
A Self-Organizing P2P System with
Multi-Dimensional Structure

Raffaele Giordanelli, Carlo Mastroianni
ICAR-CNR, Rende(CS), Italy

{giordanelli,mastroianni}@icar.cnr.it

Michela Meo
Politecnico di Torino, Italy
michela.meo@polito.it

ABSTRACT
This paper presents and analyzes Self-CAN, a self-organizing
P2P system that, while relying on the multi-dimensional
structured organization of peers provided by CAN, exploits
the operations of ant-based mobile agents to sort the re-
source keys and distribute them to peers. The benefits of
the self-organization approach are remarkable, starting from
increased flexibility and robustness, to better load balanc-
ing characteristics. Most notably, peer indexes and resource
keys can be defined on different and independent spaces,
which overcomes the main limitation of standard structured
P2P systems, i.e., the necessity of assigning each key to a
peer having a specified index. This decoupling opens the
possibility of giving a semantic meaning to resource keys and
enables the efficient execution of multi-dimensional range
queries, which are essential in some types of distributed sys-
tems, for example in Grids.

Categories and Subject Descriptors
H.3.4 [INFORMATION STORAGE AND RETRIEVAL]:
Systems and Software—Distributed systems, Performance
evaluation (efficiency and effectiveness)

General Terms
Algorithms, Design

Keywords
Bio-Inspired, Key-value Storage, Peer-to-peer, Resource Dis-
covery, Self-organizing

1. INTRODUCTION
Peer-to-peer (P2P) techniques and algorithms are steadily

emerging as efficient solutions for the management of large-
scale distributed computing systems. In particular, the P2P
paradigm is used to cope with the placement, advertising
and discovery of resources needed by users for the execution
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of complex applications. P2P presents significant advan-
tages over centralized and hierarchical solutions, which may
suffer from scalability and fault tolerance problems. Besides
traditional file-sharing applications, new fields of application
for P2P systems are Grid and Cloud Computing.

In Grids [1], different types of computing resources need
to be shared among the nodes of a community, ranging from
storage and processing devices to data, programs, and soft-
ware facilities. In this context, resources are not typically
discovered through their names, as in file sharing systems,
but through a set of characteristics, which are described by
resource metadata documents or “profiles”. P2P solutions
can also be exploited to manage the information systems
of companies, like Google, Amazon and Microsoft, which of-
fer pay-as-you-go-services through their Cloud platforms [2].
For example, Amazon Dynamo [3], a key-value storage sys-
tem adopted by several Amazon’s core services, is a variant
of the the Chord P2P system.

Most modern P2P architectures are “structured”, which
means that the resource keys, through which resource pro-
files can be discovered and accessed, are assigned to nodes
with a predetermined strategy, and using Distributed Hash
Tables, or DHTs. When a resource is published, its access
key is computed with a hash function applied to the re-
source name; then, the resource profile is assigned to the
node that is responsible for that key. The keys are assigned
to nodes according to different types of structures, such as
rings, multi-dimensional grids or trees: these structures are
used, respectively, by Chord [4], CAN [5], and Pastry [6].
The main benefits of structured systems is that they can
use “informed” algorithms to drive user queries towards the
desired keys in a short and bounded time, and generate low
network traffic. A major drawback, however, is that the se-
mantic profile of the resource cannot be used in the discovery
process. Therefore it is not possible to efficiently serve com-
plex queries, or range queries that aim at finding resources
sharing common features. Range queries are particularly im-
portant in Grid environments: a user often needs to discover
a set of resources that are compatible with the application
s/he wants to run, for example, a set of machines with CPU
speed and RAM memory comprised in a given range. Other
drawbacks concern the load balance (the nodes that are as-
signed the most popular keys may be highly loaded) and the
dynamic behavior of the system (for example, an immediate
reassignment of keys is necessary every time a node joins or
leaves the system).

In recent years, there have been interesting attempts to
reinforce the adaptive and fault-tolerance characteristics of
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P2P networks by imitating the self-organizing behavior of
biological systems, such as flocks of birds, insect swarms,
and, above all, ant colonies [7, 8]. These algorithms exploit
the properties of “swarm intelligence” systems, in which an
intelligent behavior at a high level is obtained by combining
simple low level operations performed by bio-inspired mo-
bile agents [9]. Self-Chord [10] exploits the structured ring-
shaped overlay offered by Chord, and sorts the keys over the
ring without any predefined association between peer codes
and keys. This allows resource keys to assume a seman-
tic meaning, and facilitates the execution of range queries.
These advantages, though, are limited to the cases where a
single attribute can be used to characterize the resources,
which is often a too strict constraint.

This paper shows that it is possible to use ant-inspired
algorithms to manage multi-attribute resource profiles, and
map them to a multi-dimensional structure, specifically the
one offered by CAN. Accordingly, the system presented here
is referred to as “Self-CAN”. In the CAN base system, each
node that joins the network is assigned an index, randomly
computed through a hash function, which corresponds to
a point in a multi-dimensional logical space. This node is
then declared responsible for a zone of the space that in-
cludes its index, and manages the resource keys that be-
long to the same space. In Self-CAN, the spaces of resource
keys and node indexes are decoupled, so that a key does
not need to be assigned to a specified node. Instead, ant-
inspired agents sort the multi-dimensional resource keys over
the CAN structure through a self-organizing algorithm. The
fundamental consequence is that in Self-CAN resource keys
do not have to be calculated with a hash function, as in
CAN, but can preserve the semantic meaning of resource
attributes. For example, a three-dimensional key of a data
mining service can express the degree of availability, the cost,
and the type of algorithm executed by the service.

Search messages can be driven to the desired keys in log-
arithmic time, by following the gradient of the keys stored
by different nodes. Moreover, thanks to the sorting of keys
over the structured overlay, Self-CAN is particularly efficient
in the execution of complex and multi-dimensional range
queries. Notice that such queries are inefficient in CAN,
since the keys of similar resources are uniformly spread by
the hash function in the multi-dimensional structure.

A prototype of Self-CAN, written in Java, is available on
the Web site http://self-can.icar.cnr.it. Performance evalu-
ation was carried out either with the prototype or with an
event-based simulator that emulates the behavior of the pro-
totype, depending on the size of the evaluated network. The
paper is organized as follows: Section 2 introduces the Self-
CAN model and illustrates the effect of the sorting process;
Section 3 describes the operations performed by the ant-
inspired agents; the results of a wide set of experiments are
discussed in Section 4, conveniently divided in subsections;
finally, after the related work section, Section 6 concludes
the paper.

2. THE SELF-CAN MODEL
Self-CAN uses the same multi-dimensional overlay of peers

that is maintained by the CAN system [5], so the key points
of CAN are summarized in the following. Each peer that
connects to the network is assigned an index whose value is
a point in a multi-dimensional space, randomly computed
through a hash function. The peer will be responsible for a

region of the space that contains that point. As the network
evolves, the whole space is partitioned and fragmented into
ever smaller regions, which are assigned to the joining peers.

Similarly, each resource published by a CAN participant
is assigned a key in the same multi-dimensional space, using
another hash function, and the key is consigned to the peer
that is responsible for the region that includes the key. A
discovery request issued to find this key, or any other key
that belongs to the same region, is driven to this peer, ex-
ploiting the multi-dimensional overlay and the ordering of
peer indexes along the different dimensions.

Some relevant properties of a CAN overlay unfolded over
D dimensions are the following (see [5] for more details):

• the multi-dimensional space is toroidal, to avoid border
effects; without losing generality, the values assigned to
peer indexes are in the range (0,1) for each dimension;

• each peer is connected to 2D neighbor peers, i.e., to
two adjacent peers per dimension;

• the search path follows the connections among adja-
cent peers. If the D-dimensional space is equally par-
titioned among Np peers, the average path length is

(1/4) ·D ·N1/D
p ;

• if the value of D is approximately logarithmic with
respect to the number of peers Np, other important
properties are also kept logarithmic. For example, if
D � (log2 Np)/2, the average length of the search path
is of the order of (log2 Np)/2 and the number of a peer’s
neighbors is of the order of log2 Np.

Self-CAN uses the same overlay as CAN, but decouples
resource keys from peer indexes. Each resource is assigned a
multi-dimensional key via a hash function or, a useful alter-
native, through a semantic-aware mechanism. For example,
the value of the key over each dimension may correspond to
a property of the resource. The flexibility in the definition
of the key space allows the efficient management of resource
classes, a “class” being defined as the set of resources hav-
ing specified common properties. For example, a class of
resources could include the hosts having similar CPU and
memory capabilities, or the software tools that offer a spec-
ified set of mathematical services. The resources of a class
can be assigned the same value of the key, enabling the effi-
cient execution of class and range queries, generally impos-
sible in structured P2P systems.

The basic idea of Self-CAN is to let the resource keys
self-organize along the D-dimensional space while preserv-
ing the sorting of key values along each dimension. This
allows queries to discover a target key without knowing in
advance the identity of the peer that is responsible for the
key. As the performance evaluation section will confirm, the
efficiency of discovery operations is unaltered with respect to
CAN, but other important advantages are obtained, such as
improved adaptivity, better load balance, and the possibility
of associating a semantic meaning to the keys.

The keys are sorted with simple pick and drop operations
by a multitude of ant-based mobile agents. Each peer com-
putes its “centroid”, which is the D-dimensional vector of
real values that minimizes the distance from itself and the
values of the keys stored in the local region of the network.
The agents move and sort the keys using the peer centroid
as a reference. To clarify this aspect, let us assume that

52



the key space is bi-dimensional and keys assume integer val-
ues in the range {0..15} for each dimension, which means
that resources are categorized in 256 classes. Let us assume
that the keys stored in a local region, which includes the
local peer and the peers adjacent to it, are the following:
(1,15), (3,14), (5,0) and (3,1). In this case the peer centroid
is (3,15.5), since the value of the centroid for each dimen-
sion minimizes the average distance between itself and the
values that the local keys assume on the same dimension1.
The objective of the agents is to move the keys consider-
ing their relative distance with respect to the centroid. In
the mentioned example, with the centroid equal to (3,15.5),
the key (1,15) should be picked and moved towards a “pre-
decessor” peer along the first dimension, whereas the key
(3,1) should be moved towards a “successor” peer along the
second dimension. A predecessor (successor) peer is the ad-
jacent peer that, owing to the sorting process, is supposed to
have a lower (higher) value of the centroid for the dimension
of interest. An agent that arrives at the local peer carrying
the key (3,15), previously picked on another peer, should
drop the key, because its value is similar to the centroid.
Pick and drop operations gradually order the keys over the
D-dimensional structure, and then keep the ordering even
when the environment changes, for example when peers dis-
connect and reconnect again, or when resource properties,
and their keys, are modified. More details about agent op-
erations are given in Section 3.

The Self-CAN prototype was used to test a simple sce-
nario in which 16 peers are aligned along a 2-dimensional
overlay, and each peer publishes on average 50 resources
with key values in the range {0..15} for both dimensions2.
The key values are assigned randomly, therefore the net-
work starts from a disordered situation. The operations of
16 agents, generated one by each peer, rapidly reorder the
keys. Figure 1 offers a graphical representation of the ob-
tained ordering, by reporting the centroids of the peers at
the end of the experiment. It can be noticed that centroid
values are sorted along both dimensions, which means that
the values of single keys are also sorted. Yet there is no
predetermined association between key values and peers, as
in CAN. A discovery message, issued to find a target key, is
easily driven, following the gradient of centroid values, and
hopping from peer to peer, towards the peer whose centroid
is equal or as close as possible to the target key. As the per-
formance section will show, the distribution of keys stored
locally is centered on the value of the peer centroid and is
very narrow, therefore all the keys with the desired value can
be found in this peer or, at worst, in the adjacent peers. In
the case of a range query, all the desired keys will be found
in the neighbor peers, as discussed in Section 4.3.

3. AGENT OPERATIONS IN SELF-CAN
As will emerge from this section, the reordering process

performed by agents is decentralized, self-organizing, and
does not require any predefined association among resource
keys and peer indexes. Agents are generated and die like

1For each dimension, key values are defined in a circular
space, in which value 0 succeeds value 15: the distance be-
tween two values can be seen as the length of the minimum
circle segment that separates these values.
2As discussed later, the intervals do not have to be equal:
different ranges of values can be assigned to different key
coordinates.

Figure 1: A 2-dimensional Self-CAN network with
16 peers. The values of centroids are reported for
each peer. At the end of the experiment, they are
sorted along both dimensions.

the real ants from which they are inspired. Each peer, at
the time that it connects to the network, generates an agent
with a probability Pgen. The agent lifetime is randomly
generated with a statistical distribution whose average is
equal to the average connection time of the connecting peer,
calculated on the past activity of the peer. In this way, the
average number of agents Na that circulate in the network
at a given instant of time is associated with the average
number of peers connected in the network at the same time,
Np,

Na
∼= Np · Pgen (1)

Each Self-CAN agent, in its lifetime, performs a few simple
operations, cyclically:

1. while it is not carrying any key, it hops from a peer to
an adjacent one, chosen randomly;

2. at any new peer, it decides whether or not to pick a
key from this peer;

3. while holding a key, the agent jumps to a new adjacent
peer, trying to move towards a region in which the peer
centroids are more similar to the value of the key;

4. at any new peer, the agent decides whether or not to
drop the carried key.

Pick and drop operations are executed on the basis of
Bernoulli trials whose probabilities depend on the similarity
between the key k under evaluation and the centroid c of the
local peer. This similarity, referred to as f(k, c), is defined
as:

f(k, c) = 1− 1

D

D∑

i=1

Δi

Li/2
(2)

where Δi is the distance between k and c evaluated along
dimension i, and Li is the length of the facet of the D-
dimensional space of keys along dimension i, i.e., the num-
ber of values that a key may assume on the corresponding
coordinate. In a toroidal space, Li/2 is the maximum dis-
tance between two points along dimension i and is used in
the fraction denominator to normalize the distances over the
different dimensions. The second term in (2) can be consid-
ered as the normalized “Manhattan”distance between k and
c. Indeed, it is the sum of the normalized distances along the
different dimensions, divided by D. In this way, the value
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of f(k, c) ranges between 0 (minimum similarity) and 1 (k
and c have exactly the same value).

The four steps of the agent life cycle are now described in
detail. As long as the agent is unloaded, it randomly selects
a dimension and a direction for its next movement (step 1).
At any new peer (step 2), it evaluates the pick probability
function, which for a local key k is defined as:

Ppick(k) =
αp

αp + f(k, c)
with 0 ≤ αp ≤ 1 (3)

The expression for Ppick(k) guarantees that the probability
of picking a key k at a peer with centroid c is inversely pro-
portional to the similarity between k and c. Therefore, the
keys that are distant from the peer centroid are very likely
to be picked, whereas the keys that are close to the centroid
are picked with low probability because they are probably
placed in the correct place. The parameter αp can be tuned
to modulate the pick probability. In fact, the probability is
equal to 0.5 when the values of αp and f(k, c) are compa-
rable, whereas it approaches 1 when f(k, c) is much lower
than αp (i.e., when the key k is very different from the peer
centroid) and 0 when f(k, c) is much larger than αp (i.e.,
when the key k is similar to the centroid). In this work, αp

is set to 0.1 as in the base ant algorithm introduced in [9].
At step 3, while carrying a key3, the agent selects the

dimension along which the normalized distance between the
key and the local centroid is the largest. If the key is higher
than the centroid on the selected dimension, the agent moves
to the successor peer (i.e., the adjacent peer having a higher
code on that dimension in the underlying CAN structure),
otherwise it moves to the predecessor. In this way, the key
ordering always respects the same direction as the ordering
of peers established by the CAN structure.

At any new peer (step 4), the agent tries to drop the key
with a Bernoulli trial with probability:

Pdrop(k) =
f(k, c)

αd + f(k, c)
with 0 ≤ αd ≤ 1 (4)

where k is the value of the carried key, c is the centroid of
the new peer, and f(k, c) is the similarity between the two
values. If the drop operation is not performed, the agent
continues its travel towards a region of the network where
the key should be deposited, and retries the drop operation
at every new peer. As opposed to Ppick(k), Pdrop(k) grows
with the similarity between k and c, therefore the agent
tends to drop a key if it is similar to the other keys stored in
the local region. The parameter αd is set to a higher value
than αp, specifically to 0.5, in order to limit the frequency of
drop operations, and help the agent move to an appropriate
region where to drop the key4.

Pick and drop operations contribute to the correct re-
ordering of keys, because the agents tend to place every key
in a peer that has a centroid value close to the key value.
The progressive sorting is guaranteed by the fact that the

3To keep the key available while it is carried by an agent,
a simple redundancy mechanism is adopted: the peer from
which the key has been taken maintains a copy and discards
it only when alerted by the peer where the key is successively
dropped.
4It should be remarked here that the values of αp and αd

only affect the rapidity of the reordering process when start-
ing from a chaotic condition, but their setting have a very
small effect on the operations in normal conditions, when
the ordering must be maintained and refined.

centroid of a peer is calculated not only on the keys stored
in the peer itself, but also on the keys stored by the adjacent
peers along the D dimensions.

4. PERFORMANCE ANALYSIS OF SELF-
CAN

To analyze the behavior of Self-CAN in large networks, a
set of experiments were performed with a Java event-based
simulator. Java objects are used to model the peers and the
mobile agents that perform the operations described in Sec-
tion 3. The simulator, as well as the prototype, is available
at http://self-can.icar.cnr.it.

It is assumed that the average number of resources pub-
lished by a peer is extracted from a Gamma probability dis-
tribution, with average equal to 15, unless otherwise stated.
The key value of each published resource is uniformly dis-
tributed within the range of admissible values for each co-
ordinate of the key. Therefore at the beginning key values
are distributed randomly in the network; afterwards, the
keys are sorted through the operations of Self-CAN agents.
The Pgen probability is set to 1.0, which means that each
new or reconnecting peer issues one mobile agent. The peer
churning is modeled as follows. When a peer connects, its
connection time is decided according to a Gamma distribu-
tion with the mean value that is typical of the peer. When
the connection time expires the peer disconnects, and after a
time interval generated in the same fashion, it reconnects to
the network. The average connection time for all the peers,
Tpeer, is set to 5 hours. The lifetime of an agent is set to
the average connection time of the peer that generates the
agent. After receiving an agent, a peer forwards it to the
next peer after a random interval Tmov. Since the Self-CAN
procedures can be accelerated or decelerated by tuning the
value of Tmov, this parameter will be used as a time unit
and the performance results versus time will be reported
accordingly.

Experiments were performed to evaluate different aspects:
the capacity of the algorithm to reorder the resource keys
over the multi-dimensional space, the efficiency and effec-
tiveness of resource discovery operations, for both punctual
and range queries, the storage and traffic load, and the dy-
namic behavior. All these aspects are described in the rest
of this section.

4.1 Analysis of the Reordering Process
The reordering of keys can be considered successful if: (i)

the peer centroids are sorted and uniformly spaced along
the different dimensions, which means that the keys are also
sorted, and (ii) the keys are clustered, i.e., in each peer they
are similar to each other.

An efficient method to evaluate the first characteristic is
to compute the average Manhattan distance, in the space
of resource keys, between two “consecutive” centroids, i.e.,
the centroids of two adjacent peers. In a perfectly ordered
network, if Li is the number of distinct values that can be
assigned to the coordinate i of a key, and Ni is the number
of peers that cover the corresponding dimension of the peer
space, the average Manhattan distance between the centroid
values of two peers that are adjacent along dimension i must
be comparable to Li/Ni

5.

5If two peers are adjacent along dimension i, the distance
on the other dimensions is null or very small.
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Figure 2: Average Manhattan distance between con-
secutive centroids in networks with different sizes.

Let us consider the simple case in which the space of keys
is a hyper-cube, i.e., the number of admissible key values is
the same for each dimension, and the number of peers Np

is equal to the number of resource classes Nc. Each class
is associated with a specific value of the multi-dimensional
key. In this case, the expected Manhattan distance be-
tween two consecutive centroids, regardless the dimension
on which the peers are adjacent, should be comparable to
D
√
Nc/ D

√
Np=1. Figure 2 shows the trend of the centroid

distance in four experiments in which the values of Nc and
Np are varied from 64 to 4096, and the number of dimen-
sions D is equal to (log2 Nc)/2. In these experiments, each
coordinate of the key is generated randomly in the range
between 0 and D

√
Nc − 1. At time 0, the sorting algorithm

is started. The figure shows that the average value of the
centroid distance rapidly converges to the expected value,
confirming that the centroids are reordered correctly. The
time to convergence increases with the number of peers, but
convergence is reached at between 300 and 500 time units
in all the considered cases. If, for example, the time Tmov is
5 s, this corresponds to a time between 25 and 40 minutes.
Notice that these experiments are performed starting from
a chaotic situation, in which the keys and the centroids are
completely disordered. In a real situation, the peers join and
leave the network gradually, and the publishing/removal of
resources is also gradual: the correct and gradual placement
of a relatively small number of new keys, in a network that
is already ordered, is a much easier and faster task. This
issue will be discussed in Section 4.5.

The clustering property is assessed by verifying whether
the keys placed on a peer are similar to each other. To this
aim, the homogeneity function of a peer, Hp, is defined as:

Hp = 1−
∑

(kx,ky)
d(kx, ky)

nk
(5)

where d(kx, ky) is the normalized Manhattan distance be-
tween two keys, kx and ky , which are stored by peer p, and
nk is the number of such couples. The homogeneity func-
tion of a peer can assume values between 0 and 1, and higher
values correspond to high degrees of clustering in the peer.
The overall homogeneity function, H , is defined as the value
of Hp averaged over all the peers. In a disordered network,
with randomly distributed resources, the homogeneity func-
tion is equal to about 0.5. As the keys are reordered and
clustered, the value of H should become increasingly higher.
This is confirmed by Figure 3, which shows the overall homo-
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Figure 4: Average Manhattan distance between con-
secutive centroids in a network with fixed size and
different settings for the vector Sk.

geneity function computed during the experiments described
before. The value of H , after a rapid increase in the tran-
sient phase, stabilizes to a value higher than 0.90. It can
be noticed that the index is hardly affected by the network
size, which confirms the scalability properties of Self-CAN.

As mentioned before, in Self-CAN the keys can be defined
in a flexible way, and the range and number of admissi-
ble values can be different for each dimension. To test this
aspect, let keys range be 0...Li − 1 for dimension i, with
i = 1...D, and define the key space size through the vec-
tor Sk=(L1, L2, .., LD). The overall number of classes Nc is,

thus, equal to
∏D

1 Li. In the case that the Li values are
not all equal, the space of keys is not a hyper-cube, but a
D-dimensional hyper-rectangle.

Figure 4 shows the average Manhattan distance between
consecutive centroids in a network with fixed size, 256 peers,
and different settings for Sk. In the first three experiments,
the number of dimensions is set to 4, and the number of
admissible attribute values is set to 4, 8 and 16 for each
dimension. The average centroid distance converges to val-
ues slightly higher than the minimum possible values, which
are, respectively, 1, 2 and 4. In the other two experiments,
the space of keys is a 3-dimensional hyper-rectangle: also in
these cases the ants sort the keys rapidly.

The reason why the average centroid distance is slightly
higher than the minimum possible value is related to the
statistical nature of the process. This can be seen by reex-
amining Figure 1 (16 peers organized in 2 dimensions and
Sk=(16, 16)): in the second peer of the second row the y-
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component of the centroid is not perfectly spaced with the
others: its value is 6.5 while it should be 6.0 in a per-
fect ordering. The average Manhattan distance between
this peer and the four adjacent ones, considering them in
clockwise direction starting from the left, is (4.5 + 4.5 +
4.5 + 3.5)/4 = 4.25. In turn, the average distances between
the four adjacent peers and their respective neighbors are
(4 + 4 + 4.5 + 4)/4 = 4.125, (4 + 4 + 4 + 4.5)/4 = 4.125,
(4.5+ 4+4+4)/4 = 4.125, and (4+ 3.5+ 4+4)/4 = 3.875.
For all the other peers of the network the average Manhat-
tan distance is 4. It turns out that the average Manhattan
distance between two adjacent peers is slightly higher than
4, the minimum possible value in this case. Despite these
small imperfections, the sorting of centroids is sufficiently
accurate, which ensures that discovery procedures can be
executed efficiently, as the next section will show.

4.2 Performance of the Discovery Procedure
The purpose of a discovery procedure is to find the re-

sources belonging to a specific class, i.e., which have been
associated with a specific value of the multi-dimensional key.
This is a typical problem in Grid environments, where a user
needs to locate a number of resources that address his/her
requirements, for example a set of hosts having specific CPU
and memory capabilities.

Before analyzing the performance of the discovery pro-
cess, it must be verified that the keys with a specified value
can be retrieved in the peers whose centroids have equal or
similar values. In this is true, the important consequence is
that a search for a target key can be converted in a search
for a peer centroid. Figure 5 shows the histogram of the
Manhattan distance between a key and the local centroid,
evaluated over all the keys of a Self-CAN network with 256
peers, 256 resource classes, and key pattern Sk=(4, 4, 4, 4).
The figure reports the histogram observed before the start
of the sorting process and in a steady condition. Notice that
whenever the centroid coordinates are integer values, as it
is usually the case, the distance is integer also. Occasion-
ally, the centroids have fractional values over some dimen-
sion and, correspondingly, the keys have fractional distances
from them; since this occurs rarely, the histogram has low
values for fractional distances. Before the process starts,
when the keys are placed randomly, the average Manhattan
distance between two keys is 4, since the average distance
along each dimension is 1, i.e., one forth of the facet length
measured in the key space. In fact, the distribution of the
distances between key and centroid (top plot of Figure 5) is
centered on a value slightly lower than 4, and has a typical
Gaussian shape. In a steady condition (bottom plot of the
same figure), about 60% of the keys are exactly equal to
the local centroid, and almost all the remaining keys have a
distance from the centroid equal to 1. This means that the
coordinates of the key and the centroid are equal on at least
three dimensions, and may only differ by 1 along a single
dimension. The percentage of Manhattan distances higher
than 1 is negligible. Therefore, a search process can find
about 60% of the keys having a specified value in the peer
whose centroid is equal or very similar to the key, and the
remaining keys in the 2D adjacent peers.

The discovery algorithm is very simple. At every step,
the peer that receives the search message (or, at the first
step, the peer that generates the request) computes the nor-
malized distances, along the different dimensions, between
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Figure 5: Histogram of the Manhattan distance be-
tween a key and the local centroid: before the start
of the sorting process (top plot), and in a steady
condition (bottom plot).
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Figure 6: Percentage of discovered keys in networks
with different sizes.

the centroid of the local peer and the target key. The peer
evaluates the largest of these distances, and forwards the
message along the corresponding dimension, to the succes-
sor or predecessor peer, depending on the value of the key
being larger or lower than the centroid on this dimension.
This corresponds to following the gradient of centroid val-
ues towards the peer whose centroid is the most similar to
the target key. Once the search path terminates - because
it is no longer possible to decrease the distance between the
target key and the peer centroid - the target keys are col-
lected in the local peer and in the 2D adjacent peers, and
are delivered to the peer that originated the request.

Figure 6 shows the average percentage of discovered keys
with respect to the overall number of keys that have the
target value; keys are searched for while they are being or-
dered starting from a chaotic initial distribution, as in the
cases discussed above. In these experiments, the key space
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is a hyper-cube, and the number of admissible values of keys
is 4 for each dimension. The figure confirms that discovery
procedures find practically all the keys, once they have been
ordered by the ant-based process.

For the same experiments, the average path length is re-
ported in Figure 7, along with the 1st and 99th percentiles.
The average number of hops of search messages is compa-
rable to (log2 Np)/2; as discussed in the introductory sec-
tion, this is the same value obtained using the basic CAN
system. Therefore, Self-CAN preserves this fundamental
property of CAN, despite not being obtained with a pre-
defined association between keys and hosts, but through the
self-organizational behavior of the ant algorithm. Moreover,
the 99th percentile is always comparable to log2 Np, which
means that the logarithmic behavior is ensured also in the
most unfortunate cases.
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path length of discovery procedures in networks
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4.3 Performance of Range Queries
The previous section focused on the performance of punc-

tual queries, issued to discover the keys having a given value.
Self-CAN can also efficiently manage range queries, thanks
to the sorting of keys over the multi-dimensional space. The
number of desired resources and the time and cost that the
user can afford for the research can be different in different
contexts. Accordingly, two approaches were devised to serve
range queries: the sweep up approach and the explosion ap-
proach.

To illustrate the two techniques, let us consider the case
in which the set of target keys is defined by a closed in-
terval over two dimensions. With the sweep up approach,
illustrated in top part of Figure 8, the first objective is to
drive the query message from the generating peer (marked
as P in the figure) towards the closest vertex of the two-
dimensional region defined by the range query. This region,
highlighted in the figure, includes the peers whose centroids
are within the range intervals of the query. Then, a mes-
sage is forwarded along one of the borders of the region, in
this case the lower horizontal border. In turn, every bor-
der peer reached by the message forwards the query along
the vertical dimension, up to the upper horizontal border.
The target keys are collected by all these messages along
their path; as a message reaches the border of the target
region, it is directly forwarded to the peer P . The general-
ization of this technique to target regions defined on more
than two dimensions is straightforward and is not discussed

Figure 8: Path of range queries with the two defined
strategies: sweep up (top), explosion (bottom).

further. The objective of this approach is to explore all the
peers that are located in the target region and retrieve as
many desired keys as possible. Conversely, the goal of the
explosion approach is to collect a consistent number of tar-
get keys by contacting a much lower number of peers. This
time, the query message is driven to a peer that is located
in the core of the target region. Then, two query messages
are forwarded along each dimension of the range region, in
the two opposite directions, up to the border 6. The query
path is depicted in bottom part of Figure 8. Of course, the
number of messages is lower, as well as the number of con-
tacted peers, but it is no longer possible to collect all the
target keys.

To compare the two approaches, a set of experiments are
performed in a network withD=5, key pattern Sk=(4, 4, 4, 4, 4),
and 1024 peers. The range of target keys is defined by a vec-
tor Rk, whose i−th element specifies the size of the range
of values that are searched for in dimension i. Two cases
are considered. In the first case, Rk=(3, 3, 1, 1, 1) specifies
a range of size 3 (the key can have any of three contiguous
values) over the first two dimensions and a specific individ-
ual value over the remaining dimensions. In the second case,
Rk=(3, 3, 3, 1, 1) means that the target region is extended in
the third dimension. Figure 9 shows the average percentage
and number of discovered keys, and the average number of
contacted peers. The sweep up approach finds all the keys in
the defined range, but the number of contacted peers is con-
siderably higher. Conversely, the explosion approach finds a
fraction of the target keys by examining a smaller number of
peers. The difference between the two approaches increases

6A number of target keys can be stored by the peers that
are located just outside the target region, and are adjacent
to border peers. Since peers that are adjacent to each other
can easily advertise their respective keys, it is convenient to
forward the search messages to these “external” peers if they
are known to possess target keys. This strategy is used in
both the examined approaches.
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Figure 9: Percentage of discovered keys (the abso-
lute number is also indicated on top of the bars)
and number of contacted hosts with sweep up and
explosion approach, for two types of range queries.
The network has 1024 peers and the key pattern is
Sk=(4,4,4,4,4).

with the volume of the target region. Indeed, with the sweep
up approach, the number of contacted peers is of the order
of the product of the elements of Rk, while it is simply of the
order of the sum of the elements of Rk with the explosion
approach. In conclusion, the appropriate approach should
be chosen depending on the application requirements: for
example, in an OLAP analysis the user may want to find
all the target keys, while s/he could accept finding several
results (but not all) if the goal is to find a set of Grid hosts
with given requirements.

As a conclusive remark, both strategies are feasible be-
cause the ordered keys are allowed to have semantic values,
associated with resource attributes. In classical structured
P2P systems, the key values are spread by hash functions,
therefore range queries can only be served by issuing as many
queries as the punctual key values included in the target
range, or by using additional structures. For more com-
ments on this issue, please see the related work section.

4.4 Load Balancing
An important characteristics of Self-CAN is its capabil-

ity of fairly distributing the load among the peers. In this
respect, Self-CAN has two important advantages when com-
pared to CAN:

1. In CAN the number of keys stored by a peer is pro-
portional to the volume of the zone assigned to the
peer; for this reason, CAN introduces a “uniform par-
titioning” technique to balance the zones assigned to
peers. In Self-CAN, the multi-dimensional structure
is not used to assign keys to peers, but as a substrate
that allows ant agents to order the keys. Therefore,
the volume of the zone assigned to a peer has no effect
on the number of keys that the peer stores, and there is
no need to devise a technique for uniform partitioning.

2. Even with the use of improved partitioning strategies,
CAN cannot guarantee a true load balancing in the
case that some keys are more popular than others:
these keys put a higher load on the peers that host
them. In Self-CAN, the load distribution among the
peers is not affected by the popularity distribution of

—

Figure 10: Distribution of keys for the load balanc-
ing test, at the beginning of the process (top) and
in steady situation (bottom).

keys: pick and drop operations distribute the keys to
the peers in a fair fashion. It results that more popu-
lar keys may be distributed among a larger number of
contiguous peers, but the average load of a single peer
is stable.

To illustrate this, we set up a specific experiment using
the prototype: in a network with D=2, Np=64, and key
pattern Sk=(8, 8), the centroids are assumed to be uniformly
spaced, with values from 0 to 7 for both dimensions, and all
the keys are the same as the local centroid. All the peers
store 20 keys except the four central peers, which store 50
keys. This scenario is described in the top part of Figure
10. The label N/M on each peer means that N keys are
stored by the peer, of which M belong to the four most
“popular” classes, which are (3,3), (3,4), (4,3) and (4.4). For
example, the first peer of the first column has centroid (0,0),
and stores 20 keys with the same value. The forth peer of
the forth column has centroid (3,3) and stores 50 such keys.

The algorithm is started in this unbalanced situation and,
after about 500 time units, the system gets to a steady sit-
uation. A snapshot, taken at this point from the prototype,
and depicted in the bottom part of Figure 10, shows that
popular keys have been diffused from central peers to their
neighbors, and load balance is much fairer than at the be-
ginning. This new equilibrium is the result of two phenom-
ena: on the one hand, keys tend to diffuse out of heavily
loaded peer, because agents perform pick Bernoulli trials on
a larger number of keys; on the other hand, pick and drop
operations tend to keep similar keys close to each other. The
first phenomenon improves load balancing, while the second
facilitates resource discovery operations, because target keys
are better clustered. Interestingly, we found that this equi-
librium can be biased towards one behavior or the other by
tuning the parameters αp and αd of pick and drop proba-
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bility functions. This study is not reported here for lack of
space.

4.5 Processing Load and Dynamic Behavior
Self-CAN improves CAN also in terms of network and

processing load. In a structured system like CAN, the keys
of new resources, for example those published by new or re-
connecting peers, must be immediately placed in specified
hosts: this can originate a high load if many resources are
published in a short interval of time. In Self-CAN, the load
is invariant because a new peer does not need to perform
any additional operation (besides the operations related to
the overlay management, such as the update of the list of
neighbors): the keys of the new resources will be picked by
the agents that pass by this peer. The processing load Λ
can be defined as the average number of agents per second
that arrive and are processed at a peer. Λ can be computed
by multiplying the average number of agents Na by the fre-
quency of their movements 1/Tmov , so obtaining the number
of times per second that an agent arrives at any peer, and
then dividing the result by the average number of peers Np

to get the number of times per second that an agent arrives
at a single peer,

Λ =
Na

Np · Tmov

≈ Pgen

Tmov
(6)

The simplification is given by applying expression (1) of Sec-
tion 2.

For example, if the average value of Tmov is equal to 5
seconds, and Pgen = 1.0, each peer receives and processes
about one agent every 5 seconds, which is an acceptable
load, since pick and drop operations are very simple. Note
that the processing load does not depend on the frequency
of peer joinings and disconnections nor on the network size,
which confirms the scalability properties of Self-CAN.

The results discussed in Sections 4.1 and 4.2 showed that
the Self-CAN agents can reorder the keys starting from a
completely disordered network. Normal circumstances are
much less stressful: if the network grows gradually, the cor-
rect sorting of the keys can be maintained with a few agent
operations. In particular, the placement of a new key in an
ordered network can be performed in logarithmic time, since
it corresponds to the discovery of the peer centroid that is
the closest to the key value. In a number of experiments per-
formed in the same scenarios as those considered in Sections
4.1 and 4.2, a new peer joined the network at time unit 600,
when ordering of keys can be considered stable, and pub-
lished 15 resources with randomly chosen keys. After the
arrival and the pick/drop operations of 20 to 25 agents, the
centroid and the keys of the new peer were perfectly ordered.

The disconnection of a peer is also simple to manage: if the
peer leaves the network gracefully, the keys are passed to the
adjacent peers, and moved by agents if necessary. To handle
the abrupt disconnection of a peer, a mechanism is necessary,
based on some redundancy and periodical soft-state updates
among adjacent peers. Of course, a mechanism of this kind is
necessary in any P2P system, it is not a peculiar requirement
of Self-CAN.

Finally, Self-CAN is robust with respect to changes of re-
source properties: if the value of a key is modified, the key
is quickly moved by the agents that, by recognizing that the
key has become an outlier in the current peer, assign a large
pick probability to it.

5. RELATED WORK
The P2P paradigm is increasingly adopted as a valuable

alternative to centralized and hierarchical architectures for
the management of large-scale computing systems. The fun-
damental characteristics that should be provided by efficient
and versatile information systems have been individuated by
the ICT community [11, 12] as: self-organization (meaning
that components are autonomous and do not rely on any
external supervisor), decentralization (decisions are to be
taken only on the basis of local information) and adaptivity
(mechanisms must be provided to cope with the dynamic
characteristics of hosts and resources).

Recently, swarm and bio-inspired algorithms proved ca-
pable of considerably improving the performance of P2P
computer systems [7]. Two interesting examples are Anthill
and BlatAnt. The Anthill project [13] is tailored to the
design, implementation and evaluation of P2P applications
based on multi-agent and evolutionary programming. The
devised system is composed of a collection of interconnected
nests. Each nest is a peer entity that makes its storage and
computational resources available to swarms of ants, mobile
agents that travel the network to satisfy user requests. Bla-
tAnt is an ant-inspired algorithm that creates P2P overlay
networks with bounded diameters [14]. Ant-inspired agents
are used to rewire connections among nodes, which helps
to limit the path length of search messages. Both Anthill
and BlatAnt system are unstructured: this implies that dis-
covery procedures are fundamentally “blind”, and can be
inefficient in terms of traffic load and response time, even if
caching mechanisms may help to increase their performance.
In Self-Chord [10], ant algorithms proved capable of trigger-
ing a self-organization behavior also in ring-structured P2P
systems.

As opposed to the mentioned systems, Self-CAN is able
to efficiently support complex and range queries on multiple
attributes. This is indeed a very tough issue in P2P sys-
tems [15], and particularly in structured ones, because the
use of DHT techniques tends to disperse the keys of sim-
ilar resources into distant places of the structure. Some
types of structured systems are capable of serving range
queries, but at the cost of either maintaining complex aux-
iliary structures, such as tree or trie overlays [16], or in-
creasing the traffic load by issuing a number of sub-queries
[17]. The Squid discovery protocol [18] uses a dimension-
reducing technique, the space filling curve (SFC), to map
multi-attribute keywords to a mono-dimensional space, i.e.,
a ring structure similar to that used by Chord. This enables
Squid to support queries defined through partial keywords,
wildcards and ranges. However, SFCs have an important
drawback, in that a region in the multi-attribute space can
be mapped to different and distant segments on the ring. In
the case of a range query, a system like Squid must then for-
ward separate query messages to all these segments, which
of course may notably increase the response time and the
network load.

Mercury [19], like Self-CAN, avoids the use of hash func-
tions to compute key values, and supports multi-attribute
range queries. Mercury maintains a routing hub - a logical
collection of nodes - for each attribute. Each node within a
hub is responsible for a range of values of the particular at-
tribute. A range query is served by first trying to determine
the most selective attribute of the query, and then driving
the query through the corresponding logical hub. However,
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Mercury does not scale well with the number of attributes,
because (i) a key must be replicated and inserted in as many
hubs as the attributes for which the key is given a value,
and (ii) in addition to intra-hub links, inter-hub links are
also necessary to forward the query to the desired routing
hub. As opposed to Mercury, Self-CAN does not need any
additional structure, like logical hubs, thus preserving the
simplicity, efficiency and flexibility of the basic CAN over-
lay.

6. CONCLUSION
This paper presents Self-CAN, a self-organizing P2P sys-

tem. Self-CAN inherits from CAN the regular multi-dimen-
sional structure according to which peers are organized; the
distribution of resource keys to the peers is, instead, per-
formed by ant-inspired agents that travel in this regular
structure moving keys through very simple“pick”and“drop”
operations. It results that keys are not statically assigned
to peers, as they are in CAN, but are dynamically sorted
and distributed to peers. This makes Self-CAN robust to
peers’ churning, adaptable to heterogeneous and dynamic
popularity of the keys, fair in load balance. Finally, and
most notably, by decoupling the space of the peers from the
one of the keys, Self-CAN allows a semantic meaning to be
associated with the coordinates of the keys, so that each di-
mension of the key space can be used for a different attribute
of the resources. In this fashion, complex range queries can
be solved easily and efficiently, which makes Self-CAN par-
ticularly well suited to Grid environments.
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