
Peer-to-Peer Models for Resource Discovery in
Large-scale Grids: A Scalable Architecture

Domenico Talia1,2, Paolo Trunfio1,2, and Jingdi Zeng1,2

1 DEIS, University of Calabria
Via P. Bucci 41c, 87036 Rende (CS), Italy

2 CoreGRID NoE
{talia, trunfio, zeng}@si.deis.unical.it

Abstract. As Grids enlarge their boundaries and users, some of their
functions should be decentralized to avoid bottlenecks and guarantee
scalability. A way to provide Grid scalability is to adopt Peer-to-Peer
(P2P) models to implement non hierarchical decentralized Grid services
and systems. A core Grid functionality that can be effectively redesigned
using the P2P approach is resource discovery. This paper proposes a
P2P resource discovery architecture aiming to manage various Grid re-
sources and complex queries. Its goal is two-fold: to address discovery of
multiple resources, and to support discovery of dynamic resources and
arbitrary queries in Grids. The architecture includes a scalable technique
for locating dynamic resources in large-scale Grids. Simulation results are
provided to demonstrate the efficiency of the proposed technique.

1 Introduction

In Grid environments, applications are composed of dispersed hardware and
software resources that need to be located and remotely accessed. Efficient and
effective resource discovery is then critical. Peer-to-Peer (P2P) techniques have
been recently exploited to achieve this goal.

A large amount of work on P2P resource discovery has been done, including
both unstructured and structured systems. Early unstructured P2P systems,
such as Gnutella [1], use the flooding technique to broadcast the resource re-
quests in the network. The flooding technique does not rely on a specific net-
work topology and supports queries in arbitrary forms. Several approaches [2–4],
moreover, have been proposed to solve two intrinsic drawbacks of the flooding
technique, i.e., the potentially massive amount of messages, and the possibility
that an existing resource may not be located. In structured P2P networks, Dis-
tributed Hash Tables (DHTs) are widely used. DHT-based systems [5–7] arrange
< key, value > pairs in multiple locations across the network. A query message
is forwarded towards the node that is responsible for the key in a limited number
of hops. The result is guaranteed, if such a key exists in the system. As com-
pared to unstructured systems, however, DHT-based approaches need intensive
maintenance on hash table updates.

Taking into account the characteristics of Grids, several P2P resource dis-
covery techniques have been adapted to such environments. For instance, DHT-
based P2P resource discovery systems have been extended to support range value
and multi-attribute queries [8–11]. Two major differences between P2P systems
and Grids, however, determine their different approaches towards resource dis-
covery. First, P2P systems are typically designed to share files among peers.
Differently, Grids deal with a set of different resources, ranging from files to
computing resources. Second, the dynamism of P2P systems comes from both
nodes and resources. Peers join and leave at any time, and thus do the resources
shared among them. In Grid environments, nodes connect to the network in a
relatively more stable manner. The dynamism of Grids mainly comes from the
fast-changing statuses of resources. For example, the storage space and CPU
load can change continuously over time.

Highlighting the variety and dynamism of Grid resources, this paper pro-
poses a DHT-based resource discovery architecture for Grids. The rest of the
paper is organized as follows. Section 2 introduces existing Grid resource dis-
covery systems that relate to our work. Section 3 discusses characteristics of
Grid resources and related query requirements. Section 4 unfolds the picture of
the proposed architecture, and studies the performance of its dynamic resource
discovery strategy through simulations. Section 5 concludes the paper.

2 Related Work

Several systems exploiting DHT-based P2P approaches for resource discovery in
Grids have recently been proposed [8–10]. Two important issues investigated by
these systems are range queries and multi-attribute resource discovery.

Range queries look for resources specified by a range of attribute values (e.g.,
a CPU with speed from 1.2GHz to 3.2GHz). These queries are not supported
by standard DHT-based systems such as Chord [5], CAN [6], and Pastry [7]. To
support range queries, a typical approach is to use locality preserving hashing
functions, which retain the order of numerical values in DHTs [8, 9].

Multi-attribute resource discovery refers to the problem of locating resources
that are described by a set of attributes or characteristics (e.g., OS version,
CPU speed, etc.). Several approaches have been proposed to organize resources
in order to efficiently support multi-attribute queries. Some systems focus on
weaving all attributes into one DHT [10] or one tree [12]. Some others adopt one
DHT for each attribute [9, 11].

Aside from single value queries, range queries, and multi-attribute queries for
single resources, the proposed architecture aims to support queries for multiple
resources. We use multiple DHTs to manage attributes of multiple resources.
This provides a straightforward architecture, and leaves space for potential ex-
tensions.

Gnutella-based dynamic query [13] strategy is used to reduce the number of
messages generated by flooding. Instead of all directions, this strategy forwards
the query only to a selected peer. If a response is not returned from a direction,

another round of search is initiated in the next direction, after an estimated time.
For relatively popular contents this strategy significantly reduces the number of
messages without increasing the response time.

Broadcast in DHT-based P2P networks [14] adds broadcast service to a class
of DHT systems that have logarithmic performance bounds. In a network of N
nodes, the node that starts the broadcast reaches all other nodes with exactly
N − 1 messages (i. e., no redundant messages are generated).

The approach proposed for dynamic resource discovery in this paper is in-
spired by both the dynamic query strategy and the broadcast approach men-
tioned above. It uses a DHT for broadcasting queries to all nodes without redun-
dant messages, and adopts a similar “incremental” approach of dynamic query.
This approach reduces the number of exchanged messages and response time,
which ensures scalability in large-scale Grids.

3 Resources and Query Types

In Grids, resources belong to different resource classes. A resource class is a
“model” for representing resources of the same type. Each resource class is de-
fined by a set of attributes which specify its characteristics. A resource is an
“instance” of a resource class. Each resource has a specific value for each at-
tribute defined by the corresponding resource class. Resources are univocally
identified by URLs.

An example of resource class is “computing resource” that defines the com-
mon characteristics of computing resources. These characteristics are described
by attributes such as “OS name”, “CPU speed”, and “Free memory”. An in-
stance of the “computing resource” class has a specific value for each attribute,
for example, “OS name = Linux”, “CPU speed = 1000MHz”, and “Free mem-
ory = 1024MB”. Table 1 lists some examples of Grid resources classes. A more
complete list of resource classes can be found in [15].

Table 1. Examples of Grid resource classes.

Resource class Description

Computing resource
Computing capabilities provided by computers, clusters
of computers, etc.

Storage resource Storage space such as disks, external memory, etc.

Network resource
Network connections that ensures collaboration between
Grid resources.

Device resource Specific devices such as instruments, sensors, etc.

Software resource Operating systems, software packages, Web services, etc.

Data resource Various kinds of data stored in file systems or databases.

Resource classes can be broadly classified into intra-node and inter-node re-
sources. “Computing resource” is an example of intra-node resource class. An

example of inter-node resource class is “network connection” (see Table 1), which
defines network resource characteristics. Fig. 1 shows a simple Grid includ-
ing four nodes and three resource classes. As examples of inter-node resources,
NodeA includes two instances of resource class a and one instance of resource
class b. The figure also shows two inter-node resources: one between NodeA and
NodeD, and the other between NodeB and NodeD.

Network
 Resource class a

Resource class b

Resource class c

Node A

Node C

Node D

Node B

Fig. 1. Inter-node and intra-nodes resources.

The attributes of each resource class are either static or dynamic. Static
attributes refer to resource characteristics that do not change frequently, such
as “OS name” and “CPU speed” of a computing resource. Dynamic attributes
are associated to fast changing characteristics, such as “CPU load” and “Free
memory”.

The goal of resource discovery in Grids is to locate resources that satisfy a
given set of requirements on their attribute values. Three types of queries apply
to each attribute involved in resource discovery:

– Exact match query, where attribute values of numeric, boolean, or string
types are searched.

– Range query, where a range of numeric or string values is searched.
– Arbitrary query, where for instance partial phrase match or semantic search

is carried out.

A multi-attribute query is composed of a set of sub-queries on single at-
tributes. Each sub-query fits in one of the three types as listed above, and the
involved attributes are either static or dynamic.

Complex Grid applications involve multiple resources. Thus, multi-resource
queries are often needed. For instance, one can be interested in discovering two
computing resources and one storage resource; these resources may not be ge-
ographically close to each other. A multi-resource query, in fact, involves a set
of sub-queries on individual resources, where each sub-query can be a multi-
attribute query.

Taking into consideration both characteristics and query requirements of
Grid resources, the appropriate P2P discovery techniques are listed in Table
2.

Table 2. Query techniques used for different types of resources and queries.

Static Grid resources Dynamic Grid resources

Exact query DHT Flooding

Range query DHT Flooding

Arbitrary query Flooding Flooding

As shown in the table, DHTs are used only for exact and range queries
on static Grid resources. For dynamic resources and arbitrary queries, classical
DHT-based approaches are not suitable. These approaches were not originally
designed for resource discovery queries of arbitrary expression forms. Moreover,
fast-changing resources, such as CPU load, require frequent updates on DHTs,
and thus cause prohibitive maintenance costs. Flooding approaches are used for
both dynamic Grid resources and arbitrary queries on static resources. This is
because flooding does not require table updates and maintenance. Nevertheless,
the massive amount of messages they generate do not scale with network sizes.

4 System Architecture

The framework aims to provide a generic architecture that leverages existing
techniques to fulfill various resource discovery needs in Grid environments. In
order to exploit diverse resource discovery techniques, the DHT-based architec-
ture described in Fig. 2 is proposed.

Attribute R

a

.A

sn

Attribute R

a

.A

s2

......

Attribute R

a

.A

s1

Resource class R

c

Attribute R

a

.A

sn

Attribute R

a

.A

s2

......

Attribute R

a

.A

s1

Resource class R

b

Attribute R

a

.A

sn

Attribute R

a

.A

s2

......

Attribute R

a

.A

s1

Resource class R

a

Attributes (A

d1

,..., A

dn

)

Fig. 2. System architecture.

The system is composed of a set of virtual planes, one for each resource class.
Within the virtual plane of resource class Ra, for example, static attributes
Ra.As1, ..., Ra.Asn are associated to their DHTs, respectively. Exact or range
queries on static attributes are carried out using the DHTs corresponding to
these attributes.

An additional “general purpose” DHT is dedicated to queries on dynamic
attributes and to arbitrary queries on static attributes. This DHT is different
from the DHTs in the virtual planes. The DHTs in the virtual plane are standard
DHTs, in which both nodes and resource identifiers are mapped to the same
ring. In general purpose DHT, only node identifiers are mapped to the ring,
while resources are not mapped to it. In other words, there are not pointers to
resources in the general purpose ring.

The general purpose DHT is used to broadcast queries to all Grid nodes
whose identifiers are mapped to the ring. All Grid nodes reached by a query are
in charge of processing it against the local resources, and sending the response
to the node that initiated the query. The mechanisms used for broadcasting a
query on this ring are described in Section 4.3.

4.1 Local Component

Fig. 3 shows the software modules inside each Grid node. With multiple vir-
tual planes defined in the system, each node participates in all DHTs of
these virtual planes. Therefore, multiple finger tables corresponding to each
DHT co-exist in each node, as illustrated in Fig. 3. For example, finger tables
FT (Ra.A1), FT (Ra.A2),..., and FT (Ra.An) correspond to DHTs of attributes
Ra.As1...Ra.Asn in Fig. 2.

FT (General purpose DHT)

Query Engine

From other nodes

To other nodes

......

FT (Ra.A

1

)

FT (Ra.A

3

)

FT (Ra.A

2

)

......

FT (Ra.A

1

)

FT (Ra.A

3

)

FT (Ra.A

2

)

......

FT (R

a

.A

1

)

FT (R

a

.A

2

)

FT (R

a

.A

3

)

Fig. 3. Software modules inside each Grid node. FTs are finger tables associated to
the used DHTs.

The finger table of the general purpose DHT , that is,
FT (General purposeDHT), is used to reach individual nodes and locate
dynamic attributes Ad1,...,Adn. A query engine processes resource discovery
requests and associates them to different query instances and thus DHTs. The
results are then generated at the node where related queries are initiated.

4.2 Static Attribute Discovery

A number of multi-attribute, range query approaches have emerged. They either
use one DHT [10] or one tree [11] for all attributes, or arrange attribute values
on multiple DHTs [9]. While both single-DHT and multi-DHT approaches have
proved effective, we adopt the multi-DHT strategy because of its simplicity and
extension potentials.

Assume there are p classes of resources, each of which has q types of at-
tributes. Although one node does not necessarily have all attributes, it is in-
cluded in all DHTs, and the values of its blank entries are left as null. The
number of finger tables that a node maintains is p× q.

While existing approaches support resource discovery on single or multiple
attributes of one resource class, the architecture proposed in this paper manages
multiple resources. One way to do this is to hash the string of “resource class +
attribute” into a DHT ID ; this ID is used to identify the corresponding finger
table inside a node.

4.3 Dynamic Attribute Discovery

As mentioned in Section 2, our approach for dynamic resource discovery exploits
both the dynamic query [13] and the broadcast over DHT [14] strategies. The
general purpose DHT and associated finger tables, as illustrated in Figs. 2 and
3, are used only to index Grid nodes, without keeping pointers to Grid resource
attributes. Queries are then processed by the local query engine of each node.

To Reach all Nodes. To reach all nodes without redundant messages, the
broadcast strategy is based on a DHT [14]. Taking a fully populated Chord
ring with N = 2M nodes and a M -bit identifier space as an example. Each
Chord node k has a finger table, with fingers pointing to nodes k + 2i−1, where
i = 1, ..., M . Each of these M nodes, in turn, has its fingers pointing to another
M nodes. Each node forwards the query to all nodes in its finger table, and in
turn, these nodes do the same with nodes in their finger tables. In this way,
all nodes are reached in M steps. Since multiple fingers may point to the same
node, a strategy is used to avoid redundant messages. Each message contains a
“limit” argument, which is used to restrict the forwarding space of a receiving
node. The “limit” argument of a message for the node pointed by finger i is
finger i + 1.

Fig. 4 gives an example of an eight-node three-bit identifier Chord ring. The
limit of broadcast is marked with a black dot. Three steps of communication be-
tween nodes are demonstrated with solid, dotted, and dashed lines. Obviously,

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 0

1

2

4

2

3

5

3

4

6

4

5

7

5

6

0

6

7

1

7

0

2

0

1

3

Fig. 4. An example of broadcast.

node 0 reaches all other nodes via N − 1 messages within M steps. The same
procedure applies to Chord ring with N < 2M (i.e., not fully populated net-
works). In this case, the number of distinct fingers of each node is logN on the
average.

Incremental Resource Discovery. The broadcast over DHT presented above
adopts a “parallel” approach. That is, the node that initiates the discovery tasks
sends the query message to all its fingers in parallel.

Although no redundant messages are generated in the network, its N − 1
messages can be prohibitive in large-scale Grids. Referred to as “incremental”,
our approach uses a mixed parallel and sequential query message forwarding.

A “parallel degree” D is introduced to adjust the range of parallel message
forwarding, and thus curb the number of exchanged messages. Given a node that
initiates the query, it forwards the query message in parallel to nodes pointed by
its first distinct D fingers. If there is a positive response, the search terminates;
otherwise, this node forwards the query message to the node pointed by its
D + 1 finger. This procedure applies to nodes pointed by the rest of fingers,
sequentially, until a positive response returns.

When D = M , our incremental approach turns into the parallel one; when
D = 1, the incremental approach becomes a sequential one, where nodes pointed
by all fingers are visited one after another.

The number of generated messages by the incremental approach is obviously
less than or equal to that of the parallel one. The response time of incremental
approach, however, may be prolonged owing to its sequential query message
forwarding. We argue that this does not necessarily hold true. In large-scale
Grids, multiple query requests at one node can be prominent, which adds extra

delay to response time. Under this circumstance, the incremental approach shall
benefit from its reduced number of messages that shortens this extra delay.

Performance Evaluation. A discrete-event simulator has been implemented
to evaluate the performance of the incremental approach in comparison with the
parallel approach.

Two performance parameters have been evaluated: the number of messages
Q and the response time T . Q is the total number of exchanged messages in the
network, and T is the time a node waited to receive the first response (i.e., the
first query hit).

The system parameters are explained in Table 3. In all simulations we used
M = 32 and D = 7. The number of nodes N ranges from 2000 to 10000, R
ranges from 10 to 1000, and P ranges from 0.005 to 0.25. The values of perfor-
mance parameters are obtained by averaging the results of 10 to 30 independent
simulation runs.

Table 3. System parameters.

Parameter Description

M Number of bits of node identifiers.

N Number of Grid nodes in the network.

R Number of nodes that concurrently submit query requests.

P Fraction of nodes in the network that possesses the desired resource.

D Number of first distinct fingers the search is conducted on in parallel.

The time to pass a message from NodeA to NodeB is calculated as the sum of
a processing time and a delivery time. The processing time is proportional to the
number of queued messages in NodeA, while the delivery time is proportional
to the number of incoming messages at NodeB. In this way, the response time
depends on both message traffic and processing load of nodes.

Table 4 shows the number of exchanged messages in both parallel and in-
cremental strategies, with R = 1. The parallel strategy always generates N − 1
messages for each submitted query, which could be prohibitive for large-scale
Grids. In the incremental approach, the number of messages is dramatically re-
duced. Moreover, when the value of P is over a certain limit, the number of
messages fluctuates around the value of 2D and it does not depend from the
number of nodes (i.e., network size). This limit is determined by the number of
Grid nodes N , the fraction of nodes with matching resources P , and the number
of first distinct fingers D.

For example, in a network with N = 10000, when P = 0.1 the number of
matching resources is N × P = 1000. The number of nodes included in the
first D = 7 fingers is 2D = 128, on the average. Obviously, this density is high
enough for the incremental strategy to locate the desired resource within the first
D fingers. With a lower value of P , nevertheless, the search needs to go beyond

the first D fingers; this introduces a fluctuation in the number of exchanged
messages, as in the case of P = 0.005.

Table 4. Comparison on the number of exchanged messages (Q) in parallel and incre-
mental approaches.

N P Q (Parallel) Q (Incremental)

2000
0.005 1999 279
0.10 1999 127
0.25 1999 126

4000
0.005 3999 326
0.10 3999 129
0.25 3999 124

6000
0.005 5999 291
0.10 5999 126
0.25 5999 126

8000
0.005 7999 282
0.10 7999 128
0.25 7999 128

10000
0.005 9999 389
0.10 9999 127
0.25 9999 125

Figs. 5, 6 and 7 show the response time in networks composed by 2000, 6000
and 10000 nodes, respectively, with P = 0.10 and values of R ranging from 10
to 1000. The response time is expressed in time units.

The main result shown in Figs. 5, 6 and 7 is that, for any value of N , when
the values of R are at the lower end of its range, the parallel approach has a
shorter response time. When the value of R increases, the incremental approach
outperforms the parallel one. This is because in the parallel approach the overall
number of generated messages is much higher than the one in the incremental
approach, resulting in increased message traffic and processing load that cause
a higher response time.

It can be also noted that, for any value of R, the response time decreases as
N increases. This trend is similar in both parallel and incremental approaches.
This is because the probability of finding the desired resource in a given time
interval is proportional to the number of nodes that possess it, and this in turn
is proportional to the network size.

The simulation results demonstrate that with higher values of R the incre-
mental approach scale better than the parallel one. It is important to recall that
in our simulator the processing time is proportional to the number of messages
to be processed, and the delivery time is proportional to the number of messages
to be delivered. Therefore, the response time increases linearly with message
traffic and load of nodes. In a more realistic scenario the processing time and
the delivery time may increase exponentially with the load of the network. In
this case, the response time in the incremental approach would result signifi-
cantly better that the parallel one. To better evaluate the effect of high loads in

N=2000 P=0.10

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

13,0

10 100 250 500 1000

R

T
(t

im
e

u
n

it
s

)

Incremental

Parallel

Fig. 5. Response time of parallel and incremental approaches (N = 2000).

large-scale Grids, we are currently studying the use of more complex processing
and delivery time functions in our simulator.

5 Conclusions

This paper discussed the characteristics of Grid resources and identified critical
problems of resource discovery in Grids. A DHT-based P2P framework has been
introduced to address the variety and dynamism of Grid resources. It exploits
multiple DHT and existing P2P techniques for multiple static resources and im-
plements an “incremental” resource discovery approach for dynamic resources.
As compared to the original strategy, the incremental approach generates re-
duced number of messages and experiences lower response time in large-scale
Grids.

With the emergence of service-oriented Grids [16], service discovery has be-
come an important topic. Grid services are today implemented complying with
the Web Services Resource Framework (WSRF) family of specifications, which
define standard mechanisms for accessing and managing Grid resources using
Web services. Web services are defined using XML-based languages, and XML
queries are used to query their features. As a future work, the architecture in
this paper could be extended to address Grid service discovery, in particular,
dynamic service indexing and XML-based queries support.

Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265). This

N=6000 P=0.10

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

13,0

10 100 250 500 1000

R

T
(t

im
e

u
n

it
s

)

Incremental

Parallel

Fig. 6. Response time of parallel and incremental approaches (N = 6000).

N=10000 P=0.10

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

13,0

10 100 250 500 1000

R

T
(t

im
e

u
n

it
s

)

Incremental

Parallel

Fig. 7. Response time of parallel and incremental approaches (N = 10000).

work has been also supported by the Italian MIUR FIRB Grid.it project
RBNE01KNFP on High Performance Grid Platforms and Tools.

References

1. Gnutella Protocol Development. http://rfc-gnutella.sourceforge.net/src/rfc-0 6-
draft.html.

2. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid Search Schemes for Unstructured
Peer-to-peer Networks. Proc. of IEEE INFOCOM’05, Miami, USA (2005).

3. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replicating in Unstruc-
tured Peer-to-peer Networks. Proc. of 16th Annual ACM Int. Conf. on Supercom-
puting (ISC’02), New York, USA (2002).

4. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-peer Systems. Proc. of
Int. Conf. on Distributed Computing Systems (ICDCS’02), Vienna, Austria (2002).

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H.: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. Proc. of ACM
SIGCOMM’01, San Diego, USA (2001).

6. Ratnasany, S., Francis, P., Handley, M., Karp, R. M., Shenker, S.: A Scalable
Content-Addressable Network. Proc. of ACM SIGCOMM’01, San Diego, USA
(2001).

7. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. Proc. of IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001).

8. Andrzejak, A., Xu, Z.: Scalable, Efficient Range Queries for Grid Information
Services. Proc. of 2nd IEEE Int. Conf. on Peer-to-peer Computing (P2P’02),
Linköping, Sweden (2002).

9. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. Journal of Grid Computing, vol. 2 n. 1
(2004) 3-14.

10. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Scalable Wide-Area
Resource Discovery. UC Berkeley Technical Report, UCB/CSD-04-1334 (2004).

11. Spence, D., Harris, T.: XenoSearch: Distributed Resource Discovery in the
XenoServer Open Platform. Proc. of HPDC’03, Washington, USA (2003).

12. Basu, S., Banerjee, S., Sharma, P., Lee, S.: NodeWiz: Peer-to-peer Resource Dis-
covery for Grids. Proc. of IEEE/ACM GP2PC’05, Cardiff, UK (2005).

13. Fisk, A. A.: Gnutella Dynamic Query Protocol v0.1. http://www.the-
gdf.org/wiki/index.php?title=Dynamic Querying.

14. El-Ansary, S., Alima, L., Brand, P., Haridi, S.: Efficient Broadcast in Structured
P2P Networks. Proc. of IEEE/ACM Int. Symp. on Cluster Computing and the
Grid (CCGRID’05), Cardiff, UK (2005).

15. Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mambelli, M., Schopf, J.,
Viljoen, M., Wilson, A.: GLUE Schema Specification Version 1.2: Final Specifica-
tion - 3 Dec 05. http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/V12.

16. Comito, C., Talia, D., Trunfio, P.: Grid Services: Principles, Implementations and
Use. International Journal of Web and Grid Services, vol. 1 n. 1 (2005) 48-68.

