
A Data Mining Ontology for Grid Programming

Mario Cannataro1 and Carmela Comito2

1University “Magna Græcia” of Catanzaro, Via T. Campanella 115,
88100 Catanzaro, Italy
cannataro@unicz.it

2 University of Calabria, Via P. Bucci 41/c,

87036 Rende, Italy,
comito@si.deis.unical.it

Abstract. The Grid is an integrated infrastructure for coordinated resource shar-
ing and problem solving in distributed environments. The effective and efficient
use of stored data and its transformation into information and knowledge will be
a main driver in Grid evolution. The use of ontologies to describe Grid resources
will simplify and structure the systematic building of Grid applications through
the composition and reuse of software components and the development of
knowledge-based services and tools. The paper presents an ontology for the
Data Mining domain that can be used to simplify the development of distrib-
uted knowledge discovery applications on the Grid, offering to a domain expert
a reference model for the different kind of data mining tasks, methodologies and
software available to solve a given problem, helping a user in finding the most
appropriate solution. How the DAMON ontology is used to enhance the design
of distributed data mining applications on the KNOWLEDGE GRID is also shown.

1 Introduction

The word “ontology” has a long history in philosophy, in which it refers to the subject
of existence. According to the Gruber [6] definition, “an ontology is a specification of
a conceptualization”. What is important is what an ontology is for. Usually ontologies
are defined for the purpose of enabling knowledge sharing and reuse, in a way that
semantic is independent of reader and context.

Ontologies are used for [27]:
• communication between implemented computational systems, between humans or

between humans and implemented computational systems;

• computational inference, e.g. for internally representing and manipulating plans
and planning information, and for analyzing the internal structures, algorithms, in-
puts and outputs of implemented systems in theoretical and conceptual terms;

• reuse and organization of knowledge, e.g. for structuring and organizing libraries or
repositories of plans and planning and domain information.

The emerging discipline of “ontological engineering” has the goal to support on-
tology development and use throughout its entire life cycle – the design, evaluation,
validation, maintenance, deployment, mapping, integration, sharing and reuse of on-
tologies within intelligent systems.

The Grid is an integrated infrastructure for coordinated resource sharing and prob-
lem solving in distributed environments. Grid applications often involve large amounts
of data and/or computing, and are not easily handled by today’s Internet and Web
infrastructures [7]. Since their birth, Grids have traversed different phases or genera-
tions [8]. In the early 1990s, first-generation Grids (Computational Grids) allowed to
interconnect large supercomputing centers. Second-generation Grids are characterized
by their capability to link more than just few regional or nation-wide supercomputing
centers, and by the adoption of standards (such as HTTP, LDAP, PKI, etc.) that en-
able the deployment of global-scale computing infrastructure. The motivation for third-
generation or next -generation Grids [15] is to simplify and structure the systematic
building of Grid applications through the composition and reuse of software comp o-
nents and the development on knowledge-based services and tools .

The Open Grid Services Architecture, the Semantic Grid and Knowledge Grids are
the most promising approaches towards next -generation Grids.

Following the trend emerged in the Web community, the Open Grid Services Archi-
tecture (OGSA) introduced service orientation in Grids, leveraging the results of Web
Services [10, 11]. A Grid Service is a Web Service that conforms to a set of conven-
tions for the controlled, fault resilient and secure management of stateful services and
exposes capabilities via standard interfaces.

The Semantic Grid is an initiative of the UK EPSRC/DTI Core e-Science Program
that aims to incorporate the Semantic Web approach (systematic description of re-
sources through metadata and ontologies, and provision for basic services about
reasoning and knowledge extraction), into the Grid [9]. The research issues of the
Semantic Grid covers many aspects of the next -generation Grids: i) full support of the
three recognized layers composing a Grid, i.e. computation/data layer, information
layer (where information id obtained from data), and knowledge layer (where knowl-
edge can be used to take decision); and ii) provision of seamless, pervasive and se-
cure use of resources.

Knowledge Grids offer high-level tools and techniques for the distributed mining
and extraction of knowledge from data repositories available on the Grid, thus they
realize the higher layer of the Grid architecture [12, 13]. Main issues for the develop-
ment of the knowledge layer in Grids are: i) synthesizing useful and usable knowledge
from data, and ii) leveraging the Grid infrastructure to perform sophisticated data-
intensive large-scale computation. The integration of knowledge discovery techniques
(mainly based on Data Mining) in Grid environments must pass through a unambigu-
ous representation of the knowledge base (through metadata and ontologies) needed

to translate moderately abstract domain-specific queries into computations and data
analysis operations able to answer such queries by operating on the underlying sys-
tems. The KNOWLEDGE GRID is a joint research of ICAR-CNR, University of Calabria,
and University of Catanzaro, Italy, aiming at the development of an environment for
geographically distributed high-performance knowledge discovery applications [14].

Along these recent trends in the development of the Grid, this paper presents the
design and development of an ontology for the Data Mining domain whose main goal
is to easy the development of distributed knowledge discovery applications on the
Grid. The development of KDD (Knowledge Discovery in Databases) applications
usually requires the joint work of technology (data mining) and domain (application)
experts. The main goal of the proposed ontology is to offer to a domain user a refer-
ence model for the different kind of data mining tasks, methodologies and software
available to solve a given problem, helping him/her in finding the most appropriate
technological solution.

The paper presents DAMON (DAta Mining ONtology), an ontology for Data Min-
ing domain, and its DAML+OIL implementation. Moreover, the architecture and main
functions of DAMON-MAP, a Java-based tool for ontology browsing and querying, is
also described. The use of DAMON is exemplified in the design of distributed KDD
applications on the KNOWLEDGE GRID.

The rest of the paper is organized as follows. Section 2 introduces ontology basic
definitions. Section 3 describes the design and implementation of DAMON. Section 4
describes architecture and main functionalities of DAMON-MAP, a tool for ontology
browsing and querying. Section 5 shows how the DAMON ontology and its tool can
be used to enhance the component-based design of KDD applications on the
KNOWLEDGE GRID. Finally, Section 6 draws conclusions and future work.

2 What is an Ontology?

The word ontology came from philosophy. From a philosophical viewpoint, “Ontol-
ogy” (without the indeterminate article and with the uppercase initial) is the branch of
philosophy which deals with the nature and the organization of reality [19].

At the computer science domain, ontologies aim at capturing domain knowledge in
a generic way and provide a commonly agreed understanding of a domain, which may
be reused and shared across applications and groups [20]. Ontologies provide a com-
mon vocabulary of an area and define the meaning of the terms and the relations be-
tween them.

We refer to term Ontology as the shared understanding of some domains of inter-
est, which is often conceived as a set of classes (concepts), relations, functions, axi-
oms and instances. Concepts in the ontology are usually organised in taxonomies.

3 DAMON: a DAML+OIL Ontology for Data Mining

This Section presents the design and development of DAMON (DAta Mining ONtol-
ogy), an ontology for Data Mining domain. After a brief introduction of main tasks and
goals of Data Mining applications, we show an abstract specification of the ontology
and its implementation in DAML+OIL, a commonly used ontology language.

3.1 DAML+OIL Ontology Language

DAML+OIL [22, 3] is an ontology language designed for the Web built upon XML
and RDF.

DAML+OIL is modelled through an object-oriented approach, and the structure of
the domain is described in terms of classes and properties. DAML+OIL classes can be
names (URIs) or expressions and a variety of constructors are provided for building
class expressions. The axioms supported by DAML+OIL makes it possible to assert
subsumption or equivalence with respect to classes or properties, the disjoint ness of
classes, the equivalence or non-equivalence of individuals, and various properties of
properties. Classes can be combined using conjunction, disjunction and negation.
Within properties both universal and existential quantification are allowed, as well as
more exact cardinality constraints. Range and domain restrictions are allowed in the
definition of properties, which themselves can be arranged in hierarchies.

DAML+OIL supports two kinds of reasoning tasks:
• The automatic determination of subsumption between compositional descrip-tions.

Given two conceptual definitions A and B, we can determine whether A subsumes
B, in other words whether every instance of B is necessarily an instance of A.
Consequently, a collection of conceptual definitions can be organized into a multi-
axial classification based on the subsumption relation inferred by reasoning about
the definitions of the concept expressions.

• A concept satisfiability test on an arbitrary lass expression to test for its logical
coherency with respect to the concepts in the ontology.

We used the OilEd [5] graphical tool for developing the ontology. OilEd is a simple
ontology editor that supports the construction of OIL/DAML+OIL-based ontologies.
Basic OilEd functionalities allow the definition and description of classes, properties,
individuals and axioms through graphical means. OilEd uses FaCT reasoner which
allows the user to produce classification hierarchies and check classes for inconsis-
tency.

3.2 Data Mining and Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is “the non trivial process of identifying
novel, potentially useful, and ultimately understandable patterns in data” [29]. KDD
is an iterative and interactive process involving many steps, where Data Mining is an

essential phase of the overall process. Data Mining (DM) refers to the algorithms and
methodologies used to extracts patterns or models from observed data.

The main steps of (distributed) KDD are the following [23]:
1. Data cleaning is the removal of irrelevant data from data sources.
2. Data integration, is the combination of multiple, often heterogeneous data sources,

that hides their heterogeneity and availability. The data cleaning and integration of-
ten results in a central data warehouse.

3. Data transformation, i.e. the data sources are optionally transformed and consoli-
dated for mining, for example through aggregation and summarization.

4. Data selection is the extraction of the data relevant to the analysis from the data
sources. It depends by the type of analysis being conducted and by the data min-
ing algorithm used.

5. Data mining, i.e. the application of data mining algorithms on the cleaned, filtered
and optionally integrated data sources, to discover new patterns and models. In
distributed data mining, models and patterns can be built by combining partial re-
sults coming from different DM processes.

6. Pattern evaluation, where the truly interesting and useful patterns/models are se-
lected on the basis of some interestingness measure.

7. Knowledge presentation, the extracted knowledge is represented and visualized to
the user in an understandable manner, using visualization and representation tech-
niques.
The steps 1 to 4 can be viewed as a pre-processing phase and usually in a tradi-

tional environment they are conducted once, prior to start analysis, and need not to be
repeated. Step 5 is the core execution phase, and usually is conducted in a iterative
and interactive way, finally, steps 6 and 7 constitute the analysis and visualization
phase. In this paper we focus on the modelling of the core execution phase (data min-
ing), in the future we plan to model the entire KDD process.

3.3 DAMON Design

A domain ontology is a conceptualization of an application domain described through
a set of classes (concepts) and their hierarchical relationships. Such kind of ontology
is frequently used as a classification system. Several methodologies for developing
ontologies have been defined [24], here we have adopted the “Enterprise Methodol-
ogy” which comprises the following steps.

The first step in the ontology development is the definition of the domain and
scope of the ontology itself: in our scenario the ontology will cover the Data Mining
domain. To build a consistent ontology model it is necessary to establish for what we
are going to use the ontology and for what types of questions the information in the
ontology should provide answer. The choice of how to structure an ontology deter-
mines what a system can know and reason about. We have built our ontology through
a characterization of data mining software that is classified on the basis of some pa-
rameters useful to select the more ones software to solve a KDD problem. The need to
characterize the data mining domain arises in the context of our work on the KNOWL-

KNOWLEDGE GRID: we would like to help and guide the KNOWLEDGE GRID user in the
visual composition of data mining applications.

The main goals of the proposed ontology are (see later):
• to allow the semantic search (concept-based) of data mining software and others

data mining resources;
• to assist the user suggesting him/her the software to use on the basis of the user’s

requirements/needs.
The second step identifies key concepts and properties. To this end it is useful to

write down a list of all terms we would like either to make statements about or to ex-
plain to a user, establishing what we would like to say about those terms and what
properties those terms should have. A top-down development process that starts with
the definition of the most general concepts in the domain and subsequent specializa-
tion of the concepts has been adopted. In fact, we first defined classes for the general
data mining concepts, and then we specialised them.

As we just said the ontology should represent the features of the available data
mining software, classifying their main components and evidencing the relationships
and the constraints among them. The categorization of the data mining software has
been made on the basis of the following classification parameters:
• the data mining task performed by the software, e.g. the results produced or the

knowledge discovered;
• the type of methodologies that the software uses in the data mining process;
• the kind of data sources the software works on;
• the degree of required interaction with the user, e.g. if the mining process is com-

pletely autonomous, or if it requires the user intervention.
On the basis of those parameters important terms related to data mining will include:

Task , Method, Algorithm, Software, Suite, Data Source, Human Interaction.
• A (data mining discovery) Task represents a data mining technique for extracting

patterns from data; it is the knowledge discovery task that the software is in-
tended for. In other words a task specifies the goal of a data mining process.

• A Method is a data mining methodology used to discover the knowledge; differ-
ent methods serve different purposes. It can be thought as a structured manipula-
tion of the input data to extract knowledge.

• An Algorithm is the way through which a data mining task is performed.
• A Software is an implementation (in a programming language) of a data mining

algorithm.
• A Suite implements a set of data mining algorithms: every algorithm may perform

different tasks and employ different methods to achieve the goal.
• Data Source is the input on which data mining algorithms work to extract new

knowledge.
• Human Interaction specifies how much human interaction with the discovery

process is required and/or supported.
Once we have defined the basic concepts, we must describe their internal structure

by means of properties. Considering the data mining domain the types of object prop-
erties in the ontology could be:

• “extrinsic” properties usually refer to a peculiar property of a concept. An extrin-
sic property could be the computational complexity (e.g., belonging to P or NP,
upper and lower bounds, etc.) of an algorithm.

• “part”, if the object is structured (such as the various algorithms implemented by
a Suite);

• “relationship” to other concepts (e.g., the property performs task represents a
relationship between a data mining task and an algorithm).

The third step defines a concepts hierarchy through taxonomic relations. Taxono-
mies are used to organise ontological knowledge in the domain using two kinds of
relationships through which simple/multiple inheritance could be applied:
• specialisation/generalisation (“is -a”): specialises/generalises general/specific

concepts in more specific/general ones. An “is -a” relation states that a class A is
a subclass of B if every instance of A is also an instance of B. For example Classi-
fication or Clustering are subclasses of Data Mining Task.

• part of/has part: defines a partition as subclass of a class. In our ontology the
“has part” relationship is established between Suite and Algorithm, i.e. “Suite is
composed of a set of data mining Algorithms”.

A major approach to taxonomy organization is having a large number of small local
taxonomies that may be linked together via relations or axioms.

In DAMON we have several small local taxonomies derived from the specialization
of the basic classes. Fig. 1 shows the taxonomy obtained by creating subclasses of the
data mining Task.

Classification Clustering Deviation
Detection

Link
Analysis

Summarization
Visual

Data Mining

Task

Regression

Fig. 1. Data Mining Task taxonomy

Classification
Method

Clustering
Method

Deviation
Detection
Method

Link
Analysis
Method

Summarization
Method

Visualization
Method

Method

Regression
Method

Bayesian
Network

Decision
Tree

Neural
Network

K- Nearest
Neighboor

Genetic
Algorithm

Rule-based
Method

Fuzzy Set
Approach

Fig. 2. Data Mining Method taxonomy

Fig.s 2 to 4 show the taxonomies of the other basic concepts (Method, Algorithm,
and Software) of our ontological model; for each of these taxonomies we construct a
subsequent specialization level for every task identified in the taxonomy of Fig. 1. Due

to specialization relationship that is encoded in the hierarchy, the set of objects in a
subclass is a subset of its super class. To simplify the layout of taxonomic structures
and to give a better understanding of them, only some specialization of the Classifica-
tion task are shown.

Classification
Algorithm

Clustering
Algorithm

Deviation
Detection
Algorithm

Link
Analysis

Algorithm

Summarization
Algorithm

Visualization
Method

Algorithm

Regression
Algorithm

CHAID C4.5 SLIQ SPRINT ID3 Gini RBF

Fig. 3. Data Mining Algorithm taxonomy

Classification
Software

Clustering
Software

Deviation
Detection
Software

Link
Analysis
Software

Summarization
Software

Visualization
Software

Software

Regression
Software

C5 LVQ-PAK Atree 3.0
ALN

AC2 TiMBL 2.0 BAYDA 1.0

Fig. 4. Data Mining Software taxonomy

The fourth step in the development process is the construction of axioms. Axioms
are formal assertions that model sentences that are always true. Axioms provide a way
of representing more information about concepts, such as constraining on their inter-
nal structure, and their mutual relationships, verifying their correctness or deducting
new information.

In the data mining world, we can use axioms to represent, for exa mple, the following
constraints:
• Mutual constraints on the values of several properties of a single concept; for ex-

ample for the Classification Algorithm concept, the UsesMethod property must
have Classification Method as filler and the PerformsTask property must have
the Classification Task as filler.

• Facts about the relations among objects, such as “Every Software implements an
Algorithm”.

• Constraints on property or role values for related concepts. The Software and Al-
gorithm concepts are related through the ImplementsAlgorithm property; this re-
lationship constraints the ImplementsAlgorithm property to have as value an al-
gorithm referring to the same task referred by the related software. For example

the ImplementsAlgorithm property of a Classification Software must have as filler
a Classification Algorithm.

In Fig. 5 a small part of the ontology regarding the conceptualization of the C5
Classification Software is illustrated. It should be noted that other than the hierarchi-
cal concepts classification (is -a relations), the relationships (realized by means of
properties) among concepts belonging to different taxonomies are also shown. In the
example, C5 is a Classification software that implements the C5 Algorithm. C5 Algo-
rithm is a Classification Algorithm performing (PerformsTask property) the Classifica-
tion task and using (UsesMethod property) the Decision Tree method that is con-
strained to be a Classification Method specifying (SpecifiesTask property) the Classi-
fication task.

Fig. 5. A fragment of the DAMON ontology for the C5 software

3.4 DAMON Implementation

This Section describes the DAML+OIL implementation of DAMON. Due to space
reasons, only the basic ontology concepts Task, Method, Algorithm, Software, Suite
with respect to the data mining Classification are shown.

The following DAML+OIL code (Fig. 6) expresses that Classification is a Data
Mining Task .

Fig. 6. Description of the Classification concept

Classification

Task

SpecifiesTask
Classification

Software

Sof tware

Classification
Method

Method

Decision Tree

Classification
Algorithm

Algorithm

C5
Algorithm

C5
Software

Uses-
Method

Uses-
Method

ImplementsAlgorithm

ImplementsAlgorithm

<daml:Class rdf:about="file:/C:/OilEd/ontologies/Data Mining.

daml#Classification">

 ...

 <rdfs:subClassOf>

 <daml:Class rdf:about="file:/C:/OilEd/.../#Task"/>

 </rdfs:subClassOf>

</daml:Class>

PerformsTask

The DAML+OIL statement of Fig. 7, describes the Classification Method concept.
The subClassOf element asserts that its subject Classification Method is a subclass
of the resource identified by #Method. Classification Method is further a subclass of
a property (HasMethod) restriction that restricts the property’s filler type to a disjoint
union of classification methods. The code shown in Fig. 8 describes the Classifica-
tion Algorithm concept: it is a subclass of the Algorithm class, and it uses a Classifi-
cation Method (i.e. Decision Tree) and performs the Classification task.

Fig. 7. Description of the Classification Method concept

Fig. 8. Description of a Classification algorithm

The DAML+OIL code of Fig. 9 describes the C5 algorithm, i.e. a specific Classifica-
tion Algorithm, that uses the Decision Tree Classification Method.

<daml:Class rdf:about="file:/C:/.../#Classification Method">
 <rdfs:label>Classification Method</rdfs:label>
 <rdfs:subClassOf>
 <daml:Class rdf:about="file:/C:/.../#Method"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="file:/C:/.../#HasMethod"/>

 <daml:disjointUnionOf parseType=”daml:collection”>
 <daml:Class rdf:about="file:/C:/.../#Decision Tree"/>

 <daml:Class rdf:about="file:/.../#GeneticAlgorithms"/>
 </daml:disjointUnionOf>

 </daml:Restriction>

<daml:Class rdf:about="file:/C:/.../#ClassificationAlgo-
rithm">

 <rdfs:subClassOf>
 <daml:Class rdf:about="file:/C:/...#Algorithm"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="file:/C:/...#UsesMethod"/>
 <daml:toClass>
 <daml:Class

rdf:about="file:/C:/.../#ClassificationMethod"/>
 </daml:toClass>
 </daml:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty

rdf:resource="file:/C:/.../#PerformsTask"/>
 <daml:toClass>

Fig. 9. Description of the C5 classification algorithm

Fig.s 10 and 11 respectively describe a specific classification software (C5) and a
specific data mining suite (IND). The C5 software implements the C5 algorithm,
whereas the IND suite implements two algorithms (CHAID and Gini).

Fig. 10. Description of the C5 classification software

<daml:Class rdf:about="file:/C:/OilEd/.../#C5 Algorithm">
 <rdfs:label>C5 Algorithm</rdfs:label>

...
 <rdfs:subClassOf>

<daml:Class rdf:about="file:/.../#Classification Algo-
rithm"/>

 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty
rdf:resource="file:/C:/OilEd/.../#UsesMethod"/>
 <daml:toClass>

 <daml:Class rdf:about="file:/C:/OilEd/.../#Decision
Tree"/> </daml:toClass>

 </daml:Restriction>

<daml:Classrdf:about="file:/C:/OilEd/ontologies/DataMining.dam
l#C5">

 ...
 <rdfs:subClassOf>
 <daml:Class rdf:about="file:/C:/.../#Classification

Software"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty

rdf:resource="file:/.../#ImplementsAlgorithm"/>
 <daml:toClass>
 <daml:Class rdf:about="file:/C:/.../#C5 Algorithm"/>

Fig. 11. Description of the IND suite

Finally, Fig. 12 draws a OilEd screenshot showing a portion of the DAMON ontology.

Fig. 12. DAMON ontology viewed by OilEd

<daml:Class rdf:about="file:/C:/.../#IND">
 <rdfs:label>IND</rdfs:label>
 <rdfs:subClassOf>
 <daml:Class rdf:about="file:/C:/.../#Suite"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty

rdf:resource="/.../#ImplementsAlgorithm"/>
 <daml:disjointUnionOf parseType=”daml:collection”>
 <daml:Class rdf:about="file:/C:/.../#C4.5"/>
 <daml:Class rdf:about="file:/C:/.../#Gini"/>
 </daml:disjointUnionOf>

4. DAMON-MAP: a tool for ontology browsing and querying

We have designed DAMON-MAP, a tool that allows the manipulation of DAMON
ontology. The manipulation of our ontology can be realized both by a user that ac-
cesses DAMON-MAP through a graphical user interface, and by a Java-based com-
ponent through the DAMON APIs. The API implementation is realized for accessing
and querying the ontology: the API will provide a set of object-oriented abstractions
of ontology elements such as Concept, Relation, Properties, and Instance objects
providing query facilities.

DAMON-MAP (Fig. 13) is designed in a client-server three layers architecture con-
sisting of the Storage Layer, the Management Layer, and the Client Layer.

Fig. 13. DAMON-MAP architecture

The Storage Layer allows access to physical ontological data implemented as RDF
Schema files stored in the Ontological Data Repository (ODR) . Currently this reposi-
tory is implemented through the file system.

The Management Layer is the heart of the system. Its main goal is to provide a set
of APIs (called DAMON API) that allows to access ontology elements. The APIs can
be used to search and navigate the ontology structure. The Management Layer com-
prises four sub-layers:
• at the bottom the RDF API supports the basic operations of the Management Layer

such as creation, manipulation and querying of RDF graphs. The API defines in-
terfaces for parsing and accessing RDF models as sets of statements. Default im-
plementations for those interfaces are included in the
org.w3c.rdf.implementation package. [13];

ODR
Ontological Data Repository

RDF API

DAML API

Query Language(s)

DAMON API

Management
 Layer

ODS
Ontology Directory Service

DAMON Viewer Client Layer

Storage Layer

• above the RDF API sits an inference layer realized through the DAML API imple-
mented by the AT&T [25]. The DAML API V0.7 is a collection of Java interfaces
and utility classes that implement an interface for managing DAML ontologies.
The DAML API requires the RDF API.

• the querying layer builds upon RDF API and DAML+OIL API, is based on a
DAML+OIL/RDF query languages (e.g. RQL, RDQL or DQL [17]). RDQL is an im-
plementation of an SQL-like query language for RDF [4]. It treats RDF as data and
provides query with triple patterns and constraints over a single RDF model. The
target usage is for scripting and for experimentation in information modeling lan-
guages. RQL is a typed language and supports generalized path expressions fea-
turing variables on both labels for nodes (i.e., classes) and edges (i.e., properties)
[18].

• and finally at the top of the Management Layer sits the DAMON API that uses the
functionalities of the preceding layers.

The Client Layer (DAMON Viewer) is a graphical interface through which the user
can search and browse the ontology.

4.1 DAMON Operations

We can use the ontology to obtain information about Data Mining. In general, we
have two ways to find the data we are looking for: we can search, and we can browse.
The DAMON Viewer is a graphic interface to DAMON-MAP that provides a com-
bined search and browse facility over the ontology. The DAMON Viewer is a naviga-
tion facility that presents an overview of the whole data set: it shows the classes, their
relations and instances.

Ontology browsing. The DAMON Viewer gradually presents deeper levels of the
ontology: the user starts at the top of the ontology and can navigate towards more
specific topics by clicking the classes of interest (diving into the information). At any
point, the map shows the current class, its parent and its subclasses.

Ontology-based domain specific search. A user can use the ontology-based search
engine to query very detailed information about Data Mining resources annotated in
DAML+OIL. The result set of the query is very accurate, because the semantic con-
tent of the terms searched is clearly indicated by concepts from the underlying ontol-
ogy. Our ontology-based search engine will support several kinds of simple inference
that can serve to broaden queries including equivalence, inversion, generalization, and
specialization. Equivalence uses the DAML+OIL samePropertyAs and sameClassAs
relations to restate queries that differ only in form. Generalization and specialization
utilize the subPropertyOf and subClassOf relations to find matches or more general or
more specific classes and relations. If the result set of a query is empty, the user can at
least find objects that partially satisfy the query: some classes can be replaced by their
superclasses or subclasses. Both narrowing and broadening the scope of the query
are possible due to the ontological nature of the domain description.

Our tool can also help the user in the query formulation. Users encounter difficul-
ties when having to provide terms that best describe their information need (vocabu-
lary problem). In DAMON the classes that describe the domain of interest are explicitly
shown, making the vocabulary choice much easier.

5 Ontology-based Application Design on the KNOWLEDGE GRID

As said before, the main goal of the DAMON ontology is to offer to a domain user a
reference model for the different kind of data mining tasks, methodologies and soft-
ware available to solve a given problem, helping a user in finding the most appropriate
technological solution. The use of DAMON is exemplified in the design of distributed
data mining applications on the KNOWLEDGE GRID, an environment for grid-based
geographically distributed high-performance knowledge discovery applications [14].

5.1 The KNOWLEDGE GRID

The KNOWLEDGE GRID [14] is an environment to design, deploy and execute distrib-
uted data mining applications on the Grid. The KNOWLEDGE GRID architecture is de-
fined on top of Globus [26], a widely used toolkit to deploy geographically distributed
grids. The KNOWLEDGE GRID services are organized in two hierarchic levels: the Core
K-grid layer and the High level K-grid layer.

The Core K-grid layer offers the basic services for the definition, composition and
execution of a distributed knowledge discovery computation over the grid. Its main
goals are the management of all metadata describing features of data sources, third
party data mining tools, data management, and data visualization tools and algorithms.
Moreover, this layer coordinates the application execution by attempting to fulfill the
application requirements and the available grid resources.

The High-level K-grid layer includes services used to compose, validate, and exe-
cute a parallel and distributed knowledge discovery computation. Moreover, the layer
offers services to store and analyze the discovered knowledge.

A first prototype of the KNOWLEDGE GRID (VEGA) allowing the design, develop-
ment ad deployment of parallel and distributed KDD applications on the Grid has been
implemented. VEGA is an environment running on the top of Globus that offers a
graphical interface for the visual composition of data mining tools and data sources to
be mined, to obtain an abstract execution plan (i.e. an abstract description of the appli-
cation). The execution plan is then translated in source Globus RSL scripts, used to
deploy and execute the application on the Grid. Further details can be found in [28].

5.2 Ontology-based Application Design

With the DAMON ontology we aim to realize a semantic modelling of user’s
tasks/needs and of the resources characterizing a data mining software, to offer high
level services for dynamic software finding and applications composition.

DAMON will be used as an ontology-based assistant that suggests the
KNOWLEDGE GRID application designer what to do and what to use on the basis of
his/her needs as well as a tool that makes possible semantic search (concept-based) of
data mining software. In other words, it can be used to enhance the application formu-
lation and design, helping the user to select and configure the most suitable Data
Mining solution for a specific KDD process.

The ontology could help the different users of the KNOWLEDGE GRID:
• Data mining novices. In this case the ontology-based assistant is a necessary

component that guides the user to select and configure the most suitable Data
Mining solution for a specific KDD process. Without DAMON, such kind of user
should necessary consult a data mining expert to define his/her application. Actu-
ally the KNOWLEDGE GRID requires that user exactly know what kind of applica-
tion has to be built.

• Data mining experts who know exactly how to configure a data mining application.
Such users can query DAMON with more specific details on the different data
mining resources.

In the following we show how the proposed ontology-based assistant will be used
and integrated in the current KNOWLEDGE GRID architecture.

Currently, the design of a knowledge discovery application on the KNOWLEDGE
GRID runs through the following steps:
1. Search and selection of the resources to be used in the knowledge discovery

application;
2. Visual composition of the application through a graphic model that represents the

involved resources and their relations (i.e. the data and control flows);
3. Generation of the execution plan corresponding to the graphic model of the appli-

cation.
At the first step of the design process the ontology would play an important role. In

fact, other than find which data mining software are available, where software can be
found, and how software can be accessed, a user could benefit from DAMON by
searching all the available software that satisfy some user requirements, such as per-
forming a given task (e.g. classification), implementing a given algorithm (e.g. CHAID),
using a specific methodology (e.g. decision trees), and requiring a specific input for-
mat. Some possible DAMON queries are:
• find data sources about a specific topic;
• find software implementing a desired data mining algorithm;
• find software performing a specified data mining task;
• find software/algorithm using particular methods.

Fig. 14 shows the KNOWLEDGE GRID architecture enriched by our DAMON ontol-

ogy and tool. The basic metadata about installed data mining tools and data sources

are stored into the Knowledge Metadata Repository (KMR) and managed by the
Knowledge Directory Services (KDS). In fact, metadata currently implemented in the
KNOWLEDGE GRID are tightly bounded to the data mining software and data sources
installed on a given physical node. For example, if two instances of the same data
mining software, e.g. AutoClass, are respectively installed on nodes A and B, their
metadata are replicated on the KMR of such nodes. Such metadata contain all the
information that can be used by a client to access and use particular installed software
(technical parameters, availability, location and configuration of data mining software
and tools). Currently, the search of data mining software is conducted by browsing
each KMRs and selecting the more appropriate version.

DAS
Data Access

Service

TAAS
Tools and Algorithms

Access Service

EPMS
Execution Plan

Management Service

RPS
Result

Presentation Service

KDS
Knowledge Directory

Service

RAEMS
Resource Alloc.
Execution Mng.

KEPRKMR

High level K-Grid layer

Core K-Grid layer

KBR

ODR

ODS
Ontology Directory

Service

DAMON
API

Fig. 14. Ontology services in the KNOWLEDGE GRID architecture

The Ontology Directory Service (ODS) is responsible for maintaining the ontologi-

cal data and allows applications to query and manage them. The ontological data are
represented by RDF Schema files and are stored in the Ontological Data Repository
(ODR), whereas the metadata regarding the instance of each data mining resource (e.g.
availability, location, and configuration) are stored into the.

The DAMON APIs are used to implement the DAMON Viewer that is responsible
for the search and selection of data mining tools and software within the ontology.
When a new data mining software is installed on a KNOWLEDGE GRID node, the owner
has to “publish” it by using the KDS services, which store the metadata into the local
KMR. If the software is already classified by the ontology, the KMR will simply send
the new metadata URL to DAMON, otherwise, the owner is asked to update the ontol-
ogy through DAMON.

The DAMON ontology can be thought as a knowledge base defined on the top of
the current KNOWLEDGE GRID metadata. We have two metadata layers: at the top the
domain ontology gives general information about resources, whereas specific informa-
tion about installed software are maintained where resources resides. From an architec-

tural point of view the ontology is a central resource, whereas specific metadata are
distributed ones.

The first step of the design process (see before) is split into two phases:
1. Ontology-based resources selection. Browsing and searching the ontology allows

a user to locate the more appropriate tasks, methods, algorithms and finally data
mining software to be used in a certain phase of the KDD process.

2. KNOWLEDGE GRID metadata access. The ontology gives the URLs of all instances
of the selected resources available on the KNOWLEDGE GRID nodes, i.e. the URLs
of the relevant metadata files stored in the KMRs.
As an example, a user logged on the KNOWLEDGE GRID node

g1.isi.cs.cnr.it intends to perform a data mining application composed of
two data mining steps, clustering and classification, on the data set Unidb stored on
the KNOWLEDGE GRID node g2.isi.cs.cnr.it. The data set must be clustered
using three different algorithms running in parallel on a copy of the data set. Cluster-
ing results must be analyzed by a classification algorithm that will be executed in paral-
lel on three different nodes, generating three classification models of the same data
set. By using DAMON, the user first searches the clustering algorithms by browsing
or querying the ontology on the basis of some user requirements (computational com-
plexity of the algorithm, attitude to solve the given problem or the method used to
perform the data mining task), then he/she searches the clustering software implement-
ing the algorithms and working on the data set Unidb, and finally locates the meta-
data URLs referring to the nodes k1.deis.unical.it, k2.deis.unical.it
and k3.deis.unical.it, offering respectively the clustering software K-Means,
Intelligent Miner, and AutoClass. Moreover, the user also finds the node
g2.isi.cs.cnr.it that offers the C5.0 classifier. At this point the user can ac-
cess specific information about the software by accessing the KMR on each identified
node.

DAMON services are offered through the DAMON API, in particular they will be
used to integrate the browse and search facilities of DAMON Viewer in the current
Knowledge Grid authoring module.

6 Conclusions and Future Work

The use of ontologies to describe Grid resources will simplify and structure the sys-
tematic building of Grid applications through the composition and reuse of software
components and the development of knowledge-based services and tools allowing a
more effective resource management and scheduling.

The paper presented an ontology for the Data Mining domain whose main goal is to
simplify the development of distributed knowledge discovery applications on the Grid,
offering to a domain expert a reference model for the different kind of data mining
tasks, methodologies and software available to solve a given problem, and helping
him/her in finding the most appropriate solution.

A tool implementing the basic ontology operations, such as browsing and search-
ing, and a practical application of the DAMON ontology have been presented, show-
ing how the design of applications would be enhanced in the KNOWLEDGE GRID, a
grid-based environment for distributed data mining applications.

Future work will regard the full implementation and integration of the DAMON-
MAP tool into the KNOWLEDGE GRID, and its extension in different application do-
mains. In fact, we think that the proposed approach could be generalized to become a
core method in general purpose Grid-based Problem Solving Environments.

Acknowledgements

This work has been partially supported by Project “FIRB GRID.IT” funded by MIUR.

References

1. F. Lopez, Overview of Methodologies for building ontologies, Proc. of IJCAI-99, workshop
KRR5, Sweden, 1999.

2. C. Wroe, R. Stevens, C. Goble, A. Roberts, M. Greenwood, A suite of DAML+OIL
onthologies to describe bioinformatics web services and data, in International Journal of Co-
operativeInformation System, March 2003 (in press) available from
http://www.mygrid.org.uk.

3. S. Bechhofer, C. Goble, Towards annotation using DAML+OIL. K-CAP 2001workshop on
Knowledge markup and Semantic Annotation, Victoria B. C, October 2001.

4. B. McBride, Jena: a semantic web toolkit, Internet Computing, Dec. 2002.
5. Sean Bechhofer, Ian. Horrocks, Carole Goble, Robert Stevens OilEd: a reason-able ontology

Editor for the Semantic Web. Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI Vol. 2174, pp 396—
408. 2001

6. T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993. Available on line at http://ksl-web.stanford.edu/KSL_Abstracts/KSL-
92-71.html.

7. Foster I. and Kesselman C. (eds.), The Grid: Blueprint for a Future Computing Infrastruc-
ture, Morgan Kaufmann Publishers, 1999

8. de Roure D., Jennings, N. R. and Shadbolt, N. (2003) “The Evolution of the Grid”. Concur-
rency and Computation: Practice and Experience. (2003)

9. de Roure, D. Jennings, N. R., Shadbolt, N. “The Semantic Grid: A future e-Science infrastruc-
ture”. Concurrency and Computation: Practice and Experience, 2003.

10. I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, June 22, 2002.

11. D. Talia, “The Open Grid Services Architecture: Where the Grid Meets the Web”, IEEE
Internet Computing, Vol. 6, No. 6, pp. 67-71, 2002.

12. F. Berman. “From TeraGrid to Knowledge Grid”. CACM, Vol. 44, N. 11, pp. 27-28, 2001.
13. W. E. Johnston, “Computational and Data Grids in Large-Scale Science and Engineering”.

Future Generation Computer Systems, Vol. 18, N. 8, pp. 1085-1100, 2002.
14.Cannataro M. and D. Talia, “KNOWLEDGE GRID An Architecture for Distributed

Knowledge Discovery”, CACM, Vol. 46, No. 1, pp. 89-93, January 2003.
15. Cannataro M., Talia D. “Towards the Next -Generation Grid: A Pervasive Environment for

Knowledge-Based Computing”, 4th IEEE International Conference on Information Technol-
ogy: Coding and Computing (ITCC2003), April 28-30, 2002, Las Vegas, IEEE Computer
Society Press, 2003

16. RDF, org.w3c.rdf
17. DQL, http://www.daml.org/dql/ DQL
18. RQL: A Declarative Query Language for RDF, G. Karvounarakis, S. Alexaki, V. Christo-

phides, D. Plexousakis, Michel Scholl, The Eleventh International World Wide Web Confer-
ence (WWW'02), Honolulu, Hawaii, USA, May 7-11, 2002.

19. Guarino N., Giaretta P., “Ontologies and knowledge bases, towards a terminological clarifi-
cation, Toward Very Large Knowledge Bases, pp. 25-32, IOS Press, 1995.

20. Chandrasekaran, B.; Johnson, T. R.; Benjamins, V. R. “Ontologies: what are they? why do
we need, them?”. IEEE Intelligent Systems and Their Applications. 14(1). Special Issue on
Ontologies. Pages, 20-26. 1999.

21. Neches, R.; Fikes, R.E.; Finin, T.; Gruber, T.R.; Senator, T.; Swartout, W.R. “Enabling
technology for knowledge sharing”. AI Magazine. 12(3)::36-56- 1991.

22. DAML, http://www.daml.org/
23. J. Han, M. Kamber, Data Mining, Concepts and Techniques, Morgan Kaufmann, 2000.
24. Oscar Corcho, Mariano Fernández-López, Asunción Gómez Pérez, OntoWeb: Technical

Roadmap, www.ontoweb.org.
25. DAML API, http://grcinet/grci.com/
26. GLOBUS, www.globus.org.
27. Ontology (Special Issue on), CACM, Vol. 45, N. 2, 2002.
28. M. Cannataro, A. Congiusta, C. Mastroianni, A. Pugliese, D. Talia, Paolo Trunfio, Grid-

Based Data Mining and Knowledge Discovery, in N. Zhong and J. Liu (Eds.), Handbook of
Intelligent Information Technology , Volume 90, IOS Press, 2003.

29. Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, Ramasamy Uthurusamy:
Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press 1996

