
Scalable asynchronous execution of cellular automata
Gianluigi Folino, Andrea Giordano, and Carlo Mastroianni

Citation: AIP Conference Proceedings 1776, 080006 (2016); doi: 10.1063/1.4965363
View online: http://dx.doi.org/10.1063/1.4965363
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1776?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Synchronization in asynchronous cellular automata evaluated by local active information storage
AIP Conf. Proc. 1648, 580014 (2015); 10.1063/1.4912822

On the topological sensitivity of cellular automata
Chaos 21, 023108 (2011); 10.1063/1.3535581

A cryptosystem based on cellular automata
Chaos 8, 819 (1998); 10.1063/1.166368

Internal symmetries of cellular automata
Chaos 7, 447 (1997); 10.1063/1.166217

Traveling patterns in cellular automata
Chaos 6, 493 (1996); 10.1063/1.166190

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 160.97.52.242 On: Thu, 27 Oct 2016 12:42:20

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=Gianluigi+Folino&option1=author
http://scitation.aip.org/search?value1=Andrea+Giordano&option1=author
http://scitation.aip.org/search?value1=Carlo+Mastroianni&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4965363
http://scitation.aip.org/content/aip/proceeding/aipcp/1776?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4912822?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/21/2/10.1063/1.3535581?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/8/4/10.1063/1.166368?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/7/3/10.1063/1.166217?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/6/3/10.1063/1.166190?ver=pdfcov

Scalable Asynchronous Execution of Cellular Automata

Gianluigi Folino, Andrea Giordanoa) and Carlo Mastroianni

ICAR-CNR, via P. Bucci Cubo 7-11b, 87036 Rende (CS), Italy

a)Corresponding author: giordano@icar.cnr.it
e-mail: {folino,giordano,mastroianni}@icar.cnr.it

Abstract. The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the
necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at
all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing
only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous
in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural
phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data
and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but
only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application
execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation
of cellular automata, when compared to the classical all–to–all synchronization pattern. The performance and scalability have
been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We
examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region
is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results
show that the advantage obtained through the asynchronous execution, when compared to the all–to–all synchronous approach is
notable, and it can be as large as 90% in terms of speedup.

A PETRI NET FOR THE PARALLEL EXECUTION OF CELLULAR AUTOMATA

In a parallel execution context, a cellular automata can be partitioned by considering a mono-dimensional or a two-
dimensional partitioning schema. The assignment of computation to the nodes follows the space partitioning[1][2]:
each partition of the territory, or “region”, can be assigned to a different computing node, which is in charge of
executing the transition rules of all the cells belonging to this specific region. The transition rule of a cell is evaluated
on the basis of the states of its neighboring cells. Hence, to execute the transition rules of the cells located in the
borders of a region, information must be received from the adjacent computing nodes. For this reason, each node must
synchronize with the neighboring nodes.

This parallel execution pattern, including the synchronization, can be expressed by using the Petri net model.
Figures 1(a) and 1(b) illustrate the mono-dimensional scenario, for the case that the territory is partitioned into six
regions, and the execution is parallelized on six nodes. Six Petri net transitions, labeled as N1–N6, are associated
with the nodes, and the firing of a transition corresponds to the execution of the computation at the corresponding
node. Every transition is connected by inbound arcs to three input places, and in accordance to Petri net rules [3], the
transition is enabled, and the computation can start, if all the input places hold at least one token. When a transition
fires (i.e., the computation is performed at the current step), one token is consumed at each input place, and one token
is produced on each of the output places, i.e., the places connected to the three outbound arcs leaving the transition.
One of these output places coincides with the input place of the same transition. The other two output places are
input places of the two neighboring nodes: the production of a token in these two places models the transmission of
the state of the edge cells of this region to the neighboring nodes and the permission, to such nodes, to execute their
computation at the next time step. The two transitions that correspond to the two extreme regions (on the left and on
the right) of the partitioned cellular automata are modeled differently in order to consider that these regions have only
one neighbor. Indeed, as it can be seen in Fig. 1, only two outbound arcs depart from those transitions.

Numerical Computations: Theory and Algorithms (NUMTA–2016)
AIP Conf. Proc. 1776, 080006-1–080006-4; doi: 10.1063/1.4965363

Published by AIP Publishing. 978-0-7354-1438-9/$30.00

080006-1

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 160.97.52.242 On: Thu, 27 Oct 2016 12:42:20

N1 N2 N3 N4 N5 N6

(a) All the nodes are ready to execute.

N1 N2 N3 N4 N5 N6

(b) After execution at N3, N4 and N5. N1, N2, N4 and N6 are

ready to execute, while N3 and N5 must wait for the execution at

nodes N2 and N6, respectively.

FIGURE 1. Petri net representing the computation at six parallel nodes, in the case of mono-dimensional partitioning.

Figure 1(a) represents the state of the Petri net when all the transitions are enabled, i.e., all the nodes are ready to
begin the execution of the current step. The ability to perform the computation is represented by the presence of a red
border on the square representing the transition. Figure 1(b) represents the situation after the execution of nodes N3,
N4 and N5. N4 is now enabled to execute, because it has performed the previous computation and has received the
state of the edge cells from its neighboring nodes N3 and N5. In the Petri net model, this corresponds to the presence
of three new tokens at the input places of N4, which means that the synchronization barrier which precedes the next
computation at node N4 has been successfully passed. It is also noticed that nodes N3 and N5 are not yet enabled
because they are still waiting for the completion of the computation at nodes N2 and N6, respectively. The case of
all–to–all synchronization among N nodes, where each node needs to receive information from all the other nodes, is
modeled with each transition having N input places, and N outbound arcs connected to all the N nodes.

The Petri net model highlights the advantage of relaxing the synchronization requirements with respect to the
classical parallel computation model for cellular automata, in which the synchronization involves all the nodes. When
a node needs to synchronize with a limited number of neighboring nodes, different nodes are allowed to execute
different time steps. For example, each node can be one step ahead than its direct neighbors, and the gap between the
time steps executed by the two nodes located at the two ends of the cellular automata can be as large as N. This is a
notable advantage in the case that the computation time varies from node to node and from step to step. The advantage
resides in the fact that a longer execution time at one node does not slow down the execution at all the other nodes,
but only at the neighboring nodes. As an example, if the nodes located at one end are slower for a period of time, the
nodes located at the other end can proceed and execute some additional time steps. In the future, the nodes that are
some steps behind can become faster and reach the other nodes, and so on. Overall, this allows the global computation
to proceed faster, as will be shown in the next section, devoted to performance results.

The Petri net model can be used also to represent the two-dimensional partitioning schema. Figure 2 contains
a portion of the Petri net model, which highlights that the execution at the central node requires the reception of
information by the eight adjacent nodes.

RESULTS FOR MONO- AND TWO-DIMENSIONAL SPACE PARTITIONING

A cellular automata is defined through the transition functions executed by the cells that compose the lattice. A
transition function executed on a cell uses data coming from the adjacent cells and, at the end of execution, updates
the state of the local cell. In general, all the cells execute the same function, even if this is not true in the case of
heterogeneous cellular automata. In both cases, however, transition functions of different cells can experience different
execution times. Many CA-based distributed frameworks [4] [5] can be used to simulate many complex real world
problems such as landslide evolution, lava flows, floods, etc. over distributed architectures. However, with these tools,
computation is synchronized at each time-step in an all–to–all fashion, differently from our model that only requires
the synchronization among neighboring nodes.

FIGURE 2. Portion of a Petri net representing the computation in the case of two-dimensional partitioning.

080006-2

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 160.97.52.242 On: Thu, 27 Oct 2016 12:42:20

In this section, we consider the case in which all the cells execute the same transition function. Even with this
assumption, the execution time varies from node to node and with time: it depends on the substates and on the
interaction of the cell itself and can also depend on the workload assigned to the different nodes of the automata. We
assume here that the execution time is a random variable with a Gamma distribution. This a quite general assumption
since the Gamma distribution, depending on the value of the shape parameter, can represent different types of well-
known distributions: e.g., with a shape value equal to one, the Gamma distribution corresponds to an exponential
distribution, while with higher values of the shape it has a pdf similar to that of the normal distribution.

The results have been obtained in two ways: by using the well-known Petri net simulator Yasper
(http://www.yasper.org/), specifically its “automatic simulation” tool, and through an ad hoc simulator written in
Matlab, which reproduces the same behavior of the Petri net model. Results were found statistically identical, with
a correlation factor always larger than 0.99. Furthermore, some assumptions were considered in order to simplify
the analysis: (i) all the nodes have the same computational power; (ii) the communication overhead needed to com-
municate the borders’ state to the neighboring nodes is negligible w.r.t. the computation time. The latter assumption
is realistic in the case that the amount of data needed from neighboring cells is limited. The cases in which these
assumptions are not valid are left for future work.

We considered two scenarios for space partitioning: mono-dimensional partitioning and two-dimensional par-
titioning. In the second scenario, we assume that the number of horizontal and vertical partitions is the same, and
therefore the number of regions is a square. The average execution time of a node is obtained by dividing the average
serial time – i.e., the average time needed to execute all the automata on a single node – by the number of partitions.
The serial execution time is assumed to be one minute. For both the scenarios, we varied the number of nodes and
computed two indexes: the average time needed to execute a single step on all the nodes, referred to as Tstep and the
speedup. Furthermore, we compared the all–to–all synchronization approach (each node needs to wait the execution
at all the other nodes before advancing at the next step) and the approach discussed here. In the figures, these two
approaches are referred to as “Sync” and “Async”, respectively.

Figure 3 illustrates the results (Tstep and speedup) for the mono-dimensional partitionining, when varying the
number of nodes. Four different values of the standard deviation of the Gamma distribution were used, from 20
seconds to 60 seconds, in order to consider less or more stable transition functionsa. The speedup is computed using
the well-known formula S = Ts/Tp, where Ts is the serial time and Tp is the time necessary to execute the automata on
p nodes; it is worth noticing that in the ideal case, the speedup is equal to p, i.e., the number of nodes. It is noticed that
the asynchronous approach (continuous lines) performs considerably better than the synchronous approach (dashed
lines) for each value of the standard deviation.

As expected, the speedup value is lower when the synchronization delays are higher, i.e., when the variability
of execution time is higher. However, the advantage of using the asynchronous approach is more remarkable when

Number of nodes
1 4 9 16 32 64

M
in

ut
es

0.1

1.0
Async Std. Dev.=60s
Async Std. Dev.=40s
Async Std. Dev.=30s
Async Std. Dev.=20s
Sync Std. Dev.=60s
Sync Std. Dev.=40s
Sync Std. Dev.=30s
Sync Std. Dev.=20s

(a) Values of Tstep.

Number of nodes
1 4 9 16 32 64

Sp
ee

du
p

5

10

15

20

25

30

35

40

45

50
Async Std. Dev.=60s
Async Std. Dev.=40s
Async Std. Dev.=30s
Async Std. Dev.=20s
Sync Std. Dev.=60s
Sync Std. Dev.=40s
Sync Std. Dev.=30s
Sync Std. Dev.=20s

(b) Values of speedup.

FIGURE 3. Mono-dimensional partitioning: Tstep and speedup vs. the number of nodes. The automata is equally partitioned among
all the nodes. Results are given for the “Synch” and “Asynch” approaches, and for different values of the standard deviation.

aThe shape value of the Gamma distribution can be obtained as μ2/σ2, where μ is the average and σ is the standard deviation.

080006-3

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 160.97.52.242 On: Thu, 27 Oct 2016 12:42:20

Number of nodes
1 4 9 16 25 64

M
in

ut
es

0.1

1.0
Async Std. Dev.=60s
Async Std. Dev.=40s
Async Std. Dev.=30s
Async Std. Dev.=20s
Sync Std. Dev.=60s
Sync Std. Dev.=40s
Sync Std. Dev.=30s
Sync Std. Dev.=20s

(a) Values of Tstep.

Number of nodes
1 4 9 16 25 64

Sp
ee

du
p

5

10

15

20

25

30

35

40

45

50
Async Std. Dev.=60s
Async Std. Dev.=40s
Async Std. Dev.=30s
Async Std. Dev.=20s
Sync Std. Dev.=60s
Sync Std. Dev.=40s
Sync Std. Dev.=30s
Sync Std. Dev.=20s

(b) Values of speedup.

FIGURE 4. Two-dimensional partitioning: Tstep and speedup vs. the number of nodes. The automata is equally partitioned among
all the nodes. Results are given for the “Synch” and “Asynch” approaches, and for different values of the standard deviation.

the variability is higher. For example, with 64 nodes and standard deviation equal to 20 seconds, the speedup value
increases from 33.3 (synchronous approach) to 46.1 (asynchronous approach), thus the improvement is 38.4%. With
the same number of nodes and standard deviation equal to 60 seconds, the speedup value increases from 14.3 to 27.3,
with an improvement of 90.9%.

Figure 4 shows the values of Tstep and speedup for the case of the two-dimensional partitioning. Similarly to
the mono-dimensional case, the improvement obtained with the asynchronous approach is remarkable, and it in-
creases with the variability of the execution time. We also notice that the speedup decreases with respect to the mono-
dimensional partitioning. For example, in the scenario with 64 nodes, standard deviation equal to 20 seconds, and asyn-
chronous approach, the speedup is 39.3 with two-dimensional partitioning, while it is 46.1 with mono-dimensional
partitioning. The reason is that with two-dimensional partitioning, a node has to synchronize with eight neighboring
nodes instead of only two as in the mono-dimensional case.

CONCLUSIONS AND FUTURE WORK

This is a preliminary study about the advantage that can be obtained when relaxing the all–to–all synchronization ap-
proach typically used in parallel cellular automata. We consider the case in which the cellular automata is parallelized
with mono-dimensional or two-dimensional partitioning, and each partition only synchronizes with its adjacent par-
titions before advancing to the next execution step. This asynchronous approach leads to significant benefits, which
increase with the variability of the execution times. The advantage in terms of speedup is as high as 90%. In this work,
we have assumed that the amount of overhead related to communication is negligible with respect to the computation
time, and that the computational load is uniformly distributed over the cells of the automata. Future work intends to
investigate what happens when these assumptions do not hold.

REFERENCES

[1] F. Cicirelli, A. Forestiero, A. Giordano, C. Mastroianni, and G. Spezzano, “Parallel execution of space-aware
applications in a cloud environment,” in 24th Euromicro Int. Conf. on Parallel, Distributed, and Network-
Based Processing, PDP 2016, Heraklion, Greece (2016), pp. 686–693.

[2] F. Cicirelli, A. Forestiero, A. Giordano, and C. Mastroianni, ACM Transactions on Autonomous and Adaptive
Systems 11 (2016).

[3] J. L. Peterson, ACM Comput. Surv. 9, 223–252 (1977).
[4] G. Folino and G. Spezzano, Future Generation Comp. Syst. 23, 671–679 (2007).
[5] G. Folino, A. Forestiero, G. Papuzzo, and G. Spezzano, Future Generation Comp. Syst. 26, 87–96 (2010).

080006-4

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 160.97.52.242 On: Thu, 27 Oct 2016 12:42:20

http://dx.doi.org/10.1145/2897373
http://dx.doi.org/10.1145/2897373
http://dx.doi.org/10.1145/356698.356702
http://dx.doi.org/10.1016/j.future.2006.11.003
http://dx.doi.org/10.1016/j.future.2009.08.002

