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Abstract—The ICT market is experiencing an important
shift from the request/provisioning of products toward a
service-oriented view where everything (computing, storage,
applications) is provided as a network-enabled service. It often
happens that a solution to a problem cannot be offered by a
single service, but by composing multiple basic services in a
workflow. Service composition is indeed an important research
topic that involves issues such as the design and execution
of a workflow and the discovery of the component services
on the network. This paper deals with the latter issue and
presents an ant-inspired framework that facilitates collective
discovery requests, issued to search a network for all the basic
services that will compose a specific workflow. The idea is to
reorganize the services so that the descriptors of services that
are often used together are placed in neighbor peers. This helps
a single query to find multiple basic services, which decreases
the number of necessary queries and, consequently, lowers the
search time and the network load.
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I. INTRODUCTION

The market of information systems is experiencing an
important shift from the request/provisioning of products
toward a service-oriented view where everything (comput-
ing, storage, applications) is provided as a network-enabled
service. This emerging service-centered paradigm, often
referred to as the “Internet of Services” [1], aims at enabling
a scalable architecture where software modules belonging
to different domains can be accessed following a common
paradigm and composed in multiple ways to meet the ever-
changing requirements of today’s business environments.

In this new setting, organizations are blurring their bound-
aries by interacting with one another and creating new
business paradigms and organizational forms that transcend
the previous static and closed competitive models. In this
way, new value can be added to organizational services as
they are placed in a wider context. The Internet of Services
is expected to have a great impact not only in business
scenarios, but also in advancing public administration proce-
dures and services. This Internet of Services is supported by
modern distributed technologies such as the Grid Computing
[2] and the newly emerging Cloud Computing [3], with
paradigms such as the “Software as a service” and the

“Platform as a service”.
Fundamental to the implementation of the Internet of

Services is the effective management of the different phases
of a service life cycle, including discovery, selection and
composition. Service composition is a critical issue because,
owing to the wide variety and evolving needs of users, a
required service is not always readily available but may be
created at design or at run time through the composition
of pre-existent basic services [4] [5]. Unfortunately, as the
number of available services increases, the number of com-
position possibilities grows exponentially. This is referred to
as the problem of combinatorial explosion [1].

A great research effort is currently devoted to the building
of automatic and semi-automatic frameworks and tools that
assist the user in three main tasks: the design of complex
services, or “workflows”; the discovery of the basic com-
ponent services; the actual execution over the Internet of
Services. The design phase is often assisted by tools that
exploit statistics on the way services have been selected and
composed in the past [6] and can use semantic and ontology-
oriented algorithms. Once a composite service has been
designed, the basic services specified in the composition
pattern must be discovered on the network. In most cases,
particularly in Grid and Cloud systems, it is not required
to discover a specific service, but a number of services
having desired characteristics, among which the user will
select the most convenient at the execution time. Information
about services is usually stored in service descriptors that
are managed by centralized or distributed repositories. A
discovery request must be issued to find these descriptors:
in the case of a composite service, a request is necessary
for each component/basic service, which can result in long
overall discovery times and high network loads.

This paper presents a framework that clusters service
descriptors spatially on the basis of the co-use frequencies
of corresponding services. In other words, the descriptors
of services that are often used together (i.e., in the same
workflow) are placed in restricted regions of the network.
The objective is to facilitate “collective” discovery services,
which try to find all or most of the required basic services in
a single shot, so as to save computational time, bandwidth,
and reduce the response time experienced by the user.



The framework is decentralized and self-organizing,
which guarantees good scalability and fault tolerance char-
acteristics. These features are obtained by means of an ant
algorithm. Ant algorithms are inspired by the behavior of
some species of ants [7], and can be seen as a subclass of
swarm intelligence algorithms, whose goal is to let complex
and intelligent behavior emerge from simple operations
performed by a large number of agents. In our framework,
ant-inspired agents travel the network exploiting peer-to-
peer (P2P) interconnections among hosts, and relocate the
service descriptors through pick and drop operations driven
by probabilistic choices. Service descriptors are ordered
spatially so that frequently co-used descriptors can be easily
found in neighbor hosts. This allows search messages to
find the desired services by approaching the hosts that store
the corresponding descriptors, hop by hop. Moreover, once
a search message gets to the descriptor of a service, it will
easily find other useful services in the same local region. Per-
formance analysis based on event-based simulation shows
that the ant algorithm succeeds in the spatial ordering of
descriptors, and the associated discovery algorithm allows
search requests to better satisfy user requirements with a
lower resource consumption.

The rest of the paper is organized as follows: after the
related work section, Section III describes the algorithms
for the reorganization and discovery of service descriptors;
Section IV presents performance evaluation results; Section
V concludes the paper.

II. RELATED WORK

The ability to select and integrate inter-organizational and
heterogeneous services is an important step towards the de-
velopment of applications over service-oriented frameworks,
such as Grids and Clouds. If no single service can satisfy
the functionalities required by the user, it is often possible
to combine existing services in order to fulfil the request.
This trend has triggered a considerable number of research
efforts on the composition of services in academia and
in industry [8] [9] [10]. Despite all these efforts, service
composition is still a highly complex task. The complexity
comes from many sources: firstly, the number of available
services increases dramatically and composition alternatives
grow exponentially; secondly, services can be created and
updated on the fly, thus the composition should be made
based on ever updated information; thirdly, services can be
developed by different organizations, which use different
concept models to describe the services, and yet there is
no unique language to define and evaluate the services.

Service composition is today typically performed through
centralized middleware components, such as registries, dis-
covery engines and brokers. This approach is inevitably a
serious bottleneck if the number of services and organiza-
tions is large. Distributed registries and registry federations
have been proposed as a first approach to avoid bottlenecks

in a service network. Some existing standards, for example
EbXML and UDDI, adopt a federation of registries to
satisfy some non-functional aspects of service discovery
such as scalability and fault tolerance. The Meteor-S [11]
and Pyramid-S [12] systems propose a scalable P2P infras-
tructure to federate UDDI registries used to publish and dis-
cover services; they use an ontological approach to organize
registries according to a semantic classification based on
the kind of domains that they serve. Even if these solutions
address scalability and fault-tolerance, they use a structured
topology of registries built on the basis of a domain-specific
ontology. This enforces significant constraints on publication
policies, hindering a full exploitation of the P2P model.

In the last few years, many P2P systems have been
proposed to decentralize the management of information in
distributed systems, in particular in Grid and Cloud Comput-
ing frameworks. P2P models are classified into unstructured
and structured, based on the way nodes are linked to each
other and data about resources is placed on the nodes [13].
In unstructured systems, resources are published by peers
without any global planning. This facilitates network man-
agement but reduces the efficiency of discovery procedures.
In structured systems, resources are associated with specific
hosts, often through Distributed Hash Tables. However,
these systems are not designed to favor the composition of
services: the user must first discover the basic services on
the network with multiple search procedures, then compose
them locally to build the complex application.

To assist the user in the design of composite services, two
interesting approaches are based on statistics and process
mining. The first technique can be used to help the user iden-
tify the services that most likely can complete a composition
pattern. The system should be able to recommend a service
on the basis of the declared goals and the services already
chosen [6]. Process mining aims at the automatic building
of composite services starting from the behavior deducible
from execution logs of basic services [14]. Process mining is
often used when no formal description of the overall process
can be obtained by other means, or when the quality of
existing documentation is uncertain.

A technique for the spatial clustering and execution of
composite services was devised in [15]. In this paper, the
authors present an approach to schedule the execution of
composite services on the basis of the spatial proximity of
files and jobs. The idea is to leave the files at the sites
where they have been processed, so that adjacent jobs can
immediately retrieve the files and remove them only when
they are no longer needed. This approach can only be used
in the execution phase, whereas the technique presented
here improves the performance at an earlier phase, i.e., the
discovery of basic services over the network.

A notable trend for the future of service computing is the
autonomic composition of services [4]: the idea is that the
system should build composite services by automatically dis-



covering the basic components, choose among the available
suppliers and select among the different options available
for contracts. Our vision, in which service descriptors are
self-organized by agents according to their mutual compat-
ibilities, can be a step towards the autonomic composition
of services.

III. AN ANT-INSPIRED APPROACH FOR THE COLLECTIVE
DISCOVERY OF WORKFLOW SERVICES

This paper introduces a technique that may greatly fa-
cilitate one of the main tasks in the process of building a
composite service, or “workflow”: the discovery of the basic
component services over the network.

Services are generally associated with metadata docu-
ments, or “descriptors”, which contain the references to
the services along with the descriptions of their function-
alities. These descriptors are indexed and discovered by
means of keys, which may be generated by hash functions,
as in Distributed Hash Tables, or may have a semantic
meaning: for example, each bit in the key may correspond
to a specific topic, and the 1/0 value may mean that the
service covers/does not cover that topic. This strategy is
generally adopted in P2P-based distributed systems and
service-oriented architectures [16] and will be used in this
work. Moreover, to facilitate the management of a wide
set of services, they are usually categorized into different
classes, according to their semantics and functionalities. The
rationale of this classification is that in many distributed
environments, such as Grids and Clouds, generally users do
not need to discover a single specific service, but collect
information about services having specified characteristics
or functionalities, for example a mathematical service that
provides a numerical solution to differential equations, or a
bio-informatic software able to perform particular operations
on protein data. A service class is therefore defined as a set
of services with common properties. All the services of the
same class are assigned the same value of the key, either
with a hash function or through a semantic representation
in which a bit of the key corresponds to a specific char-
acteristic of the class, as in the example mentioned before.
A user can issue a query with a specific target key, and
in this way discover a number of services belonging to the
corresponding class: then the user will choose those that are
the most appropriate for his/her purposes.

In this kind of environment, a user that wishes to build
a workflow of services, must first individuate the classes of
the component basic services (and the corresponding keys),
then issue a search request for each class, and finally select
among the services that have been discovered. This process
may result in long search times and excessive use of network
and computing facilities. Conversely, our approach aims to
individuate the descriptors of services that are likely to be
co-used in the same workflow, and place them close together.
In this way, a single discovery request can locate in a single

shot several services that may be used as basic components
of a workflow, and it is then possible to reduce the number of
discovery requests that are necessary to find all the required
services.

Since the class of a service is determined by the descriptor
key, in the following we will often refer to a service
descriptor by means of its key. The reorganization of keys
is achieved through the operations of a number of mobile
agents whose behavior is inspired by ant colonies [7] [17].
The agents move the keys over the network and sort them
in accordance with their mutual co-use frequencies. This
approach is admissible if the co-use of services has non-
uniform statistical properties. If a specific class of service is
required in a workflow, the probability that another service
class is needed in the same workflow is assumed to be not
uniform: some types of services are more likely to be needed
than others. This assumption is valid in most cases, as the
composition patterns of workflows often obey to recurrent
patterns [18]. For example, the execution of a data mining
software may require a specific algorithm to preprocess the
input data: therefore, the preprocessing algorithm and the
data mining software will be used together frequently.

The approach presented in this paper uses two different
types of mobile agents: the ant agents and the query agents.
This is coherent with the bio-inspired nature of the approach:
for example, insect colonies are composed of individuals
with different capabilities and can globally optimize the ex-
ecution of heterogenous tasks via their collective intelligence
[7].

These two types of agents are concurrently exploited
to perform three distributed algorithms: Alg. 1, for the
gathering and dissemination of statistics about the co-use
of service classes; Alg. 2, for the reorganization of keys,
with the objective of gathering the descriptors of frequently
co-used service classes in neighbor peers; Alg. 3, for the
efficient execution of discovery procedures.

The three algorithms are concurrently executed on all the
peers of the network: the main tasks performed on a single
peer are sketched in Figure 1. The figure also depicts the
data repositories used by the algorithms: the repository of
keys, the list of the adjacent peers, and the co-use matrix,
which maintains the statistics about the co-use of different
service classes in the same workflow. The high level logic of
the approach is summarized in the following. When defining
the workflow of a complex application, the user individuates
the classes of the component services, and generates a query
agent to find a number of services for each class. The query
agent must be driven to the peers that store a considerable
number of keys that belong to the specified service classes.
The query agent carries the workflow description, with the
list of service classes, and the target keys collected in the
peers visited so far (see bottom part of Figure 1). At any
peer where it is delivered, the query agent performs the
following operations: (i) it updates the co-use matrix, which



is exploited by the ant agents to reorganize the keys; (ii) it
collects the target keys stored in the local repository; (iii)
it hops to the next peer, selected in accordance with the
discovery algorithm.

Figure 1. Tasks performed by ant and query agents when they are delivered
to a new peer. Each task is associated with one the three basic algorithms.

The ant agents are generated by peers when they join or
reconnect to the network, and travel randomly from peer
to peer. An ant carries the co-use matrix of the last visited
peer and, possibly, one or more keys previously picked on
other peers (see the top part of Figure 1). When arriving at
a new peer, the ant agent performs the following operations:
it merges the carried matrix with the one stored locally,
using the Push-Sum protocol [19]; it executes pick and drop
Bernoulli trials, in order to decide whether or not to drop
the carried keys and/or pick other keys stored in this peer;
it hops to a new peer, chosen randomly.

It should be remarked here that ant and query agents
operate continuously and in parallel. This allows the reorga-
nization of descriptors to adapt dynamically to user requests,
so as to serve them more rapidly and efficiently.

The three algorithms are described in the following sub-
sections in detail.

A. Alg. 1: building and dissemination of co-use matrices

The objective of the first algorithm is the building of
co-use matrices by the peers of the network. We will
assume that the services are categorized into NS classes,
according to a domain specific classification or ontology.
For convenience, service classes are assigned progressive
integer indices from 0 to NS − 1. Each peer maintains a bi-
dimensional matrix M , in which the element M(i, j), with
i, j = 0..NS − 1, i ̸= j, represents the frequency of co-
occurrences of service classes i and j in the same workflow.

To build the matrix M , each peer examines the search
requests carried by the query agents that pass through the
peer. Each request lists the service classes the are needed
to compose a specific workflow. For each couple of such
service classes, i and j, the matrix element M(i, j) is

incremented by 1. To give more relevance to the recent
behavior of the system, the matrix elements are computed
in a temporal window that includes the workflow requests
received during the past H hours (H is a tunable parameter,
and in this work was set to 24 hours). The matrix values
are then normalized, dividing each element by the largest
element value, so as to obtain real values between 0 and 1.
The co-use matrices, maintained by the different peers, are
exploited by ant agents to move and reorganize the service
descriptors, as described in the Section III-B.

Information about the co-use of services must be ex-
changed among the peers, otherwise the matrices stored by
different peers would converge very slowly and possibly
to different values. The ant agents, whose primary duty
is the reorganization of the keys, are also assigned the
responsibility of disseminating the information contained
in the co-use matrices. After hopping from one peer to
another, an ant delivers the normalized matrix of the source
peer, M̄s, to the target peer (the matrix is symmetric,
hence only half matrix must be delivered). The target peer
recalculates its co-use matrix M̄t by combining its current
values with the values of the matrix M̄s. This technique
follows the well-known Push-Sum protocol [19], based on
a gossiping strategy, which allows aggregate values, in this
case the average values of the M̄ elements stored by the
different peers, to be computed in a number of rounds that
is logarithmic with respect to the number of peers. In this
way, the information is progressively disseminated across the
network, and the values of the peer matrices can converge
rapidly and to uniform values.

B. Alg. 2: reorganization of descriptors

The objective of the second algorithm is the reorganization
of descriptors, performed by ant agents. An ant agent is
generated by a peer when it joins or reconnects to the system,
and travels the network, hopping from peer to peer, for a
given amount of time. By correlating the lifetime of the ant
agent to the average connection time of the issuing peer,
it is possible to tune the average number of agents that
circulate in the network. For example, if the agent lifetime
is set to the average connection time of the peer, it can be
easily deduced that the average number of agents is always
comparable to the average number of peers connected in the
network. Indeed, the agents that die are compensated by the
new agents that are generated by peers.

Each ant, at random time intervals, hops from a peer
to an adjacent one. At the new peer, the ant tries to
pick a descriptor that is not frequently co-used with the
other descriptors stored in the local region. After picking
a descriptor, the ant will carry it and try to drop it in a
peer where the co-use frequency with the local descriptors
is high. The co-use frequency of two descriptors is defined
as the value of the element M̄(i, j) of the normalized co-use
matrix, where i and j are the classes of the two descriptors.



Since each service class is univocally associated with a
specific value of the descriptor key, in the following, for
simplicity, the discussion will focus on the reorganization
of keys. For example, to say that a descriptor of a given
service class is picked/dropped by an agent, we will say
that the agent picks/drops a key of that class. Pick and
drop operations are driven by corresponding pick and drop
probability functions, as described in the following.

Pick operation.
To decide whether or not to pick a key, say key k̂, the

agent calculates the “co-use similarity” of this key with the
other keys k stored in the local area A, which includes the
local peer and the peers directly adjacent to it. The co-use
similarity f(k̂, A) is defined as follows:

f(k̂, A) =
1

Nk
·
∑
kϵA

(M(k, k̂)) (1)

where M̄ is the normalized co-use matrix of the local peer
(Section III-A), and Nk is the number of keys stored in the
local area A. From the definition, the co-use similarity has
values between 0 and 1 and a value close to 1 corresponds
to a high co-use frequency of k̂ with the other keys of the
local area.

The key is picked by the agent, after a Bernoulli try, with
probability:

Ppick =
αp

αp + f(k̂, A)
, with 0 ≤ αp ≤ 1 (2)

Therefore, the pick probability is inversely proportional to
the co-use similarity, which ensures that an “outlier” key
will be picked with high probability and moved to other
regions of the network. The parameter αp can be tuned to
modulate the degree of similarity among keys. In fact, the
pick probability is equal to 0.5 when f(k̂, A) and αp are
comparable, while it approaches 1 when f(k̂, A) is much
lower than αp (i.e., when k̂ has very low co-use similarity
with the other keys) and 0 when f(k̂, A) is much larger than
αp (i.e., when k̂ has high co-use similarity). In this work,
αp is set to 0.1, as in [7].

Drop operation.
Once a key k̂ is picked, it will be carried by the agent

across the network. The agent will evaluate the drop prob-
ability function at any new peer, until the key is actually
dropped; after that, the agent will try to pick another key.
The drop operation also depends on a Bernoulli try, whose
probability is:

Pdrop =
f(k̂, A)

αd + f(k̂, A)
, with 0 ≤ αd ≤ 1 (3)

In this case the co-use similarity f(k̂, A) is evaluated be-
tween the carried key, k̂, and the keys stored in the new

local area A. Notice that the drop probability is directly
proportional to the co-use similarity. The value of αd should
be higher than αp, in order to moderate the drop probability
and give the agent the possibility of bringing the key to a
remote area, if needed. In this work, αd is set to 0.5.

Pick and drop operations are used to cluster keys of
service classes having high co-use frequencies, and avert
keys of rarely co-used service classes. The efficiency of
this technique lies in the “swarm intelligence” behavior
of ant-inspired algorithms. Each single ant performs very
simple operations without any knowledge about the overall
process, but the combined operations of several agents lead
to the emergence of an organized and flexible information
system, in which the keys are spatially sorted according
to the adopted definition of similarity. Being completely
decentralized, the key reorganization process adapts easily
to the modifications of the environment, for example to the
disconnections/reconnections of peers and to changes in the
co-use frequencies. The ant algorithm is also robust with
respect to the values of the parameters αp and αd: these
values can have an impact on the velocity and duration of
the transient phase of the sorting process (i.e., the phase
in which the keys are reorganized starting from complete
disorder), but they have little influence on the performance
observed under steady conditions (in which the keys are
already sorted, and agent operations have only to cope with
environmental modifications, such as peer disconnections,
publication of new keys, etc.).

C. Alg. 3: collective discovery of services

In the design phase, the user individuates the classes of
services that are needed to build a workflow. The purpose of
the discovery process is to find as many services as possible
that belong to a set of target classes. The reorganization
of keys explained in the previous section is exploited to
increase the efficiency of the discovery process.

When a peer initiates a discovery process, it issues a query
and consigns a list of target key values (each corresponding
to a service class) to a query agent. The query agent operates
as follows:

i) first, it selects the “closest” service class, i.e., the
service class for which it is most likely to find a significative
number of keys in the neighbor peers. This is done on the
basis of the distance metric defined by the co-use similarity.
Specifically, the agent calculates the similarity function of
each workflow target key with the keys stored in the local
area, using expression (1), and selects the key value kx,
and the corresponding service class, that maximizes this
function. The objective is to find as many keys as possible
with the chosen value kx.

ii) the agent hops to the neighbor peer in which the
similarity function of the key value kx is the largest. Owing
to the spatial sorting of the keys, each hop allows the query
agent to approach a region of the network in which a relevant



number of keys having the value kx can be found. This
step is repeated until it is no longer possible to improve
the similarity function, which means that the desired region
has been reached (or, in some unfortunate cases, that the
query has reached a local maximum). Now, the query agent
removes kx from the set of workflow key values that must
still be selected.

iii) the agent turns to step i) and selects the next key
value ky that maximizes the similarity function, among those
contained in the query and not yet selected. The agent
executes step ii) to discover keys with the new target value
ky .

The procedure terminates when all the key values of the
workflow list have been selected. During the search path, the
query agent collects all the keys whose value is one of those
specified in the query. At the end of the procedure, the query
agent goes back to the requesting peer, which examines the
keys discovered for each service class. If the number and
quality of the results is satisfactory, the discovery process
terminates. Otherwise, a new query agent is issued to search
for the service classes for which the required number of keys
has not yet been discovered. The whole process terminates
when the required number of keys has been found for each
service class, or when it is not possible to discover more
keys.

As an example, let us assume that the workflow must be
composed of three services belonging to the classes C1, C2

and C3. A query agent is issued in which the corresponding
key values are specified, say k1, k2 and k3. The query
agent is successively driven towards the keys having each of
these values, and the order is determined by the similarity
function, as described before. Suppose that, at the end of the
procedure, the query agent returns with 10 keys having the
value k1, 6 having the value k2, and 12 having the value k3.
If the required number of keys per class was set to 10, the
request has been satisfied for classes C1 and C3, but not for
C2. Therefore, another query agent is issued to find at least 4
keys with value k2. If the second agent succeeds, the whole
request has been satisfied, with two search procedures, and
two query agents.

Notice that, in absence of key reorganization, a different
query should be issued for each service class of the work-
flow. Conversely, owing to the described reorganization of
keys, it is possible to reduce the number of queries, down to
a single query in the most fortunate cases. This aspect will
be examined in Section IV-D.

IV. PERFORMANCE EVALUATION

The performance of the presented framework was evalu-
ated with regard to two aspects: the capacity of reorganizing
the descriptor keys and the effectiveness of discovery op-
erations. The computational load and network traffic were
also assessed. Accordingly, three sets of performance indices
were considered:

Indices concerning key reorganization:
• Peer homogeneity

The objective of the ant agents is to place the keys
of frequently co-used services close to each other. The
homogeneity of a peer is defined as the average value of
the co-use matrix elements, evaluated for every couple
of keys stored in the peer:

Om(P ) =
1

Nk1,k2

·
∑

k1,k2inP

(M(k1, k2)) (4)

M is the normalized co-use matrix of peer P and
Nk1,k2 is the number of key couples. To have an
overall perspective about the network condition, the
index is averaged over all the Np peers of the network:
Om = 1/Np ·

∑
P (Om(P ))

• Similarity of a peer with its neighbors
While the homogeneity index gives information about
the keys maintained by a single peer, the discovery
procedure also exploits the fact the keys are spatially
ordered over the network. This ordering is assessed
through the similarity index of a peer, defined as the
average value of the M elements, evaluated for every
couple in which the first key is stored in the local peer
and the second is located in one of the other peers of
the local region A:

Sn(P ) =
1

Nka,kb

·
∑

kainP,kbin{A−P}

(M(ka, kb)) (5)

Again, the value is averaged over the whole network,
Sn = 1/Np ·

∑
P (Sn(P )). A high value of this index

means that the keys stored in adjacent peers are similar
and are spatially sorted.

Indices concerning the discovery process:
• Percentage of “satisfied” service classes

Defined as the percentage of service classes, specified
in the discovery request, for which a minimum number
of keys are discovered. This minimum number, referred
to as Tq, is a threshold that can be used as a parameter.

• Number of discovered keys
Average number of discovered keys per each service
class specified in the workflow request.

Indices concerning traffic and processing load:
while the previous indices measure the efficacy of the
discovery process, the next two indices assess its efficiency
and its impact on the network load. The last index measures
the impact of the ant algorithm.

• Number of queries needed to satisfy a discovery request
Average number of query agents that are necessary to
collect at least Tq keys per each service class specified
in the workflow request.

• Number of steps performed by query agents



Average number of steps performed by the query agents
issued during a workflow discovery process.

• Frequency of ant agents received by a peer
This index is useful to assess both the network traf-
fic and the processing load, since the reception of
an ant triggers a computation procedure on the local
peer (evaluation and possible execution of a pick/drop
operation, recalculation of the co-use matrix with the
Push-Sum protocol).

A. Description of the scenario

The performance indices were evaluated in a sample sce-
nario, with 2,500 peers connected in a scale-free topology,
in which the number of connections of a peer follows the
power-law distribution [20], and the average is set to 4
neighbors per peer. Each peer publishes 15 services on
average, with the actual number extracted from a Gamma
statistic distribution. The class of each service is generated
randomly, with a uniform distribution, among one of the
NS service classes defined by the domain classification or
ontology.

The algorithms are evaluated in a scenario in which the
co-use of services is not uniform: some couples of service
classes are often used together in the same workflow, other
couples are co-used more rarely. Unfortunately, this kind
of non-uniformity is difficult to predict and is subject to
changes: co-use statistics depend on the categorization of
services and on the behavior of users in different contexts. To
test a realistic scenario, we chose to exploit the classification
of services that is provided by semantic tools and ontologies
in different application domains. This approach is increas-
ingly popular in the world of service-oriented systems [21].
The most common classification scheme, though not the only
one, is the hierarchical categorization of service classes, by
means of tree structures: the classification is refined at each
level of the tree, and each class corresponds to a leaf node.
This kind of classification is adopted, as an example, by
the MS-Analyzer platform [22]. MS-Analyzer categorizes
the services used to preprocess and mine data produced by
mass spectrometry tools, which measure the molecular mass
of biological samples. The similarity between two service
classes can be measured by their “kinship” degree, that is,
by the distance from the closest common ancestor in the tree:
the lower is this distance, the higher is the similarity. In this
context, it is assumed here that the probability of using two
service classes in the same workflow increases with their
similarity. This is reasonable, since a service workflow is
designed to devise a solution in a specific domain, and it is
very likely that the adopted services are categorized within
the same domain.

To test this scenario, we made the following specific
assumptions, which are coherent with the MS-Analyzer
example cited before:

• services are categorized according to a tree structure
having l levels and a maximum of m children per node.
In our experiments, l is set to 4 (root included), m is set
to 3, and the tree is complete, so that Ns=27 different
classes of services are defined;

• each workflow is composed of a variable number of
services, with a Zipf distribution around the average.
In our experiments the average number of services is
set to 4: it means that 4-services workflow are the most
frequent, followed by workflows with 3 or 5 services,
and so on;

• the first service class of a workflow is chosen randomly,
with uniform distribution. Each following service class
is chosen as follows: first, one of the already chosen
classes is selected randomly, as a reference class; then,
the new service class is chosen by randomly generat-
ing the kinship degree between the reference and the
new class. The kinship is generated with a geometric
distribution, so that a strict degree of kinship is more
probable than a looser one. For example, it is highly
probable that the distance from the closer ancestor is
1 (i.e., the reference and the new service class are
siblings), while there are lower probabilities that this
distance is 2 or 3. Finally, the new service class is
randomly chosen among all the classes that have the
specified degree of kinship with the reference class.

These assumptions define a specific sample scenario in
which our framework was tested. However, it should be
remarked that the framework does not depend on any
particular scenario: the only necessary assumption is that
the co-use statistics of service classes have some form of
non-uniformity, which is exploited to reorganize the keys
and lead the query agents towards their targets.

The simulation experiments were performed with an
event-based simulator similar to that described in [17]. Users
issue collective discovery requests at the rate of one request
issued from a single peer every 1000 seconds. The service
classes specified in the requests are generated as detailed
before.

Each new or reconnecting peer generates a new ant agent,
whose lifetime is set to the average connection time of the
peer. In turn, the average connection time of a single peer is
extracted from a Gamma distribution whose average is the
average connection time of all peers. This global average
is set to 4 hours. Such a setting ensures that the overall
number of agents is kept approximately constant, despite the
peer disconnections and reconnections, and the turnover of
agents. In particular, the number of circulating ant agents is
always comparable to the number of peers connected to the
network. Finally, the time interval between two successive
hops of an ant agent, referred to as Tmov , is set to 60
seconds.



B. Performance of the key reorganization process

The homogeneity and similarity indices, averaged over
all the peers of the network, are used to verify that the keys
of frequently co-used services are actually put in neighbor
peers. In Figure 2, these indices are plotted versus time,
starting from the instant in which the process is kicked off
and the agents begin to travel the network. The homogeneity
and similarity indices increase rapidly in the first phase
and then get stabilized at values of around 0.77 and 0.62,
respectively. The homogeneity index is higher because it is
evaluated on the keys stored on a single peer. The trend of
both indices, however, proves that keys of co-used services
are stored in the same or in neighbor peers, and that they
are spatially sorted, which is the condition that allows the
discovery algorithm to be executed efficiently. It should be
noticed that the transient phase occurs only once, when
the process is initiated in a completely disordered system.
After this phase, the indices are stable because every change
in the network (connections and disconnections of peers,
publishing and removals of resources) is easily and rapidly
tackled by the agents, thanks to the robustness and flexibility
characteristics of the ant algorithm.
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Figure 2. Values of homogeneity and similarity indices vs. time, starting
from a disordered network.

C. Performance of resource discovery

The reorganization of keys ensures that the descriptors of
the service classes specified in a workflow request are very
likely to be stored in neighbor peers: this fact is exploited by
the discovery process, as explained in Section III-C. Figure
3 reports the percentage of service classes, specified in a
search request, for which the number of keys discovered by
the query agents exceeds the threshold Tq, which is varied.
The dashed curves correspond to the percentage obtained
with the first query agent: it can be noticed that even a
single query is sufficient, in steady conditions, to retrieve the
desired number of keys for a percentage of service classes
between 68% and 82%. Of course the percentage decreases
as the threshold value Tq increases. As discussed in Section
III-C, new query agents are issued to satisfy the remaining
service classes, until all of them have been satisfied or it

proves impossible to fulfill the goal (a new query agent does
not discover any further key). At the end of the process the
percentage of satisfied service classes is practically equal to
100%, as shown by the continuous curves in Figure 3.
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Figure 3. Perc. of service classes of a workflow for which at least Tq

keys are discovered after the first query (dashed lines) and at the end of the
discovery process (continuous lines), for different values of the threshold
Tq .

Figure 4 shows that the average number of keys discov-
ered per service class increases with time and converges
to around 25 keys, which is a much larger value than the
requested minimum, the threshold Tq. The rationale of this
increase is that the discovery algorithms can direct the query
agents to regions where many useful keys can be found.
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D. Traffic and load analysis

The average number of query agents that are necessary
to obtain the required number of keys, for all the service
classes specified in the request, is depicted in Figure 5. In
steady conditions, this number is always lower than 1.4.
Notice that, with no key reorganization, about 4 queries
would be necessary, because the average number of services
that compose a workflow was set to 4. This means that the
number of queries can be reduced on average by 65%.

Figure 6 reports the total number of steps that are per-
formed by all the query agents of a discovery process.
This number decreases with time, which proves that the
reorganization of keys not only improves the effectiveness
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Figure 5. Average number of query agents needed to complete the
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Figure 6. Average number of steps performed by query agents, for different
values of the threshold Tq .

of the process, but also shortens the average path of query
agents.

The number of ant agents per second that arrive and are
processed at a peer, referred to as L, can be calculated by
multiplying the average number of ants Na by the frequency
of their movements 1/Tmov , so obtaining the number of
times per second that an ant arrives at any peer, and then
dividing the result by the average number of peers Np to
get the number of times per second that an ant arrives at a
specific peer,

L =
Na

Np · Tmov

(6)

In the considered scenario, Na and Np are comparable, as
discussed in Section IV-A, therefore the average frequency
of received ants is equal to the inverse of Tmov , i.e., one
ant every 60 seconds. This result was confirmed by the
simulation experiments. Since the operations performed after
receiving an ant are very simple and fast, this can be
considered an acceptable load.

Finally, it should be noted that the performance indices
do not depend on the network size, which was confirmed
by simulation experiments. This scalable behavior descends
from the decentralized and self-organizing nature of the
adopted algorithms, and is a typical advantage of the swarm
intelligence paradigm.

V. CONCLUSIONS

This paper aims to make a novel contribution to the design
and development of a service-oriented framework that assists
the user in the building and execution of composed services.
The basic idea is to place the descriptors of services close
together if they are often co-used in workflows, and exploit
this reorganization to facilitate the concurrent discovery of
the basic services that will compose a new workflow. The
devised algorithms, partly inspired by the behavior of ant
colonies, are completely decentralized and self-organizing,
which avoids the presence of bottlenecks, and guarantees
good fault-tolerance and adaptivity properties. The eval-
uation of the algorithms, performed through simulation
experiments, confirmed the efficiency of the information
reorganization process and the effectiveness of the collective
discovery procedures.
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