
Geocon: A Middleware for Location-aware

Ubiquitous Applications

Loris Belcastro1,(�)?, Giulio Di Lieto1, Marco Lackovic2, Fabrizio Marozzo1,
and Paolo Trun�o1

1 DIMES, University of Calabria, Italy,
[lbelcastro, fmarozzo, trunfio]@dimes.unical.it

2 Helmes AS, Estonia,
marco.lackovic@helmes.ee

Abstract. A core functionality of any location-aware ubiquitous sys-
tem is storing, indexing, and retrieving information about entities that
are commonly involved in these scenarios, such as users, places, events
and other resources. The goal of this work is to design and provide
the prototype of a service-oriented middleware, called Geocon, which
can be used by mobile application developers to implement such func-
tionality. In order to represent information about users, places, events
and resources of mobile location-aware applications, Geocon de�nes a
basic metadata model that can be extended to match most applica-
tion requirements. The middleware includes a geocon-service for stor-
ing, searching and selecting metadata about users, resources, events
and places of interest, and a geocon-client library that allows mobile
applications to interact with the service through the invocation of lo-
cal methods. The paper describes the metadata model and the compo-
nents of the Geocon middleware. A prototype of Geocon is available at
https://github.com/SCAlabUnical/Geocon.

1 Introduction

With the widespread di�usion of mobile technologies and location-based ser-
vices, it is possible to provide ubiquitous access to context-aware information
(e.g., interesting attractions or events in a given place being visited). A core
functionality of any location-aware ubiquitous system is storing, indexing, and
retrieving information about entities that are commonly involved in these sce-
narios, such as (mobile) users, places, events and other resources (e.g., photos,
media, comments). The goal of this work is to design and provide the prototype
of a service-oriented middleware, called Geocon, which can be used by mobile
application developers to implement such functionality. Geocon can be used to
discover location-aware content, to share context-related information, and to fa-
cilitate interaction among users of mobile apps. Examples of services that can be

? This work has been partially supported by Project PON04a2_D DICET-INMOTO-
ORCHESTRA funded by MIUR.



implemented in a mobile app using Geocon are: i) discovery of cultural places
to be visited during a trip; ii) publication of user reviews about hotels and
restaurants; iii) sharing of real-time information about events, tra�c, and so
on.

A key bene�t for developers using Geocon is the possibility to focus on the
front-end functionality provided by their mobile application, without the need
of implementing by scratch back-end components for data storing, indexing and
searching, since they are provided by the middleware. In order to represent in-
formation about users, places, events and resources of mobile location-aware
applications, Geocon de�nes a basic metadata model that can be extended to
match most application requirements. The widely-used JavaScript Object Nota-
tion (JSON) format is employed to represent such metadata. The architecture
of the middleware includes a geocon-service that exposes methods for storing,
searching and selecting metadata about users, resources, events and places of
interest, and a geocon-client library that allows mobile applications to inter-
act with the service through the invocation of local methods. The interaction
between service and client is based on the REST model.

Given the huge number of users, places, events and resources that may be in-
volved in location-aware ubiquitous applications, scalability plays a fundamental
role [8]. Geocon was designed to ensure scalability through the use of a NoSQL
indexing and search engine, Elasticsearch, that can scale horizontally on a very
large number of nodes as the system load increases. Elasticsearch is used in com-
bination with an external NoSQL database, MongoDB, which is more focused on
constraints, correctness and robustness. Data stored in MongoDB can be asyn-
chronously pushed to Elasticsearch, making it possible to persist in Elasticsearch
a subset of the data stored in the external database.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the metadata model. Section 4 describes the middle-
ware architecture and components. Finally, Section 5 concludes the paper.

2 Related Work

The European research project CRUMPET [5] (Creation of User-Friendly Mo-
bile Services Personalised for Tourism) was developed in the early 2000s, before
the mass di�usion of smartphones, for addressing issues related to the mobility
of tourists. Taking into account di�erent user's travel purposes (e.g. business,
leisure, entertainment, education), CRUMPET aims to provide information ser-
vices meeting the di�erent tourists' needs. It exploits information about users'
personal interests and their geographical position to �lter the content available
to them. One of the primary goals of CRUMPET was to implement and improve
FIPA3(Foundation for Intelligent Physical Agents) speci�cations for mobile ap-
plications. The project used the explicit/implicit feedback concepts and the GML
(Geography Markup Language) standard for storing geographic data.

3 http://www.�pa.org



Yu and Chang[10] extended the CRUMPET project ideas by seeking new in-
telligent solutions for overcoming the limitations of handheld devices in terms of
reduced screen size for displaying information and limited bandwidth for trans-
mitting data over a mobile network. Schmidt-Belz and Poslad[7] presented an-
other study connected to the CRUMPET project, which aims to assess the qual-
ity of CRUMPET usability from the end user's point of view. The study takes
into account four European locations (i.e., Heidelberg, Helsinki, London and
Aveiro) and makes use of the standard questionnaire SUMI4 (Software Usability
Measurement Inventory - ISO/IEC 9126 ) to evaluate quality of software usabil-
ity. This questionnaire was replaced in 2011 by SQuaRE5(Systems and software
quality Requirements and evaluation - ISO/IEC 25010 ).

Some works have been devoted to the development of context aware-mobile
applications that use context to provide information and/or services relevant to
the user, in which the relevance depends on the user's intentions [1]. An example
is COMPASS [9] (Context-aware Mobile Personal Assistant), which provides
services and information based on user's interests and position. For selecting
relevant services, COMPASS uses two types of criteria: i) strict criteria, which
are used for discarding irrelevant results; and ii) soft criteria, for sorting results
and assigning a relevance score to each service/information. The application is
based on the WASP platform [4] that provides general support services, such
as context manager and indexing services. WASP can be integrated with other
services and can be easily applied to other domains, such as taxi reservation or
dwelling search.

3 Metadata Model

We de�ned a metadata model for representing information about users, places,
events and resources of mobile location-aware applications. The model identi�es
a number of categories for indexing items in the domain of interest, which are
generic enough to satisfy most of the application contexts. In particular, the
metadata model is divided into four categories:

� User : de�nes basic information about a user (e.g., name, surname, e-mail).
� Place: describes a place of interest (e.g., square, restaurant, airport), includ-
ing its geographical coordinates.

� Event : describes an event (e.g., concert, exhibition, conference), with infor-
mation about time and location.

� Resource: de�nes a resource (e.g., photo, video, web site, web service) associ-
ated to a given place and/or event, including its Uniform Resource Identi�er
(URI).

Tables 1-4 present the basic metadata �elds for each of the four categories
listed above. Metadata are meant to be extensible, i.e., it is possible to include

4 http://sumi.ucc.ie/
5 http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733



additional �elds based on the speci�c application. For example, the user schema
may be extended to include birth date, city, linked social network accounts, and
so on.

Table 1. Basic User metadata.

Name Type Description

id String Unique user identi�er
name String Given name
surname String Family name
email String E-mail
token String Authentication token

Table 2. Basic Place metadata.

Name Type Description

id String Unique place identi�er
name String Name of the place
description String Textual description of the place
latitude Real Latitude of the place
longitude Real Longitude of the place
address String Full address of the place
user_id String Id of the user who created the place

Table 3. Basic Event metadata.

Name Type Description

id String Unique event identi�er
name String Name of the event
description String Textual description of the event
start_date String Date and time when the event begins
end_date String Date and time when the event ends
place_id String Id of the place where the event is held
user_id String Id of the user who created the event

To represent metadata, the JavaScript Object Notation (JSON) is used.
JSON is a widely-used text format for the serialization of structured data that
is derived from the object literals of JavaScript [2]. Fig. 1 shows an example of
JSON metadata describing a User. Beyond the basic metadata (id, name, etc.),
it includes some additional �elds (city, linked accounts and food preferences).

Fig. 2 shows an example of Place metadata, regarding the �Kabuki� restau-
rant in Washington, DC, USA, which is tagged as a Japanese and sushi specialties
restaurant using an additional �tags� �eld.



Table 4. Basic Resource metadata.

Name Type Description

id String Unique resource identi�er
name String Name of the resource
description String Textual description of the resource
URI String Link to the resource

place_id String
Id of the place to which the resource
is associated

event_id String
Id of the event to which the resource
is associated

user_id String Id of the user who created the resource

{
"id": "jdoe",
"name": "John",
"surname": "Doe",
"email": "john.doe@example.com",
"token": "19800308",
"city": "New York, NY, USA",
"linked-accounts": [
{"name":"facebook", "token":"424911363"},
{"name":"google", "key":"23467223454"}
],
"food-preferences": ["sushi", "pizza"],
"date-created": "2016-03-27T08:05:43.511Z"
}

Fig. 1. Example of User metadata in JSON.

{
"id": "534",
"name": "Kabuki",
"description": "Japanese Restaurant",
"latidude": "38.897683",
"longitude": "-77.006081",
"address": "Union Station 50, Washington, DC, USA",
"user_id": "jdoe",
"tags": ["Japanese", "sushi"]

}

Fig. 2. Example of Place metadata in JSON.

4 Middleware

Fig. 3 describes the architecture of the middleware, which includes two main
components:

� geocon-service, which contains a central registry for indexing users, resources,
events and places of interest; it exposes methods for storing, searching and
selecting metadata about these entities.



� geocon-client is a client-side library that allows mobile applications to inter-
act with geocon-service through the invocation of local methods.

Applicationgeocon client

external
NoSQL database

(MongoDB)

Web service container 
(Grizzly)

RESTful Web service 

Jersey

JacksonIndexing/search
engine

Service interface

geocon-service

Elasticsearch

DSL query

Fig. 3. Architecture of the middleware.

The interaction between service and client is based on the REST model [6].
To this end, a complete support to CRUD (Create, Read, Update, and Delete)
operations on the metadata has been de�ned through Java APIs.

4.1 Geocon-service

The geocon-service has been implemented as a RESTful Web service and exposed
via the Web service container Grizzly 6, which was deployed on the Microsoft
Azure platform that ensures scalability, reliability, and access to external data
analytics [3].

The framework used in our implementation to develop RESTful Web ser-
vices is Jersey7, an open source framework that implements JAX-RS (Java API
for RESTful Web Services) using annotations to map a Java class to a Web
resource, and natively supports JSON representations through the integrated
library Jackson8.

6 https://grizzly.java.net
7 Jersey: http://jersey.java.net/
8 Jackson: http://jackson.codehaus.org/



The core component of geocon-service is the indexing and search engine,
which has been implemented using Elasticsearch9. Elasticsearch is an open-
source, distributed, scalable, and highly available search server based on Apache
Lucene10, and provides a RESTful web interface. Elasticsearch has been chosen
because of several bene�ts, including:

� it is document-oriented, which means that entities can be structured as JSON
documents;

� it is schema-free, which means it is able to detect the data structure auto-
matically without need to specify a schema before indexing documents;

� it is horizontally scalable: if more power is needed, other nodes can be added
and Elasticsearch will recon�gure itself automatically;

� it has APIs for several programming languages, including Java, which makes
it easily integrable with other systems.

Geocon-service uses the query language provided by Elasticsearch, which is a
full Query DSL (Domain Speci�c Language) based on JSON. Therefore, queries
can be de�ned through the following main commands:

� term: returns all the documents whose speci�ed �eld contains a given term.
The following example returns all the documents whose �eld name contains
the word �Mary�:

{"term" : { "name" : "Mary" }}

� pre�x : returns all the documents whose speci�ed �eld contains a term begin-
ning with a given pre�x. The following example returns all the documents
whose �eld surname begins with �Ro�:

{"prefix" : { "surname" : "Ro" }}

� bool : returns all the documents containing a boolean combination of queries.
It is built using one or more boolean clauses (i.e., must, must_not, should,
and the parameter minimum_should_match that is the minimum number of
clauses to be met). The following example returns all the users whose name
is �Mary�, that are not between 10 and 20 years old, and that like eating
sushi or pizza:

{"bool" : {
"must" : { "term" : { "name" : "Mary" } },
"must_not" : {
"range" : {"age" : { "from" : 10, "to" : 20 }}

},
"should" : [
{ "term" : { "food-preferences" : "sushi" } },
{ "term" : { "food-preferences" : "pizza" } }

],
"minimum_should_match" : 1

}}

9 https://www.elastic.co/
10 https://lucene.apache.org/



Due to some limitations of Elasticsearch (e.g., absence of transaction sup-
port, possible loss of write operation during cluster reforming/splitting), we
use it in combination with an external NoSQL database, MongoDB11, which is
more focused on constraints, correctness and robustness. Compared to relational
databases, MongoDB provides several bene�ts in terms of simplicity, �exibility,
and scalability. Data stored in MongoDB can be asynchronously pushed to Elas-
ticsearch. In such way, it is possible to persist in Elasticsearch a subset of the
data stored in the external database, possibly using a di�erent data format.

4.2 Geocon-client

Geocon-client is the library used by mobile applications to interact with geocon-
service. The library aims to facilitate communication with the geocon-service
methods, hiding some low-level details (e.g., authentication, REST invocation,
etc.) and providing users with a complete set of functions for executing CRUD
operations. These functions are implemented using a set of objects and methods
provided by the client library to the application layer.

Geocon-client consists of �ve classes: four classes are used to represent
the metadata categories (User, Place, Event and Resource), while a �fth
class (SearchEngine) is used to expose the methods for storing and searching
data on geocon-service. For each class representing a metadata category, the
SearchEngine class provides a set of CRUD methods: register, get, update, and
delete. As an example, Table 5 shows the CRUD methods provided to register,
get, update and delete Resource elements in the service.

Table 5. CRUD methods for Resource elements.

Method Description

register (Resource r) Registers a resource to the service
get (Resource r) Returns the metadata of a resource
update (Resource r) Updates the metadata of a resource
delete (Resource r) Deletes a resource

5 Conclusions

Geocon is a service-oriented middleware designed to help mobile developers to
implement location-aware ubiquitous applications. In particular, Geocon pro-
vides a service and a client library for storing, indexing, and retrieving infor-
mation about entities that are commonly involved in these scenarios, such as
(mobile) users, places, events and other resources (e.g., photos, media, com-
ments). A key bene�t for developers using Geocon is the possibility to focus

11 https://www.mongodb.com



on the front-end functionality provided by their mobile application, without the
need of implementing by scratch back-end components for data management,
which are provided by the middleware.

Geocon de�nes a basic metadata model to represent information about users,
places, events and resources of mobile location-aware applications, which can be
easily extended to match most application requirements. In order to ensure a
high level of decoupling and e�cient communication between client and service,
the REST model has been adopted. Moreover, given the huge number of users,
places, events and resources that may be involved in location-aware ubiquitous
applications, Geocon uses the Elasticsearch engine that can scale horizontally on
a very large number of nodes. A prototype implementation of Geocon is available
at https://github.com/SCAlabUnical/Geocon.

References

1. Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness.
In Proceedings of the 1st International Symposium on Handheld and Ubiquitous
Computing, HUC '99, pages 304�307, London, UK, UK, 1999. Springer-Verlag.

2. ECMA. Ecma-262: ECMAscript Language Speci�cation. Fifth edition. ECMA
(European Association for Standardizing Information and Communication Sys-
tems), 2009.

3. Fabrizio Marozzo, Domenico Talia, and Paolo Trun�o. A cloud framework for big
data analytics work�ows on azure. Advances in Parallel Computing, 23:182�191,
2013.

4. Sylvain Martin and Guy Leduc. An active platform as middleware for services and
communities discovery. In International Conference on Computational Science,
pages 237�245. Springer, 2005.

5. Stefan Poslad, Heimo Laamanen, Rainer Malaka, Achim Nick, Phil Buckle, and
Alexander Zipl. CRUMPET: creation of user-friendly mobile services personalised
for tourism. In 3G Mobile Communication Technologies, 2001. Second Interna-
tional Conference on (Conf. Publ. No. 477), pages 28�32, 2001.

6. Leonard Richardson and Sam Ruby. RESTful web services. O'Reilly Media, Inc.,
2008.

7. Barbara Schmidt-Belz and Stefan Poslad. User validation of a mobile tourism
service. In Proc. Workshop on HCI in mobile guides, pages 57�62. University of
Udine, 2003.

8. Domenico Talia, Paolo Trun�o, and Fabrizio Marozzo. Data Analysis in the Cloud.
Elsevier, October 2015.

9. Mark Van Setten, Stanislav Pokraev, and Johan Koolwaaij. Context-aware recom-
mendations in the mobile tourist application compass. In International Confer-
ence on Adaptive Hypermedia and Adaptive Web-Based Systems, pages 235�244.
Springer, 2004.

10. Chien-Chih Yu and Hsiao-Ping Chang. Personalized location-based recommenda-
tion services for tour planning in mobile tourism applications. In International
Conference on Electronic Commerce and Web Technologies, pages 38�49. Springer,
2009.


