking, and underlying
techniques.

3.1. Centralized Service Discovery

Centralized service discovery architectures have as primary concern that of providing
accurate mechanisms to select services relevant with respect to a user request. In this con-
text, different techniques have been proposed. Woogle [9] leverages information retrieval
techniques to efficiently exploit text contained in service descriptions. ROSSE [19] ex-
ploits rough set theory to identify some dependences between service properties and is able
to compute the Lower and Upper approximation of services that match a user request.
Matchmaker [14] was one of the first semantic matchmakers for Web services. Through
reasoning, it allows one to define different semantic relations (e.g., exact, subsume, plug-in)
between a user request and a service profile. ERGOT differs from ROSSE and Woogle since
it exploits ontologies to annotate services and performs numerical ranking by exploiting
semantic annotations of the various service parts. As for Matchmaker, ERGOT is able to
perform numerical ranking of results, which can be very useful for better distinguishing
between services related to a user request.
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Table 2: Comparison among service discovery systems
Architecture Semantics Ranking Techniques

Centralized

Woogle [9] Registry-based No Yes Ad-hoc clustering technique

ROSSE [19] Registry-based No Yes Rough set theory

Matchmaker [14] Registry-based Yes Yes Reasoning

COMPAT [3] Registry-based Yes Yes Semantic matching

URBE [27] Registry-based Yes Yes Semantic similarity

Decentralized

DUDE [1] DHT No No Prefix Match of service names

Schmidt et al. [31] DHT No No Hilbert Space Filling curves

Emekçi et al. [10] DHT No Yes Behavior-based search

SPiDeR [28] DHT Yes Yes Behavior-based search

Vu et al. [34] DHT Yes Yes Ontology partitioning

Li et al. [20] DHT Yes No Semantic prefix routing

Zhu and Hu [35] DHT Yes Yes Locality preserving hashing

ATLAS [12] DHT Yes No RDF-based

Papazoglou et al. [23] Super-peer-based Yes No Concept-lattices-based matching

Sapkota et al. [29] Super-peer-based Yes No Similarity among peers

Meteor-S [17] Super-peer-based Yes No JXTA-based

Paolucci et al. [22] Gnutella-based Yes No Controlled flooding

Hypercube [30] Ad-hoc topology Yes No Efficient broadcast

WSPDS [13] SON Yes No Similarity among peers

Bianchini et al. [4] SON Yes No Ontology-based matchmaking

ERGOT DHT+SON Yes Yes Similarity-based routing

For the purpose of our analysis, we will review the COMPAT and URBE systems in more
detail since they share some features with ERGOT. COMPAT [3] exploits an ad hoc ontology
framework based on description logics and a thesaurus to enable semantic-similarity-based
service discovery. In particular, service profiles are defined by exploiting both a service
ontology, which allows to group services with similar features, and a domain ontology used
to annotate operation names, input and output. The system supports ranking of results by
computing, through the thesaurus, the semantic similarity between a request and a service
profile. UDDI Registry By Example (URBE), proposed by Plebani and Pernici [27], is a
Web service retrieval algorithm based on the evaluation of similarity between Web service
interfaces expressed in WSDL. URBE defines a function fSim that returns the similarity
degree between two Web services. To evaluate the similarity of the elements that constitute
a Web service interface, fSim relies on two main functions: a name similarity function
nameSim which compares two names included in the Web service interfaces, and a data
similarity function dataTypeSim which evaluates how similar two data types characterizing
the parameters in the Web service interfaces are. A semantic extension of the similarity
algorithm, URBE-S, copes with the case of Web service interfaces semantically enriched
by SAWSDL annotations. URBE-S defines a function fSims which, instead of comparing
the names of the service elements using nameSim, compares the related annotations using
a function annSim that receives as input two annotations and returns their similarity
according to the way in which they are related in a reference ontology.

Although ERGOT also exploits similarity, there are several underlying differences be-
tween these systems. The base similarity measure between concepts has a different un-
derlying strategy. URBE, in its variant URBE-S, exploits a path-based strategy whereas
ERGOT uses a combination of features and information content. As for COMPAT, ERGOT
uses a similar approach even if COMPAT combines similarity with deductive strategies and
adopts Dice-based similarity aggregation strategies. ERGOT uses similarity not only in the
process of service ranking but also in routing queries towards semantically similar neigh-
bors. Moreover, similarity estimation in ERGOT is the main pillar allowing one to partition
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the space of service providers in clusters of semantic similar peers. Finally, ERGOT is a
decentralized service registry whereas both COMPAT and URBE are centralized.

3.2. Decentralized Service Discovery

Decentralized service discovery architectures have been proposed to cope with the pitfalls
(e.g., scalability, fault tolerance) of centralized ones. To reach decentralization different
approaches can be adopted, based on different underlying network architectures.

3.2.1. Approaches using DHTs

DUDE [1] extends the UDDI centralized service discovery mechanism by allowing mul-
tiple registries to form a federation with a DHT as a rendezvous point. Service information
(on the basis of the service name) is distributed between the participants. The DHT query-
ing mechanism limits the scope of the queries only to relevant registries. In [31], Schmidt
and Parashar propose a DHT-based Web service discovery system. A service description is
viewed as a set of points in a multidimensional space identified by the possible keywords
found in service descriptions. In order to map the multidimensional space to DHT keys,
the authors exploit Hilbert space filling curves (HSFCs), which ensure that the locality in
the multidimensional space will be preserved after the reduction. However, this jeopardizes
the hashing mechanism of the original DHT thus leading to load imbalance. In practice,
with the dimensional reduction, data elements are not uniformly distributed in the index
space, i.e., certain keywords can be more popular and hence the associated index subspace
can be more populated. To cope with this issue the authors propose two load balancing
mechanisms: load balancing at node join and load balancing at runtime.

The system proposed by Emekçi et al. [10] uses a DHT to publish and search for Web
services based on their behavior and reputation. Each Web service is defined in terms of
its implementation (I), service (S) and request (R): I can be considered as the BPEL
description of the Web service behavior and is represented as a finite automaton; S is also a
finite automaton describing the set of interactions observed by the users of the Web service;
R is the set of finite automata corresponding to other Web services that are required by the
current Web service to complete. Web services are published and searched through their
finite automata representation. The core of this mechanism is based on hashing the finite
automata onto a DHT. The hashing technique hashes the regular expression representation
of a finite automaton to determine its location on the DHT. The DHT is then used to
find a matching between service automata of the stored services with the request automata
included in the query messages. The system includes also a reputation model used for
ranking the search results.

SPiDeR [28] organizes nodes into a P2P structured network based on super-peers (SPs).
Each peer is connected to an SP with which it interacts to perform operations of service
advertising and discovery. Discovery is performed by using three different techniques based
on keywords, categories, and behavior respectively. The system features a reputation com-
ponent to perform quality of service (QoS) ratings of Web services.

The system proposed by Vu et al. in [34] combines ontologies, DHTs and a reputation
mechanism based on trusted agents to perform service discovery. One of the key features of
this system is the partitioning of a shared ontology, with which describing and querying for
services in concept groups. Each concept group is summarized by a Bloom filter to enable
quick concept-membership checking. Hence, a service is described as a set of unordered
concepts each of which is represented by the Bloom filter of the group to which it belongs.
To map service descriptions in the underlying DHT a special hash function is applied to
the concatenation of all the keys in the description. A QoS component allows rating the
quality of a Web service and is used to rank results.
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Li et al. [20] proposed a structured P2P routing system that extends the Plaxton mesh
to support decentralized semantic service discovery. Service advertisements and service
requests are described using a service ontology such as OWL-S. Given a semantic service
description, information such as input, output, preconditions and effects are extracted as
ontological concepts. These concepts are encoded to a series of binary strings, called the
service’s characteristic vector (CV). Each peer maintains a routing table and a neighborhood
table, which are extended from those of the Plaxton mesh. When a peer receives a request,
it first converts the service description to its CV, and calculates the semantic similarity
between the CV and peers in the neighborhood table to see it the CV falls within the range
of semantic distance covered by the neighborhood table. If so, the message is forwarded
directly to the destination; otherwise the routing table is used to find the entries that share
the longest common prefix with the CV.

Zhu and Hu [35] designed a DHT-based semantic discovery system that shares some
basic ideas with the system proposed by Li et al. [20] , even if it is focused on indexing and
searching files rather services. The system represents each file and each query as a term
vector (TV). A set of locality sensitive hashing (LSH) functions is used to produce a small
number of semantic keys starting from the TV of a file or a query. The locality-preserving
property of LSH functions ensures that the indexes of semantically close files and queries are
placed, with high probability, into close nodes of the DHT. Discovery is performed in three
steps: first, a small number of semantic keys are derived from the query’s TV by using the
same set of LSH functions using for file indexing; then, for each semantic key associated with
the query, a DHT lookup is performed to retrieve the identifiers of the semantically close
files from the node which is responsible for that key; finally, the requesting node merges the
replies from all responsible nodes and generates a materialized view of the query results.

Finally, the ATLAS system [12] has been designed as a decentralized mechanism for
resource discovery in S-OGSA [6]. ATLAS adopts a DHT-based architecture to publish
and discover information about Grid resources in the form of RDF triples. ATLAS allows
resolving conjunctive queries expressed in a logic language based on triple patterns.

3.2.2. Super-peer based approaches

Papazoglou et al. [23] used a P2P approach to build a federation of UDDI-enabled reg-
istries which operates in a decentralized fashion. Federations represent common interest
groups of providers (peers) that band together to provide syndicated services to their cus-
tomers. Two key concepts in a peer service syndication are publication and subscription.
Publications are documents that name, describe and publish the existence of peers that
act as service providers, while subscriptions also name, describe and publish the service
requirements of peers that act as service requesters within a service syndication. For each
syndication a specific peer acts as super-peer by providing an event-notification service that
receives and stores the publications and subscriptions of the entire peer syndication. The
super-peer organizes the publication space using a concept lattice and stores it in its own
local registry. Similarly, the collection of subscriptions in a syndication are structured in a
subscription lattice. This allows super-peers to determine subscription/publication matches
and which subscribers are affected by a change to the publication lattice.

Sapkota et al. [29] proposed a system composed by a set of Semantic Web service (SWS)
nodes that are clustered together based on similar service descriptions. A cluster consists of
at least one super-node. Each cluster is maintained by one of the super-nodes, the cluster
manager, which is dynamically chosen based on its availability, processing power, and so
on. The cluster manager indexes the Web services registered with its clusters and facilitates
inter-cluster communication. Matchmaking between service descriptions and user requests
(both described using WSMO) is always evaluated locally first. In the case of partial match
or no match, the request is forwarded to the cluster manager.
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Meteor-S [17] supports semantic-based organization of Web services in a federation of
registries. This system, developed in JXTA [11], is based on an unstructured P2P network
and is mainly meant to organize service publications by identifying the most suitable registry
to host a service description.

3.2.3. Approaches using other kinds of overlay

The WSPDS system [13] aims at constructing an overlay network of peers by comparing
their Web service descriptions. Nodes create links by comparing the inputs and the outputs
of their services by exploiting the matchmaker described in [14]. The similarity between a
query and the peers to whom forward it is computed by the same matchmaker. Hypercube
[30] imposes a deterministic shape on a P2P network by using a globally known ontology
to determine the organization of peers in the network topology. The system proposed by
Paolucci et al. [22] relies on the Gnutella protocol and uses OWL-S (formerly DAML-S)
as the service description language. Every Web service (P2P node) contains a DAML-
S description of its capabilities and the associated engines for parsing ontologies, as well
as a P2P discovery module. Service requests generated at a given node are broadcast to
the network through the P2P discovery module, which implements a controlled-flooding
algorithm of the Gnutella protocol.

Bianchini et al. [4] proposed a P2P-based semantic driven service discovery (P2P-
SDSD) framework that organizes peers into a semantic overlay. The semantic overlay can
be seen as a continuously evolving conceptual map across collaborative peers that provide
similar services, thus enabling effective similarity-based service search. The system defines
optimization strategies for request propagation over the P2P network that keep the network
overhead generated by the discovery process low. This approach is the closest to ERGOT
even if there are several underlying differences. First, the SON is constructed in a different
way. Bianchini et al. use a probe collaboration model with a bounded TTL to discover
peers with semantically related services. In ERGOT, the semantic overlay is constructed
as a natural process during the service publishing phase in the DHT. Besides, ERGOT also
enables to pose a query via the DHT native algorithm, which can result in being very useful
when there are not so many services published and then it is difficult to perform search
based on semantic neighborness.

Although most of the analyzed approaches share some characteristics with ERGOT (as
summarized in Table 2), none of them combine the efficiency of DHTs with the semantic
support provided by SONs. In fact, on the one hand DHTs are very efficient for performing
exact lookup but they do not provide any semantic support as a native feature; on the other
hand, one of the main problems when building a SON is how to find interesting neighbors.
ERGOT represents a new way of facing Web service discovery by exploiting publishing of
semantic annotations in a DHT to build a SON.

4. Overview of the approach

By analyzing DHTs, we observed that peers can potentially discover other peers with se-
mantically similar content by piggybacking on the P2P communication that occurs naturally
during the content publishing activity in a DHT. Thus, semantic links can be established
at no additional cost as a by-product of normal network activity. Hence, semantic links can
be exploited not only to improve search performance, but also to perform semantic-based
similarity search. This is because peers can ask their immediate semantic neighbors whether
they are responsible for contents semantically close to a user request.

As an example, suppose a user is looking for a service that offers car-selling information.
A possible service description request may include terms such as price, car model, year and
so forth. Using Chord, relevant services would only be retrieved if their semantic profiles
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Figure 3: An overview of the ERGOT layers

include exactly the same keywords used in the query. However, it can be possible that in
the specifications “related” terms are used instead, for instance, automobile in lieu of car
and car type in lieu of car model. In this case, ERGOT’s semantic similarity approach will
still be able to return relevant services, while Chord would fail to find any matches. We
have explored the viability of these ideas in the specific case where peers are autonomous
and distributed semantic service registries.

Fig. 3 provides an overview of the different layers in the ERGOT architecture. The
lowest layer (i.e., concept layer) includes the concepts in the ontology used for the annota-
tions, which are connected by semantic relations such as isa and part-of. The service layer
contains the services annotated via SAWSDL to the concepts in the concept layer. As can
be noted, each service can be annotated to different ontology concepts. The DHT layer
(Chord [33] in the case of ERGOT) is responsible for service profile publishing according to
their annotations on the concept layer. The publication of services allows us to construct a
SON between service providers (i.e., SON layer). Service requests can be posed both at the
SON layer and at the underlying DHT layer. In the rest of this paper we elaborate more
on these aspects.

4.1. Assumptions

The ability to match service descriptions to user searches is at the cornerstone of any
service discovery model. Purely syntactic approaches, based on service name similarity,
have been extended in several directions, using either ontology-based semantics [14] or
information retrieval techniques [9] as discussed in Section 3. On the other hand, when the
matching is performed using logic-based reasoning, the match status can itself be described
using a simple classification model, e.g., exact, plugin, subsume, and fail [18]. A quantitative,
numerical assessment of these concepts, however, has been proved to be difficult [5] for
classes like subsume or plugin, making it hard to accurately rank the matches. To tackle
this aspect some initiatives, such as OWL-MX [15], and WSMO-MX [16], have recently
been proposed. Other initiatives such as the work by Vu et al. [34] or the SPiDeR system
[28], address result ranking by only relying on QoS indicators, and do not extend to the
fine-grain semantic description of the service itself.

ERGOT exploits an ontology-based measure of semantic similarity between service de-
scriptions and service requests. In particular, it exploits both coarse-grain service function-
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ality descriptions and at a finer level, when available, annotations on individual elements of
a service signature. We use two sources of knowledge for these annotations: a high-level Cat-
egory Ontology (CO) for service description and a Domain Ontology (DO) that accounts for
semantic data type description. For the purpose of this paper, we assume that services have
been already annotated according to the SAWSDL approach. The SAWSDL specification
defines how to add semantic annotations to various parts of a WSDL service specification
(e.g., input and output message structures, interfaces and operations). In order to enable
semantic annotations, SAWSDL defines attributes that can be applied to both WSDL and
XML Schema elements. SAWSDL provides a generic annotation reference mechanism that
can be applied to abstract definition of a WSDL Web service. For instance, via SAWSDL
it is possible to annotate WSDL interfaces and operations with categorization information
that can be used to publish a Web service in a registry such as UDDI. Semantic annotations
usually refer to concepts defined in one or more ontologies.

An example of WSDL specification along with semantic annotations is shown in Fig. 4.
The service has an operation called Order, which takes as input a customerNo and an
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SAWSDL

sawsdl:modelReference= "http://ex.org/categorization/products/electronics"

Domain Ontology Category Ontology

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#OrderRequest"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#UPC"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#RequestPurchaseOrder"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#Quantity"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#OrderConfirmation"

WSDL

sawsdl:modelReference="http://..."

Figure 4: Example of WSDL interface with SAWSDL annotations

Item, that, in its turn, has a UPC and a Quantity, and returns as output the state of the
order that can be Confirmed, Pending or Rejected. SAWSDL annotations are expressed
through the sawsdl:modelReference primitive. It can be noted that SAWSDL allows
Types, Operations and Interfaces to be annotated. In our previous example, Types and
Operations are annotated with concepts from a Domain Ontology (DO), which contains
specific concepts in the knowledge domain of the Web service.

On the other hand the Interface is annotated with concepts in a Category Ontology (CO)
(specifically to the category /products/electronics). This latter annotation is very useful for
summarizing the goal of a service and is similar to the categorization mechanism featured
by UDDI where it is possible to categorize services by using some standard taxonomies.
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ERGOT model

sn= /products/electronics

O1={

O1.n= RequestPurchaseOrder

O1.IN1= UPC

O1.IN2= Quantity

O1.OUT1= OrderConfirmation

}

sawsdl:modelReference=http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#OrderRequest/>

Category Ontology (CO) annotations

Domain Ontology (DO) annotations

Figure 5: Example of annotated service interface with its representation according to the ERGOT model

4.2. Notation

This section introduces our notation for representing the elements of a Web service
interface. We refer to these as a service profile. The elements of a service profile will be
considered during the similarity evaluation. We introduce the following representation of a
service specification.

• A service profile P = ⟨sn,O⟩ consists of a service name sn and a set O of operations.

• An operation O ∈ O has a name O.n and a set O.IN and O.OUT of inputs and
outputs: O = ⟨n, IN ,OUT ⟩. For example, P.sn is the service name, and P.Oi.IN j is
the j-th input of the i-th operation.

Fig. 5 shows an example of annotated service interface along with its representation ac-
cording to the ERGOT model. Annotations can be associated with sn, n, and each in-
put and output, denoted ann(x) for a generic element x. As mentioned above, we use
one or more CO concepts for describing the overall function of a service, and DO con-
cepts, when available, to annotate elements of its internal structure. It is also possible
that DO ≡ CO. In the general case we assume that ann(P.sn) ⊆ CO, ann(O.n) ⊆ CO,
ann(P.Oi.IN j) ⊆ DO and ann(P.Oi.OUT j) ⊆ DO. From the requester perspective, a ser-
vice request R = ⟨C,O⟩ matches the structure of a service profile, but ontology concepts
representing user requirements for matching services appear in lieu of service component
annotations. ERGOT enables users to pose service requests in a similar manner as the
Query by Example (QBE) approach does for databases. For instance, users can define the
characteristics of the wanted Web services via a user-friendly interface by navigating and
choosing relevant concepts. Then, the QBE approach converts the user input into a request
to be sent across the network.

In particular, requests are built by using concepts C from the CO to express and summa-
rize service functionality requirements, while theO structure can be used to specify semantic
types for operations input and output, as well as specific operations names. A request R
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posed by a user is evaluated against a collection of service profiles P = {P1 . . . Pn} each
peer advertises on the network, by matching each of the concepts found in R’s structure
with the corresponding annotations in each profile P ∈ P, using the semantic similarity
function RPsim(R,P ), which will be described in Section 4.4. Function RPsim(R,P ) is
defined inductively on P ’s structure, using the requirement specifications found in R.

The level of precision of a request may vary, from simply a set C with no constraint
on the service operations, to a request for any operation that satisfies a given set of input
or output types, to a full set of requirements that include named operations with given
input and output types. Algorithm 1 summarizes the main steps performed by each peer
receiving the request. Function RPsim (see Section 4.4) returns a value in the interval

Input: R: service request ;
Th: similarity threshold ;
Output: PR: ordered list of services that match the request ;
PR := ∅;1

foreach P ∈ P do2

sim := RPsim(R,P ) ;3

if sim ≥ Th then4

PR := PR
∪

P ;5

end6

end7

return PR ;8

Algorithm 1: Matchmaking performed by each peer

[0, 1]. The higher the result of RPsim, the higher the similarity between the request and the
profile. Function RPsim enables result ranking, which is an important factor to be taken
into account in an open and large-scale network where it is mandatory to differentiate
between services belonging to different service providers. The output of each request is the
list PR whose elements are ordered according to their similarity to the request R.

Note that even though category annotations do not contribute directly to the ranking
of results, they are used a priori to route queries via the SON to the peers that keep
information about the services that are more similar to the categories expressed in the
request (see Section 4.4).

4.3. A running example: looking for a convertible

The concepts described in the previous sections are detailed through the scenario de-
picted in Fig. 6. Here, an example of service request in the car-selling domain is expressed
by using ontology concepts drawn from both a domain ontology and a category ontology.
The user is interested in finding Web services that given a convertible model and a year re-
turn price and description of some convertible. According to the QBE approach, this query
can be posed by simply picking, from both the DO and the CO, the ontology concepts that
better approximate what the user has in mind. Fig. 6 depicts a portion of the DO in the
car-selling domain taken from an online Vehicle Sales ontology2, which has been extended
for the purpose of the example. Here some concepts such as Vehicle, Car, Price, and so
forth are defined. In particular, a Car is defined to be a kind of Motor Vehicle. On the
other hand, a Convertible is represented as a subclass of Car. Fig. 6 also reports a portion
of CO extracted from the North American Industry Classification System (NAICS) pub-
lished by the US Census3. Here, the category Wholesale trade is defined of which, Merchant
wholesalers durable goods is a subcategory. By digging more into the categorization we can
also find an Automobile Merchant category, which seems very appropriate for summarizing

2The ontology is available online at http://www.heppnetz.de/ontologies/vso/ns
3More details are available at http://www.census.gov/eos/www/naics
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Figure 6: Example of service annotation and request

the information needed by the user. It can be noted that both the user request and the
existing service profile, stored in a peer, use ontology concepts to specify their respective
semantics. When the service request, routed through the network, reaches the peer hosting
the service profile, the latter via the RPsim function (see Section 4.4) computes a similarity
score between the request R and the service profile P.

4.4. On matching service profiles

We now build the definition of service profile similarity, denoted RPsim(R,P ), from
the bottom up, starting with a measure of similarity between two concepts c1, c2 from the
same ontology, proposed in our previous work on semantic similarity in ontologies [24].
This similarity measure has been extensively evaluated in several scenarios including both
general and domain-specific ontologies. Therefore, its evaluation per se is out the scope of
this paper.

Let msca(c1, c2) denote the most specific common ancestor of two concepts c1, c2 within
the ontology. The similarity between c1, c2 is defined as

Csim(c1, c2) =

{
3 · IC (msca(c1, c2))− IC (c1)− IC (c2) if c1 ̸= c2

1 otherwise

where IC (c) is the information content of a concept c [32]. Intuitively, it quantifies the
information carried by a concept, in terms of the number of its hyponyms (i.e., subconcepts)
in the ontology. Formally,

IC(c) = 1− log(hypo(c) + 1)

log(C)

where function hypo returns the number of hyponyms of a given concept c and C indicates
the total number of concepts in the ontology. As an example, the similarity measure between
the concepts Convertible and Car in the portion of ontology depicted in Fig. 6 is 0.84, which
is reasonable since a convertible is a kind of car.
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The definition of RPsim(R,P ) is inductive on P ’s structure, and it accounts for the
varying specificity of the request R, as anticipated earlier. Initially, let us consider a fully
specified request for a single operation type, i.e., R = ⟨C,O⟩ where O = {O}, and a DO
concept c as well as a set of input and output type requirements IN ,OUT associated with
O, i.e., O = ⟨c, IN ,OUT ⟩. This request structure is matched to a profile P inductively, by
matching the annotations of each operation P.Oi to R.O and taking the similarity value
of the best-matching operation. In turn, matching one operation structure P.Oi requires
matching the set P.Oi.IN (respectively, P.Oi.OUT ) to set R.IN (respectively, R.OUT ),
and operation names P.Oi.n to R.n.

The similarity of input semantic types, Tsim(P.Oi.IN , R.O.IN ), is the sum of the best
matches between all possible pairs (ann(x), y) with x ∈ P.Oi.IN , y ∈ R.O.IN :

Tsim(P.Oi.IN , R.O.IN ) =
∑

y∈R.O.IN

max
x∈P.Oi.IN

Csim(ann(x), y)

The same function applies to output types. This function rewards services that contain
an operation whose input (resp. output) types best match the concepts in R.O.IN (resp.
R.O.OUT ). Matching of P.Oi.n to R.O.c is a straightforward application of the Csim
function:

Nsim(P.Oi.n,R.O.c) = Csim(ann(P.Oi.n), R.O.c)

The overall similarity between P.Oi and R.O is the weighted sum of the three components
just defined:

OPsim(P.Oi, R.O) = α Nsim(P.Oi.n,R.O.c)+
β Tsim(P.Oi.IN , R.O.IN )+
γ Tsim(P.Oi.OUT , R.O.OUT )

This last definition accounts for the possibility that the user request contains incomplete
requirements, as in this case, the similarity value associated with a missing annotation is just
zero. Thus, in particular a minimal request may only include a concept for the operation
name, or for the input/output semantic data types. The three parameters α, β and γ are
used to weight the contribution of operation names inputs and outputs.

Finally, the overall similarity between P and R.O, i.e., when R contains requirements
for one single operation, is simply the best similarity value over all operations in P.O:

RPsim(R.O, P ) = max
Oi∈P.O

OPsim(R.O,Oi)

We extend this function to the case where R specifies requirements for multiple operations
R.O, simply by adding up the similarities values that result from the best matches between
each Oj ∈ R.O and each Oi ∈ P.O:

RPsim(R,P ) =
∑

R.Oj∈R.O
max

Oi∈P.O
OPsim(Oj , Oi)

The RPsim(R,P ) similarity function considers the best matches between the request and
the operations described in a service profile. The evaluation of the similarity measure itself
as well as the comparison with related approaches to service matchmaking (see for instance
the URBE approach [27]) is an interesting topic for future work but it is beyond the scope
of this paper. Here the focus is in presenting a new model of overlay network exploiting the
efficiency of DHTs and the accuracy of SONs. Returning to the running example introduced
in Section 4.3, the similarity between the request and the service profile depicted in Fig.
6 is 0.87. As it can be noted, the semantic similarity measure, even if the concepts used
to express the request and annotate the service profile are not the same, is able to find
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a match. In fact, it recognizes, for instance, that the concept Car, used to annotate the
service profile, is similar to the concept Convertible used in the request. The same reasoning
applies for the category annotations where the concept Automobile Merchant is used in the
request whereas the service profile is summarized by an annotation to the Motor vehicle
and parts suppliers merchants wholesalers concept.

4.4.1. A note about multiple ontologies

In the current implementation, ERGOT assumes that peers share a common ontology.
On the one hand, sharing a common ontology can be realistic, in the case, for instance,
of category ontologies. In fact, it is unlikely that each service provider will build its own
category ontology since there are several already available generic categorization systems
such as NAICS, which are constantly maintained. On the other hand, sharing a common
ontology can be unrealistic since in distributed scenarios it is also common to have different
representations for the same knowledge domain. This raises the problem of finding corre-
spondences between ontologies (also known as ontology matching), which is a very active
research area. Although we do not address the problem here, it can be noted that an al-
gorithm such as the Semantic Coordinator (SECCO), described in our previous work on
ontology matching in distributed environments [25], can be adopted.

5. System Implementation

This section discusses in more detail the architecture of ERGOT from an implementation-
oriented perspective. In particular, here we describe the mechanisms related to service
publishing and discovery.

5.1. Publishing semantic service profiles

Consider a service profile P = ⟨sn,O⟩, and let CP ⊆ CO be the set of its service-level
annotations. P is published by invoking the standard DHT primitive put(key, value), using
each concept cP ∈ CP as the key. Thus, publishing requests are of the form put(cP , P ). In
addition, however, we enhance the DHT behavior to enable the construction of semantic
links between peers. Semantic links between peers build the SON, which can be exploited
to facilitate service discovery. In this section we explain the publication algorithm and
describe the process of building semantic links.

For each published profile P we distinguish between its hosting peer hp(P ), i.e., the peer
that requests the publishing of P ; and the responsible peer rp(P) to which P is assigned
according to the standard DHT routing algorithm. To recall, in general a DHT defines a
mapping function p = publish(k) that maps a key k to a peer p (since in our experiment
we have used Chord, we assume this function to be publish(k) = successor(k)). This means
that, since we are using CO concepts as keys, each peer is responsible for a subset of the
concepts in the CO:

concepts(rp) = {c ∈ CO s.t. publish(c) = rp}

Algorithm 2 shows the publishing mechanism described above. Each service profile gets
published according to its annotations to the CO and the responsible peer stores the whole
service profile along with the id of the publisher idp (i.e., the hosting peer hp(P)).

5.2. The Semantic Annotation Table

In ERGOT, each peer p maintains data it is responsible for in a semantic annotations
table (SAT). If c ∈ concepts(p) (i.e., p is responsible for c), then p’s SAT records all peers
that host service profiles that are annotated using c.

SAT (p) = {hp(P )s.t. c ∈ ann(P.sn) ∩ concepts(p)}
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Input: P : the set containing k service profiles ;
Pi: a generic service profile with 1 ≤ i ≤ k ;
CPi : ann(Pi.sn) ⊆ CO ;
idp: id of the hosting peer (hp) ;
foreach Pi ∈ P do1

foreach c ∈ CPi do2

h := hash(c) ;3

put (h, ⟨idp, c, Pi⟩) ;4

end5

end6

Algorithm 2: Publishing service profiles

In practice, each peer keeps a record of peers that publish service profiles with the specific
semantic annotations they are responsible for along with the service profiles themselves.

Fig. 7 shows the SAT for peer N10, the successor of the key obtained by hashing the
Automobile Merchant concept to which service profiles SP3, hosted by peer N3, and SP1,
hosted by peer N13, are annotated. In this case we have that rp(SP1 )=N10, rp(SP3 )=N10

and hp(SP3 )=N3 and hp(SP1 )=N13. Note that in the SAT, hosting peers are grouped ac-
cording to their common CO concept, Automobile Merchant in this case, and the service
profiles according to their hosting peers. Note that it is common for a peer to be respon-
sible for more than one concept, e.g., N10 is responsible for both Automobile Merchant, and
Hardware Merchant and therefore publish(Automobile Merchant) = publish (Hardware Merchant).
We use the information in the SATs to establish semantic links between peers. Suppose
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Figure 7: Construction of semantic links

that the hosting peer p = hp(P ) publishes P using put(c, P ); when the request is routed
to p′ = rp(P ) (through the usual finger table mechanism), p′ now responds by sending to p
the entries of its SAT that correspond to the concept c used as key. The entries in the SAT
sent by p′ contain the set of service profiles annotated so far to c. In the general, we refer

17



to the peers included in the SAT entries sent from p′ to p as semantic neighbors sn(p, c) of
p on the concept c:

sn(p, c) = {hp(P ) ∀ P s.t. c ∈ ann(P.sn) ∧ c ∈ concepts(p′)} ⊆ SAT (p′)

The peers in sn(p, c) host services that have been annotated using the same category concept
c used to describe P . Algorithm 3 describes the procedure followed by the responsible peer
(p′ in the above-mentioned example) when receiving messages containing semantic service
profiles. Note that these messages are routed by the underlying DHT protocol, Chord in
the case of ERGOT.

Input: A message of the form ⟨idp, c, Pi⟩ routed by the DHT protocol ;
Output: SN : set of ranked peers that have published service profiles on c ;
rank := 0 ;1

insertInSAT (⟨idp, c, P ⟩) ;2

SN := ∅ ;3

foreach s = ⟨idp′ , c′, P ′⟩ ∈ SAT s.t. c′ = c do4

rank := RPsim(P ′, P ) ;5

SN := SN
∪
{⟨idp′ , rank⟩} ;6

notifyUpdate(idp′ , idp, c, rank) ;7

end8

replyToPublisher(idp, SN, c) ;9

Algorithm 3: Semantic neighbors discovery

The responsible peer ranks by semantic similarity (see line 5) peers that have already
published service profiles on the concepts it is responsible for and sends back rank results
to the publishing peers (see line 9). This finer grained similarity assessment allows one to
distinguish among service profiles annotated to the same CO concepts and investigate to
what extent the publisher peer advertises a service profile similar to existing ones. Note
that the SAT for p is populated incrementally each time it publishes a new service profile,
with no additional routing as we are piggybacking on the original DHT routing strategy
(only one new message back from rp(P ) to hp(P ) is needed).

In the example depicted in Fig. 7, when N3 publishes the service profile SP3 annotated
to Automobile Merchant, N10 informs N3 that N13 owns a service annotated to the same
concept. Services belonging to the same category can be further differentiated by applying
RPsim on their respective profiles thus taking into account operations with their input and
output. For instance in Fig. 7, even if N13 and N3 publish two service profiles (i.e., SP1 and
SP3) annotated to the same CO concept (i.e., Automobile Merchant), the two services can
be differentiated since they are annotated to different DO concepts, that is, Car and Price
and Bus and Price, respectively.

5.3. Building semantic links

A peer p establishes semantic links p → ng with each neighbor ng ∈ sn(p, c). Not all of
the peers in sn(p, c) are interesting neighbors, however. It may be the case that one of these
peers hosts many services, only one of which is annotated using c. As the semantic links
are used to create a SON, which is used for semantic similarity search, installing a link to
such a neighbor would actually be misleading for many of the searches. We deal with this
variability in two main ways. First, we limit the extent of the set sn(p, c) received by p′,
by using a predefined threshold on the minimal number of services that each ng ∈ sn(p, c)
annotates using c. And second, we associate a measure of strength to each new semantic
link p → ng based on the semantic similarity function between the services hosted by p and
ng described in Section 4.4.

Fig. 7 shows the new semantic table (ST ), maintained by each peer in addition to
its finger table and the SAT discussed earlier. The ST in the SON can be seen as the
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counterpart of the finger table for the DHT. In the example in Fig. 7, the ST for peer
N13 stores the semantic link with peer N3 on the concept Automobile Merchant. The
strength of the link is 0.6 obtained by computing RPsim(SP3, SP1). Note that the link is
bidirectional, since in the ST of N3 the link with N13 is also stored. Algorithm 4 describes
the procedure followed to establish semantic links.

Input: A replyToPublisher ⟨idp, SN, c⟩ message ;
dimST : the maximum size of the ST ;
Ths: a threshold to accept a semantic neighbor ;
while |SN | > 0 do1

⟨idp′ , rank(idp′ ,c)⟩ := extractEntry(SN) ;2

if rank(idp′ ,c) ≥ Ths then3

if |ST | = dimST then4

⟨idp̂, ĉ, rank(idp̂,ĉ)⟩ := argmin⟨idp′′ ,c′′,rank(id
p′′ ,c

′′)⟩∈ST rank(idp′′ ,c′′);5

if rank(idp′ ,c) > rank(idp̂,ĉ) then6

ST := ST\⟨idp̂, ĉ, rank(idp̂,ĉ)⟩ ;7

ST := ST
∪
{⟨idp′ , c, rank(idp′ ,c)⟩} ;8

end9

else10

ST := ST
∪
{⟨idp′ , c, rank(idp′ ,c)⟩} ;11

end12

end13

end14

Algorithm 4: Building semantic links

5.3.1. Semantic links maintenance

The construction of a SON brings benefits in terms of service discovery since it allows
one to forward queries more efficiently. However, a SON brings an intrinsic cost of both
construction and maintenance. ERGOT deals with both these aspects in the following way.
The construction of the SON, as discussed earlier, occurs by piggybacking on the service
publishing mechanism provided by the DHT with almost no additional cost. As for semantic
link maintenance, ERGOT relies on a DHT, for which there exists a stabilization protocol to
reorganize keys when peers join or leave the network. Therefore, without loss of generality,
we can see semantic link maintenance in the SON as a similar process to the stabilization
protocol. Indeed, a semantic link maintenance protocol can be run at the same time of the
stabilization protocol by exchanging information between peer to check the value of a link
or whether it is still valid.

5.4. Service query processing

The ERGOT architecture discussed so far enables service discovery based either on the
SON, the underlying DHT overlay or a combination of both. In each case, we assume that
a service query has the form

SQ = ⟨idSQ, idp, R, TTL⟩

where idSQ is a unique id assigned to the query, idp is the id of the peer starting the query,
R is a request of the form R = ⟨C,O⟩ and TTL is the Time-to-Live, which represents the
maximum number of hops that the query can traverse.

The semantic search strategy is straightforward: a peer p that receives a request begins
by matching it within its local service profiles; it then forwards the request over its semantic
links. The peer in order to establish to which semantic neighbors the query has to be
forwarded, computes the similarity between the query and the semantic links in its ST.
Algorithm 5 describes how queries are processed and propagated on the SON. Alternatively,
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Input: SQ = ⟨idSQ, idp, R, TTL⟩ ;
Thf : a forward threshold ;
Output: RES: set of services ranked w.r.t R ;
RES := ∅ ;1

if notAlreadyAnswered(SQ.idSQ) then2

RES := RES
∪

checkLocalAnswers(SQ.R) ;3

if p.id ̸= SQ.idp then4

SQ.TTL := SQ.TTL− 1 ;5

replyMsg(SQ.idp, SQ.idSQ, RES) ;6

end7

if SQ.TTL > 0 then8

foreach c ∈ SQ.R.C do9

foreach sl ∈ ST do10

if Csim(c, sl.c′) · sl.rank > Thf then11

forwardMsg(SQ, sl.idp′) ;12

end13

end14

end15

end16

end17

Algorithm 5: Processing service query

the peer may choose to use the underlying DHT to route the request; this may happen,
for example, when there are no semantic neighbors that satisfy the strength criteria. In
this case, the request becomes a collection of standard get(ci), with ci ∈ R.C ⊆ CO. This
means that, for every CO concept c in a request, a get(c) operation is invoked in the DHT.
The routing in this case involves O(k logN) hops where k is the number of concepts in the
request R. Note that this approach relies on exact matching of concepts, and is similar to
that adopted by the SPiDeR system [28]. However, in ERGOT, upon reaching the peer
responsible for the concept in the request a similarity-based search can additionally be
performed between the request and peer’s service profiles. This allows service profiles to be
ranked as described in Section 4.4.

Returning to our previous example, a peer could perform a request such as get(Automobile
Merchant). The request, through the DHT routing, reaches nodeN13 responsible for the key
associated with the concept Automobile Merchant. At this point, N13, by using function
RPsim can rank and return the services annotated to Automobile Merchant (i.e., SP3, SP1

and SP11). Hence, services annotated to the same category are differentiated, via RPsim,
since they possibly contain different annotations in terms of DO concepts.

6. Evaluation

ERGOT has been evaluated using a custom-made simulator written in Java. The sim-
ulator covers both the DHT publication phase and the SON construction. In the current
implementation, the Chord DHT [33] is used. Fig. 8 shows the architecture of the ERGOT
simulator. A core component of this architecture is the Similarity Assessor, which em-
beds the similarity functions described in Section 4.4. In this implementation, the WordNet
ontology [21] has been used both as Category Ontology (CO) and Domain Ontology (DO).
ERGOT offers both a requester and a provider perspective. Provider peers exploit the
underlying DHT mechanism (i.e., the put(id,object) primitive) to publish services, whereas
service retrieval can be performed by using the DHT, the SON or a combination of both.

6.1. Experimental setup and evaluation methodology

The experiments were focused on evaluating both accuracy-related and traffic-related
performance parameters, which are summarized in Tables 3 and 4, respectively. For a
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Figure 8: ERGOT simulator architecture

Table 3: Accuracy-related parameters
Parameter Meaning

Rs
r Relevant services retrieved

Rs
e Existing relevant services

Rs Service recall =
Rs

r
Rs

e

Table 4: Traffic-related parameters
Parameter Meaning

Rp
c Relevant peers contacted

Np
c Not relevant peers contacted

Rp
e Existing relevant peers

Pp Peer precision =
Rp

c

R
p
c+N

p
c

Rp Peer recall =
Rp

c

R
p
e

Fp Peer F-measure =
2×Pp

c ×Rp
c

Pp+Rp

given query, the basic accuracy-related performance parameters are the number of relevant
services retrieved (Rs

r) and the number of existing relevant services (Rs
e). The service recall

(Rs) is then calculated as the ratio between Rs
r and Rs

e. The basic traffic-related parameters
are the number of relevant peers contacted (Rp

c), and the number of not-relevant peers
contacted (Np

c ).
A peer is said to be relevant if it provides some service matching the query, whereas it

is not relevant if it has been contacted but does not have any service relevant with respect
to the query. Both Rp

c and Np
c are compared to the number of existing relevant peers (Rp

e)
to derive three performance indicators.

• Peer precision (Pp): the ratio of contacted peers relevant to the query.

• Peer recall (Rp): the ratio of the peers relevant to the query that have been successfully
contacted.

• Peer F-measure (Fp): the harmonic mean of peer precision (Pp) and peer recall (Rp).

Each query in each of the considered datasets (see Section 6.2) is executed multiple times
(by 15% of peers) starting each time from a different peer. As the overall result we took
the average values over all the executions.

The parameter values have been trained on a subset of the datasets considered, by
choosing the combination of their values that maximized the achieved recall. There are four
parameters involved in the evaluation. The parameters α, β, and γ are used to weight the
contribution of operation name, inputs, and outputs, respectively. Moreover there is also
the forward threshold th, which is used to decide if a request has to be forwarded to the
semantic neighbors of the peer that receives it. As for the first three parameters, in all the
evaluations we used α+β+γ=1, with α = 0.65. The relatively high value assigned to α was
chosen after having observed that high values for this parameter produce the best results
in terms of recall. The remaining weight (0.35) was equally divided between β and γ, since
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in our experiments we did not observe a significant difference in terms of recall when giving
a higher weight to β or to γ. The threshold th was set to 0.5 in all experiments since it
provided a good trade-off between recall and network traffic.

6.2. Dataset and queryset generation

In order to evaluate ERGOT, a synthetic dataset of annotated services was built by ex-
ploiting the WordNet ontology and WordNet domain [2], which categorizes WordNet synsets
into domains. The categorization into domains of WordNet concepts has been very useful
since we noted that by exploiting a simple annotation generator (i.e., a random concept
generator) it was very common to have service profiles annotated with disparate concepts,
resulting in not reliable datasets. Specifically, for each element of the service profile, one
or more ontology concepts were generated. Four different simulation configurations, sum-
marized in Table 5, were exploited during the evaluation. This allowed us to evaluate the
ERGOT behavior in scenarios characterized by different network sizes and application do-
mains. These simulations are characterized by a different number of services, peers and
size of the (ST ). Note that in Table 5, dim.ST represents the maximum number of entries
that can be stored in the ST and not the number of semantic neighbors. In fact, the ST
can include the same peer several times depending on the particular concept on which the
semantic link has been created (see Algorithm 4).

Table 5: Simulation configurations
Scenario #peers #services dim. ST Domain

Sim1 500 1,000 30 Food

Sim2 1,500 3,000 150 Biology

Sim3 3,000 6,000 300 Commerce

Sim4 5,000 10,000 450 Finance

Table 6: Dataset generation parameters
Parameter Range

# CO annotations 1-5

# of operations 1-3

# of inputs 1-3

# of outputs 1-3

Table 6 summarizes the parameters exploited to generate the service datasets used in
the various simulation configurations. Services are assigned to peers according to a Zipf
distribution with skewing factor equal to 0.5. An additional software module has been
adopted for generating the service requests. Fig. 9 reports the architecture of the software
module exploited to generate the dataset.

WordNet 

Domains
WordNet

Similarity 

Assessor

P&S Similarity MeasureRelevance 

Threshold

Domain

Relevant

Services

Relevant

Peers

Service 

Dataset

Figure 9: Queryset generation

Four different query sets, each containing 20 service requests, were constructed. Each
query is referred to as qX-simY in the following, where X indicates the number of the query
and Y the simulation in which this query is exploited. Therefore, we generated 80 different
queries, 20 for each simulation scenario reported in Table 5.

Each service request is generated and expressed in the same form of a service profile
by specifying a domain and a relevance threshold. The relevance threshold enables us
to construct the relevance set, that is, the set of services that are relevant with respect to
the request. This set is constructed by resolving the request as if services were stored in a
centralized way. Besides, for each relevant service in the relevant set, the set of relevant
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peers, i.e., the set of (provider) peers where the services can be found, is also stored.
This allows us to evaluate the number of relevant and not-relevant peers contacted during
each request. Services are published on the DHT thus enabling the SON construction as
described in Algorithm 4. Hence, each query in the queryset is resolved according to the
ERGOT mechanism described in Algorithm 5.

6.3. Experimental results

In the following we analyze the performance of ERGOT, also compared with that of a
Chord DHT and a Gnutella-like network.

6.3.1. Evaluating ERGOT solo

Figs. 10-13 depict, for each simulation configuration (see Table 5), the average service
recall as a function of the TTL. The value of the TTL used in all the experiments presented
hereafter is equal to 4. Indeed, in our experimental settings, this value permits us to achieve
a good balance between network coverage and generated number of messages. Error bars
represent the 95% confidence interval.
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Figure 10: ERGOT: Rs vs. TTL in Sim1
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Figure 11: ERGOT: Rs vs. TTL in Sim2
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Figure 12: ERGOT: Rs vs. TTL in Sim3
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Figure 13: ERGOT: Rs vs. TTL in Sim4

As can be noted, the recall increases with increasing TTL. In particular, for all the
simulations, it can be noted that with a TTL lower than 3 the recall does not reach significant
values. This is because a low value of TTL does not allow one to contact semantic neighbors,
which are relatively distant from the peers that propagate the query. Moreover, when TTL
is equal to 3 it can be noted that with smaller simulation settings (i.e., Sim1 and Sim2 ) the
values of recall are above 0.50 (i.e., only half the relevant services are returned) whereas,
with larger simulation settings, values reach a maximum of 0.47 (0.4725 for Sim3 and 0.4715
for Sim4 ). More interestingly, with TTL equal to 4 all the simulations seem to converge
toward very good values of recall ranging from 0.801 with Sim1 to 0.745 with Sim4. This
shows that with TTL greater than 3 the system performs well regardless of the size of the
networks and number of services. Moreover, since the evaluations covered different domains,
the performance does not seem to be dependent on a particular dataset.

Figs. 14-17 report the number of relevant (Rp
c) and not-relevant (Np

c ) peers contacted,
out of all the existing relevant peers (Rp

e), for each simulation setting. As shown in the
figures, Np

c is low compared to Rp
c in all scenarios. For example, in Sim1 the average value
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of Np
c over the 20 queries is 14.7, while the average value of Rp

c is 72.6. In Sim2 the average
values of Np

c and Rp
c are 39.2 and 201, respectively. Similar results can be observed in Sim3

and Sim4.
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Figs. 18-21 summarize the peer precision (Pp), recall (Rp) and F-measure (Fp) param-
eters for the various simulations. As can be noted, ERGOT obtained notable results in all
scenarios. In particular, in Sim1, where service profiles have been annotated to concepts in
the Food domain, the values of Fp, which combines Pp and Rp, are always above 0.5. The
lowest value, namely 0.58, is obtained for query q20-sim1. By analyzing the structure of
this query in terms of relevant and not-relevant peers and services, we noted that q20-sim1
is a very selective query in the sense that service profiles related to this query are few. In
particular q20-sim1 has the following structure: 1 CO annotation and 2 operations with 1
input and 1 output respectively. By recalling that the annotations to the CO (see Algorithm
4) are exploited by the semantic-based discovery process, in this case it is only possible to
route the query via the only (or related) concept(s) expressing the CO annotation. This
means that it is very difficult to route the request toward relevant peers since only few
semantic links can be exploited. Despite this, the value of Pp is 0.61 and that of Rp is 0.56.
On the other hand, the highest value of Fp, namely 0.9, is obtained for the query q14-sim1.
In this case, the request contains 4 CO annotations, and then it enables multiples semantic
links to be exploited.

In Sim2, where the dataset contains concepts in the Biology domain, the lowest value of
Fp is 0.68 obtained in query q8-sim2 and query q6-sim2. Also in this case the structure of
the query contained only 1 CO annotation. The highest value of correlation, that is 0.94,
is obtained for query q19-sim2. In this case the query contained 4 CO annotations with 3
operations.

In Sim3, where the domain is Commerce, the lowest value of Fp is 0.56 obtained in
query q19-sim3. In this case Pp is 0.79 and Rp is 0.43. This latter value indicates that the
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Figure 18: ERGOT: Pp, Rp and Fp in Sim1
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Figure 19: ERGOT: Pp, Rp and Fp in Sim2
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Figure 20: ERGOT: Pp, Rp and Fp in Sim3
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Figure 21: ERGOT: Pp, Rp and Fp in Sim4

system correctly contacts 43% of all existing relevant peers. Despite this value, however,
ERGOT is able to retrieve about 77% of all existing relevant services (see Fig. 20). The
remaining part (i.e., 23%) is stored by the relevant peers not contacted. The highest value
of Fp is 0.93 obtained in q10-sim3 with Pp equal to 0.93 and Rp equal to 0.92.

Finally, in Sim4 focused on the Finance domain, the lowest value of Fp is 0.66 obtained
in q17-sim4 where the value of Pp is 0.55 and that of Rp is 0.81. In this case, ERGOT
obtained a low value of peer precision, meaning that the semantic path followed to forward
the request contained several not-relevant peers, which causes a waste of bandwidth. How-
ever, about 81% of all relevant peers have been contacted. In this case, the highest Fp is
0.92 obtained in q6-sim4.

The discussion above results in two main conclusions. On the one hand, having carefully
annotated service profiles provides better results since it enables us to construct a SON with
more and useful semantic links. On the other hand, the performance of ERGOT does not
seem to be affected when the size of the network increases. In fact, the result obtained in
Sim4 are comparable or better than those obtained in Sim1. Besides, the choice to perform
evaluations using different domains confirmed that the performance of the system is not
dataset dependent.

We conclude the evaluation of the traffic-related performance of the system by reporting
in Table 7 the number of duplicate messages for each simulation. A message is considered
to be a “duplicate” the second (or further) time that it passes from the same node. The
“duplicate messages rate” is the percentage of duplicate messages of the total number of
messages, and it is used as an indicator of the bandwidth waste generated by the algorithm.
The duplication rate is low and, as expected, it increases with the size of the simulation
setting. The maximum duplicate rate is 17.4% in the fourth scenario, where the network
is composed by 5000 peers and 10000 services. Overall, it can be observed that ERGOT
obtains significant values of recall in different network configurations. The cost paid in
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Table 7: Duplicate message rates
Simulation Duplicate messages rate (%)

Sim1 3.1

Sim2 5.2

Sim3 8.6

Sim4 17.4

terms of bandwidth waste, given by the duplicate message rate, remains acceptable. This
underlines how the ERGOT approach based on semantic links, which connect peers with
similar peers to form an overlay, is valuable.

6.3.2. ERGOT versus Chord

In this section, the semantic discovery capability of ERGOT is compared with the DHT
exact-matching mechanism implemented by Chord. Figs. 22-25 report the service recall
(Rs) for both ERGOT and the Chord DHT, by considering the simulation scenarios de-
scribed in Table 5. The evaluation was performed by using the standard get(key) primitive
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Figure 22: ERGOT vs. DHT: Rs in Sim1
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Figure 23: ERGOT vs. DHT: Rs in Sim2
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Figure 24: ERGOT vs. DHT: Rs in Sim3
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Figure 25: ERGOT vs. DHT: Rs in Sim4

for Chord, where key is the hash value of the CO concept in the request. In the case of
multiple CO concepts, multiple get(key) operations are executed and, as final result, the
union between all the retrieved service profiles is considered.

As can be observed, in all the scenarios ERGOT obtained values of recall significantly
higher than those obtained by Chord. This is mainly due to the fact that Chord is able
to perform only exact lookup, which is a significant limitation when performing semantic-
based service discovery where users can express more general requests. Table 8 reports the
average values of service recall (i.e., Rs) for each of the simulation scenarios for ERGOT
and Chord. As can be noted, the difference between the two systems remains quite constant

26



Table 8: Average Rs in the four simulation scenarios
Simulation ERGOT Rs Chord Rs

Sim1 0.8 0.16

Sim2 0.72 0.16

Sim3 0.74 0.15

Sim4 0.74 0.17

in the various simulation. Chord obtained almost the same Rs value (around 0.16) in all
the scenarios. ERGOT obtained Rs values ranging from 0.72 to 0.8. ERGOT enables us
to rank results and, therefore, in case several services match the user request in terms of
CO annotations, these can be further differentiated on the basis of the extent to which they
match also in terms of operations with related input and outputs.

This is not the case for Chord, where services can only “exactly” be matched by ex-
ploiting CO annotations. The above discussion is meant to underline how Chord, and any
DHT in general, is not appropriate for performing semantic-based service discovery where
a service requester does not know exactly what s/he wants in the sense that s/he can also
be interested in services semantically similar to the request. On the other hand, if we con-
sider the number of messages used to perform service discovery, while Chord has an upper
bound given by O(logN), where N is the number of nodes, ERGOT does not have such
property since semantic links are obtained by a criterion of semantic similarity and not
algorithmically as in Chord where each peer maintains O(logN) neighbors. In particular,
the process needed to build a SON can be very costly in terms of number of messages since
each peer has to discover in some way the “most similar” peers to establish semantic links
with. However, in the case of ERGOT, the usage of Chord enables us to automatically
build the SON by exploiting the normal service publishing activity in the DHT.

6.3.3. ERGOT versus Gnutella-like networks

This section compares ERGOT with an unstructured network (in the manner of Gnutella)
in terms of service recall (Rs). This has been done with the aim of further investigating
how semantic links affect the performance as compared to links built without taking into
account semantics. For each simulation scenario, we constructed an unstructured network
with the same average degree per node as that of ERGOT expressed via semantic neigh-
borhood relations. For each configuration scenario, the comparison between ERGOT and
Gnutella was done as follows. First, we ran the search using ERGOT and measured its
performance parameters (service recall, peer precision, etc.) as well as the number n of
messages generated by the discovery process. Secondly, we ran the search using Gnutella,
but we stopped the algorithm as soon as n messages were generated; thus, the performance
parameters of Gnutella were measured at the time of this stop. This approach was necessary
because using the Gnutella flooding technique we would have obtained, in most scenarios,
100% service recall but with a huge number of messages, which would have made the dis-
cussion of the comparison between the two algorithms very poor. Figs. 26-29 report the
result of the evaluation for each configuration scenario.

As can be noted in all the simulations, ERGOT achieves higher values of Rs compared
to a Gnutella-like network. In Sim1, the highest value of Rs reached by ERGOT is 0.954
in q6-sim1, where Gnutella reaches 0.599. Gnutella achieved the best Rs, that is 0.801,
in q11-sim1 where ERGOT obtained 0.812. In q6-sim1, while using the same number of
messages, ERGOT is better than Gnutella by about 59%. In q11-sim1 the two approaches
are quite close, which means that the unstructured topology, with respect to q11-sim1, is
comparable to the semantic topology built by ERGOT.

In Sim2, ERGOT achieves the highest Rs (0.843) in q13-sim2. Gnutella obtained 0.434
for the same query. Also in this case, the semantic approach followed by ERGOT brings
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Figure 26: ERGOT vs. Gnutella-like: Rs in Sim1
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Figure 27: ERGOT vs. Gnutella-like: Rs in Sim2
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Figure 28: ERGOT vs. Gnutella-like: Rs in Sim3
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Figure 29: ERGOT vs. Gnutella-like: Rs in Sim4

better results. The lowestRs, namely 0.609, is obtained in q4-sim2 where Gnutella obtained
0.501. Notable is the difference between the two systems in Sim3, where the average value
of Rs is 0.74 and 0.52 for ERGOT and Gnutella, respectively. In this case the improvement
obtained using ERGOT is about 42%. Finally, in Sim4 the average Rs is 0.74 for ERGOT
and 0.60 for Gnutella, respectively. In this latter scenario, the most notable difference can
be noted for q20-sim4 where ERGOT obtained a value of Rs equal to 0.83 while Gnutella
obtained 0.45.

The results above underline how the semantic-driven routing of the queries adopted in
ERGOT brings better results. The Sim3 and Sim4 configurations, which are characterized
by a larger number of peers and services than Sim1 and Sim2, demonstrate that ERGOT
performs well even in large network scenarios. This is particularly clear from the q20-sim4
results, where ERGOT almost doubles the service recall.

As a final evaluation, we assessed the traffic-related parameters for Gnutella in Sim4,
which is the largest configuration on which ERGOT has also been evaluated (see Figs. 17 and
21). In particular, Fig. 30, shows the number of relevant and not-relevant peers contacted
over all the existing relevant peers, while Fig. 31 shows the peer precision, recall and F-
measure.

By comparing the results shown in Fig. 30 (Gnutella-like) with those presented in Fig. 17
(ERGOT), we observe that a Gnutella-like network contacts a significantly higher number
of not-relevant peers as compared to ERGOT, for all the queries considered. Since the total
number of messages used by Gnutella and ERGOT was fixed in our simulations, Gnutella
contacts a lower number of relevant peers as compared to ERGOT. This leads to poor
performance of Gnutella as compared to ERGOT in terms of peer precision (Pp), recall (Rp),
and F-measure (Fp), as can be observed by comparing the results in Fig. 31 (Gnutella-like)
with those presented in Fig. 21 (ERGOT) and discussed earlier. In particular, we observe
that the average value of (Fp) over all the 20 queries is 0.80 for ERGOT, while it is only 0.57
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Figure 31: Gnutella-like: Pp, Rp and Fp in Sim4

for Gnutella. From the results discussed above, we conclude that by exploiting semantic
links, as is done in ERGOT, the search performance improves significantly as compared to
the use of semantic-free links as in Gnutella-like overlays, in terms of both accuracy and
network traffic.

7. Concluding Remarks and Future Research Directions

DHT-based systems allow for performing exact-match searches with logarithmic perfor-
mance bounds, but do not fit well with semantic similarity search models, where services are
described using multiple annotations. The ERGOT system proposed in this paper enables
semantic-driven query answering in DHT-based systems by building a SON over a DHT.
The SON in ERGOT is built incrementally, as a result of peer interactions that occur nat-
urally in DHTs during advertising of a new service description, as well as during search. To
enable semantic service matchmaking over the resulting DHT/SON network, a measure of
semantic similarity between service descriptions has been also defined. The strategy imple-
mented in the ERGOT system has been extensively evaluated in different network scenarios
and it has been compared to Chord and Gnutella strategies. Experimental results demon-
strate the efficiency of the combined DHT and SON strategy in terms of both accuracy of
search and network traffic.

There are some aspects that provide room for future work. First, it would be worth
investigating and comparing different strategies to perform service matchmaking. Even if
service matchmaking is not the main aim of the present paper, it can be worth investigating
how to combine similarity-based matchmaking with other indicators such as quality of
service. Another interesting topic for future research is the ability to work with multiple
ontologies, where peers have their own ontologies to annotate service profiles. In this case, a
strategy to perform ontology matching has to be adopted. In this respect, the combination
of DHTs and SONs could be useful since it can be exploited to create a distributed registry
of matchings to which peers in the network can refer to link their own ontologies with similar
ones.
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