
Big Data Analysis on Clouds

Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

DIMES, University of Calabria, Rende, Italy
{lbelcastro,fmarozzo,talia,trunfio}@dimes.unical.it

Abstract. The huge amount of data generated, the speed at which it is
produced, and its heterogeneity in terms of format, represent a challenge
to the current storage, process and analysis capabilities. Those data vol-
umes, commonly referred as Big Data, can be exploited to extract useful
information and to produce helpful knowledge for science, industry, pub-
lic services and in general for humankind. Big Data analytics refer to
advanced mining techniques applied to Big Data sets. In general, the
process of knowledge discovery from Big Data is not so easy, mainly due
to data characteristics, as size, complexity and variety, that require to
address several issues. Cloud computing is a valid and cost-effective solu-
tion for supporting Big Data storage and for executing sophisticated data
mining applications. Big Data analytics is a continuously growing field,
so novel and efficient solutions (i.e., in terms of platforms, programming
tools, frameworks, and data mining algorithms) spring up everyday to
cope with the growing scope of interest in Big Data. This chapter dis-
cusses models, technologies and research trends in Big Data analysis on
Clouds. In particular, the chapter presents representative examples of
Cloud environments that can be used to implement applications and
frameworks for data analysis, and an overview of the leading software
tools and technologies that are used for developing scalable data analy-
sis on Clouds.

Keywords: Cloud computing; Big Data; Data Analytics; Data Mining

1 Introduction

In the last years the ability to produce and gather data has increased exponen-
tially. In fact, in the Internet of Things’ era, huge amounts of digital data are
generated by and collected from several sources, such as sensors, cams, in-vehicle
infotainment, smart meters, mobile devices, web applications and services. The
huge amount of data generated, the speed at which it is produced, and its het-
erogeneity in terms of format (e.g., video, text, xml, email), represent a challenge
to the current storage, process and analysis capabilities. In particular, thanks
to the growth of social networks (e.g., Facebook, Twitter, Pinterest, Instagram,
Foursquare, etc.), the widespread diffusion of mobile phones, and the large use
of location-based services, every day millions of people access social network
services and share information about their interests and activities. Those data



2 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

volumes, commonly referred as Big Data, can be exploited to extract useful in-
formation and to produce helpful knowledge for science, industry, public services
and in general for humankind.

Although nowadays the term Big Data is often misused, it is very important
in computer science for understanding business and human activities. As defined
by Gartner1: “Big Data is high volume, high velocity, and/or high variety infor-
mation assets that require new forms of processing to enable enhanced decision
making, insight discovery, and process optimization.” Thus, Big Data is not only
characterized by the large size of data sets, but also by the complexity, by the
variety, and by the velocity of data that can be collected and processed. In fact,
we can collect huge amounts of digital data from sources, at a very high rate that
the volume of data is overwhelming our ability to make use of it. This situation
is commonly called “data deluge”.

In science and business, people are analyzing data to extract information and
knowledge useful for making new discoveries or for supporting decision processes.
This can be done by exploiting Big Data analytics techniques and tools. As an
example, one of the leading trends today is the analysis of big geotagged data for
creating spatio-temporal sequences or trajectories tracing user movements. Such
kind of information is clearly highly valuable for science and business: tourism
agencies and municipalities can know the most visited places by tourists, the
time of year when such places are visited, and other useful information [4][23];
transport operators can know the places and routes where is it more likely to
serve passengers[58] or crowed areas where more transportation resources need
to be allocated[57]; city managers may exploit social media analysis to reveal
mobility insights in cities such as incident locations[24], or to study and prevent
crime events [26][16].

But it must be also considered that just Twitter and Facebook produce about
20 TB of data every day. According to a study conducted by the International
Data Corporation (IDC), the whole world produced about 165 exabytes (1 ex-
abytes is equal to 1018 bytes) of data in 2007, 800 exabytes in 2009, and it is
estimated that in 2020 the global amount of data produced will reach the 35
zettabytes (1 zettabytes is equal to 1021 bytes). Then to extract value from such
kind of data, novel technologies and architectures have been developed by data
scientists for capturing and analyzing complex and/or high velocity data. In this
scenario data mining raised in the last decades as a research and technology
field that provides several different techniques and algorithms for the automatic
analysis of large data sets. The usage of sequential data mining algorithms for
analyzing large volumes of data requires a very long time for extracting use-
ful models and patterns. For this reason, high performance computers, such as
many and multi-core systems, Clouds, and multi-clusters, paired with parallel
and distributed algorithms are commonly used by data analysts to tackle Big
Data issues and to reduce response time to a reasonable value.

Big Data analytics refer to advanced mining techniques applied to Big Data
sets. In general, the process of knowledge discovery from Big Data is not so

1 http://www.gartner.com/it-glossary/big-data



Big Data Analysis on Clouds 3

easy, mainly due to data characteristics, as size, complexity and variety, that
require to address several issues. To overcame these problems and to get valu-
able information and knowledge in shorter time, high performance and scalable
computing systems are used in combination with data and knowledge discovery
techniques. In this context, Cloud computing is a valid and cost-effective solution
for supporting Big Data storage and for executing sophisticated data analytic
applications. In fact, thanks to elastic resource allocation and high computing
power, Cloud computing represents a compelling solution for Big Data analytics,
allowing faster data analysis, that means more timely results and then greater
data value.

Actually, despite the Cloud is an affordable solution for many users, the num-
ber of analytics data solutions available is very limited. Most available solutions
today are based on open source frameworks, such as Hadoop and Spark, but
there are also some proprietary solutions, such as those proposed by IBM, EMC
or Kognitio. Big Data analytics is a continuously growing field, so novel and
efficient solutions (i.e., in terms of platforms, programming tools, frameworks,
and data mining algorithms) spring up everyday to cope with the growing scope
of interest in Big Data.

The remainder of the chapter is organized as follows. Section 2 introduces the
main Cloud computing concepts. Section 3 describes representative examples of
Cloud environments that can be used to implement applications and frameworks
for data analysis in the Cloud. Section 4 provides an overview of the leading
software tools and technologies used for developing scalable data analysis on
Clouds. Section 5 discusses some research trends and open challenges on Big
Data analysis. Finally, Section 6 concludes the chapter.

2 Introducing Cloud computing

This section introduces the basic concepts of Cloud computing, which provides
scalable storage and processing services that can be used for extracting knowl-
edge from Big Data repositories. In the following we provide basic Cloud com-
puting definitions (Section 2.1) and discuss the main service distribution and
deployment models provided by Cloud vendors (Section 2.2).

2.1 Basic concepts

In the last years, Clouds have emerged as effective computing platforms to face
the challenge of extracting knowledge from Big Data repositories in limited time,
as well as to provide effective and efficient data analysis environments to both re-
searchers and companies. From a client perspective, the Cloud is an abstraction
for remote, infinitely scalable provisioning of computation and storage resources.
From an implementation point of view, Cloud systems are based on large sets
of computing resources, located somewhere “in the Cloud”, which are allocated
to applications on demand [2]. Thus, Cloud computing can be defined as a dis-
tributed computing paradigm in which all the resources, dynamically scalable



4 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

and often virtualized, are provided as services over the Internet. As defined by
NIST (National Institute of Standards and Technology) [37] Cloud computing
can be described as: “A model for enabling convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”. From the NIST
definition, we can identify five essential characteristics of Cloud computing sys-
tems, which are on-demand self-service, broad network access, resource pooling,
rapid elasticity, and measured service. Cloud systems can be classified on the
basis of their service model and their deployment model.

2.2 Cloud service distribution and deployment models

Cloud computing vendors provide their services according to three main distri-
bution models:

– Software as a Service (SaaS), in which software and data are provided
through Internet to customers as ready-to-use services. Specifically, software
and associated data are hosted by providers, and customers access them
without need to use any additional hardware or software. Examples of SaaS
services are Gmail, Facebook, Twitter, Microsoft Office 365.

– Platform as a Service (PaaS), in an environment including databases, ap-
plication servers, development environment for building, testing and run-
ning custom applications. Developers can just focus on deploying of applica-
tions since Cloud providers are in charge of maintenance and optimization of
the environment and underlying infrastructure. Examples of PaaS services
areWindows Azure, Force.com, Google App Engine.

– Infrastructure as a Service (IaaS), that is an outsourcing model under which
customers rent resources like CPUs, disks, or more complex resources like
virtualized servers or operating systems to support their operations (e.g.,
Amazon EC2, RackSpace Cloud). Compared to the PaaS approach, the IaaS
model has a higher system administration costs for the user; on the other
hand, IaaS allows a full customization of the execution environment.

The most common models for providing Big Data analytics solution on
Clouds are PaaS and SaaS. IaaS is usually not used for high-level data ana-
lytics applications but mainly to handle the storage and computing needs of
data analysis processes. In fact, IaaS is the more expensive delivery model, be-
cause it requires a greater investment of IT resources. On the contrary, PaaS is
widely used for Big Data analytics, because it provides data analysts with tools,
programming suites, environments, and libraries ready to be built, deployed and
run on the Cloud platform. With the PaaS model users do not need to care
about configuring and scaling the infrastructure (e.g., a distributed and scalable
Hadoop system), because the Cloud vendor will do that for them. Finally, the
SaaS model is used to offer complete Big Data analytics applications to end
users, so that they can execute analysis on large and/or complex data sets by
exploiting Cloud scalability in storing and processing data.



Big Data Analysis on Clouds 5

Regarding deployment models, Cloud computing services are delivered ac-
cording to three main forms:

– Public Cloud : it provides services to the general public through the Internet
and users have little or no control over the underlying technology infrastruc-
ture. Vendors manage their proprietary data centers delivering services built
on top of them.

– Private Cloud : it provides services deployed over a company intranet or in a
private data center. Often, small and medium-sized IT companies prefer this
deployment model as it offers advance security and data control solutions
that are not available in the public Cloud model.

– Hybrid Cloud : it is the composition of two or more (private or public) Clouds
that remain different entities but are linked together.

As outlined in [27], users access Cloud computing services using different
client devices and interact with Cloud-based services using a Web browser or
desktop/mobile app. The business software and users data are executed and
stored on servers hosted in Cloud data centers that provide storage and comput-
ing resources. Resources include thousands of servers and storage devices con-
nected each other through an intra-Cloud network. The transfer of data between
data center and users takes place on wide-area network. Several technologies and
standards are used by the different components of the architecture. For example,
users can interact with Cloud services through SOAP-based or RESTful Web
services [42] and Ajax technologies allow Web interfaces to Cloud services to
have look and interactivity equivalent to those of desktop applications. Open
Cloud Computing Interface (OCCI)2 specifies how Cloud providers can deliver
their compute, data, and network resources through a standardized interface.

3 Cloud solutions for Big Data

At the beginning of the Big Data phenomenon, only big IT companies, such
as Facebook, Yahoo!, Twitter, Amazon, LinkedIn, invested large amounts of
resources in the development of proprietary or open source projects to cope
with Big Data analysis problems. But today, Big Data analysis becomes highly
significant and useful for small and medium-sized businesses. To address this
increasing demand a large vendor community started offering highly distributed
platforms for Big Data analysis. Among open-source projects, Apache Hadoop
is the leading open-source data-processing platform, which was contributed by
IT giants such as Facebook and Yahoo.

Since 2008, several companies, such as Cloudera, MapR, and Hortonworks,
started offering enterprise platform for Hadoop, with greats efforts to improve
Hadoop performances in terms of high-scalable storage and data processing. In-
stead, IBM and Pivotal started offering its own customized Hadoop distribution.
Other big companies decided to provide only additional softwares and support

2 OCCI Working Group, http://www.occi-wg.org



6 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

for Hadoop platform developed by external providers: for example, Microsoft
decided to base its offer on Hortonworks platform, while Oracle decided to re-
sell Cloudera platform. However Hadoop is not the only solution for Big Data
analytics. Out of the Hadoop box other solutions are emerging. In particular,
in-memory analysis has become a widespread trend, so that companies started
offering tools and services for faster in-memory analysis, such as SAP, that is con-
sidered the leading company with its Hana3 platform. Other vendors, including
HP, Teradata and Actian, developed analytical database tools with in-memory
analysis capabilities. Moreover, some vendors, like Microsoft, IBM, Oracle, and
SAP, stand out from their peers for offering a complete solution for data analy-
sis, including DBMS systems, software for data integration, stream-processing,
business intelligence, in-memory processing, and Hadoop platform.

In addition, many vendors decided to focus whole offer on the Cloud. Among
these certainly there are Amazon Web Services (AWS) and 1010data. In partic-
ular, AWS provides a wide range of services and products on the Cloud for Big
Data analysis, including scalable database systems and solutions for decision sup-
port. Other smaller vendors, including Actian, InfiniDB, HP Vertica, Infobright,
and Kognitio, focused their big-data offer on database management systems for
analytics only. Following the approach in [48], the remainder of the section in-
troduces representative examples of Cloud environments: Microsoft Azure as an
example of public PaaS, Amazon Web Services as the most popular public IaaS,
OpenNebula and OpenStack as examples of private IaaS. These environments
can be used to implement applications and frameworks for data analysis in the
Cloud.

3.1 Microsoft Azure

Azure4 is the Microsoft Cloud proposal. It is environment providing a large set
of Cloud services that can be used by developers to create Cloud-oriented appli-
cations, or to enhance existing applications with Cloud-based capabilities. The
platform provides on-demand compute and storage resources exploiting the com-
putational and storage power of the Microsoft data centers. Azure is designed for
supporting high availability and dynamic scaling services that match user needs
with a pay-per-use pricing model. The Azure platform can be used to perform
the storage of large datasets, execute large volumes of batch computations, and
develop SaaS applications targeted towards end-users. Microsoft Azure includes
three basic components/services:

– Compute is the computational environment to execute Cloud applications.
Each application is structured into roles: Web role, for Web-based appli-
cations; Worker role, for batch applications; Virtuam Machines role, for
virtual-machine images.

3 https://hana.sap.com
4 https://azure.microsoft.com



Big Data Analysis on Clouds 7

– Storage provides scalable storage to manage: binary and text data (Blobs),
non-relational tables (Tables), queues for asynchronous communication be-
tween components (Queues). In addition, for relational databases, Microsoft
provides its own Cloud database services, called Azure SQL Database.

– Fabric controller whose aim is to build a network of interconnected nodes
from the physical machines of a single data center. The Compute and Storage
services are built on top of this component.

Microsoft Azure provides standard interfaces that allow developers to interact
with its services. Moreover, developers can use IDEs like Microsoft Visual Studio
and Eclipse to easily design and publish Azure applications.

3.2 Amazon Web Services

Amazon offers compute and storage resources of its IT infrastructure to devel-
opers in the form of Web services. Amazon Web Services (AWS)5 is a large set
of Cloud services that can be composed by users to build their SaaS applications
or integrate traditional software with Cloud capabilities. It is simple to inter-
act with these service since Amazon provides SDKs for the main programming
languages and platforms (e.g. Java, .Net, PHP, Android).

AWS compute solution includes Elastic Compute Cloud (EC2), for creating
and running virtual servers, and Amazon Elastic MapReduce for building and
executing MapReduce applications. The Amazon storage solution is based on S3
Storage Service, with a range of storage classes designed to cope with different
use cases (i.e., Standard, Infrequent Access, and Glacier for long term storage
archive). A full set of database systems are also proposed: Relational Database
Service (RDS) for relational tables; DynamoDB for non-relational tables; Sim-
pleDB for managing small datasets; ElasticCache for caching data. Even though
Amazon is best known to be the first IaaS provider (based on its EC2 and S3
services), it is now also a PaaS provider, with services like Elastic Beanstalk, that
allows users to quickly create, deploy, and manage applications using a large set
of AWS services, or Amazon Machine Learning, that provides visualization tools
and wizards for easily creating machine learning models.

3.3 OpenNebula

OpenNebula [45] is an open-source framework mainly used to build private and
hybrid Clouds. The main component of the OpenNebula architecture is the Core,
which creates and controls virtual machines by interconnecting them with a
virtual network environment. Moreover, the Core interacts with specific stor-
age, network and virtualization operations through pluggable components called
Drivers. In this way, OpenNebula is independent from the underlying infrastruc-
ture and offers a uniform management environment. The Core also supports
the deployment of Services, which are a set of linked components (e.g., Web

5 https://aws.amazon.com



8 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

server, database) executed on several virtual machines. Another component is
the Scheduler, which is responsible for allocating the virtual machines on the
physical servers. To this end, the Scheduler interacts with the Core component
through appropriate deployment commands.

OpenNebula can implement a hybrid Cloud using specific Cloud Drivers that
allow to interact with external Clouds. In this way, the local infrastructure can
be supplemented with computing and storage resources from public Clouds.
Currently, OpenNebula includes drivers for using resources from Amazon EC2
and Eucalyptus [40], another open source Cloud framework.

3.4 OpenStack

OpenStack6 is an open source Cloud operating system realesed under the terms
od the Apache License 2.0. It allows the management of large pools of processing,
storage, and networking resources in a datacenter through a Web-based interface.
Most decisions about its development are decided by the community to the point
that every six months there is a design summit to gather requirements and
define new specifications for the upcoming release. The modular architecture of
OpenStack is composed by four main components, as shown in Figure 1.

Fig. 1. OpenStack architecture (source: openstack.org).

OpenStack Compute provides virtual servers upon demand by managing the
pool of processing resources available in the datacenter. It supports different
virtualization technologies (e.g., VMware, KVM) and is designed to scale hori-
zontally. OpenStack Storage provides a scalable and redundant storage system.
It supports Object Storage and Block Storage: the former allows storing and re-
trieving objects and files in the datacenter. OpenStack Networking manages the
networks and IP addresses. Finally, OpenStack Shared Services are additional
services provided to ease the use of the datacenter, such as Identity Service
for mapping users and services, Image Service for managing server images, and
Database Service for relational databases.

6 https://www.openstack.org/



Big Data Analysis on Clouds 9

4 Systems for Big Data Analytics in the Cloud

In this section we describe the most used tools for developing scalable data
analysis on Clouds, such as MapReduce, Spark, workflow systems, and NoSQL
database management systems. In particular, we discuss some frameworks com-
monly used to develop scalable applications that analyze big amounts of data,
such as Apache Hadoop, the best-known MapReduce implementation, and Spark.
We present also some powerful data mining programming tools and strategies
designed to be executed in the Cloud for exploiting complex and flexible soft-
ware models, such as the distributed workflows. Workflows provide a declarative
way of specifying the high-level logic of an application, hiding the low-level de-
tails. They are also able to integrate existing software modules, datasets, and
services in complex compositions that implement discovery processes. In this
section we presented several data mining workflow systems, such as the Data
Mining Cloud Framework, Microsoft Azure Machine Learning, and ClowdFlows.
Moreover, we discuss about NoSQL database technology that recently became
popular as an alternative or as a complement to relational databases. In the last
years, several NoSQL systems have been proposed for providing more scalabil-
ity and higher performance than relational databases. We introduce the basic
principles of NoSQL, described representative NoSQL systems, and outline in-
teresting data analytics use cases where NoSQL tools are useful. Finally, we
present a brief overview of well known visual analytics tools, that help users in
analytical reasoning by interactive visual interfaces.

4.1 MapReduce

MapReduce is a programming model developed by Google [11] in 2004 for large-
scale data processing to cope efficiently with the challenge of processing enor-
mous amounts of data generated by Internet-based applications.

Since its introduction, MapReduce has proven to be applicable to a wide
range of domains, including machine learning and data mining, social data anal-
ysis, financial analysis, scientific simulation, image retrieval and processing, blog
crawling, machine translation, language modelling, and bioinformatics. Today,
MapReduce is widely recognized as one of the most important programming
models for Cloud computing environments, being it supported by Google and
other leading Cloud providers such as Amazon, with its Elastic MapReduce
service7, and Microsoft, with its HDInsight8, or on top of private Cloud infras-
tructures such as OpenStack, with its Sahara service9.

Hadoop10 is the most used open source MapReduce implementation for devel-
oping parallel applications that analyze big amounts of data. It can be adopted
for developing distributed and parallel applications using many programming

7 http://aws.amazon.com/elasticmapreduce/
8 http://azure.microsoft.com/services/hdinsight/
9 http://wiki.openstack.org/wiki/Sahara

10 http://hadoop.apache.org/



10 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

languages (e.g., Java, Ruby, Python, C++). Hadoop relieves developers from
having to deal with classical distributed computing issues, such as load balanc-
ing, fault tolerance, data locality, and network bandwidth saving.

The Hadoop project is not only about the MapReduce programming model
(Hadoop MapReduce module), as it includes other modules such as:

– Hadoop Distributed File System (HDFS): a distributed file system provid-
ing fault tolerance with automatic recovery, portability across heterogeneous
commodity hardware and operating systems, high-throughput access and
data reliability.

– Hadoop YARN : a framework for cluster resource management and job schedul-
ing.

– Hadoop Common: common utilities that support the other Hadoop modules.

In particular, thanks to the introduction of YARN in 2013, Hadoop turns
from a batch processing solution into a platform for running a large variety
of data applications, such as streaming, in-memory, and graphs analysis. As a
result, Hadoop became a reference for several other frameworks, such as: Gi-
raph for graph analysis; Storm for streaming data analysis; Hive, which is a
data warehouse software for querying and managing large datasets; Pig, which
is as a dataflow language for exploring large datasets; Tez for executing com-
plex directed-acyclic graph of data processing tasks; Oozie, which is a workflow
scheduler system for managing Hadoop jobs. Besides Hadoop and its ecosystem,
several other MapReduce implementations have been implemented within other
systems, including GridGain, Skynet, MapSharp and Twister [14]. One of the
most popular alternative to Hadoop is Disco, which is a lightweight, open-source
framework for distributed computing. The Disco core is written in Erlang, a
functional language designed for building fault-tolerant distributed applications.
Disco has been used for a variety of purposes, such as log analysis, text indexing,
probabilistic modeling and data mining.

4.2 Spark

Apache Spark11 is another Apache framework for Big Data processing. Differ-
ently from Hadoop in which intermediate data are always stored in distributed
file systems, Spark stores data in RAM memory and queries it repeatedly so
as to obtain better performance for some class of applications (e.g., iterative
machine learning algorithms) [56]. For many years, Hadoop has been considered
the leading open source Big Data framework, but recently Spark has become the
more popular so that it is supported by every major Hadoop vendors. In fact,
for particular tasks, Spark is up to 100 times faster than Hadoop in memory and
10 times faster on disk. Several other libraries have been built on top of Spark:
Spark SQL for dealing with SQL and DataFrames, MLlib for machine learning,
GraphX for graphs and graph-parallel computation, and Spark Streaming to
build scalable fault-tolerant streaming applications.

11 http://spark.apache.org



Big Data Analysis on Clouds 11

For these reasons, Spark is becoming the primary execution engine for data
processing and, in general, a must-have for Big Data applications. But even
though in some applications Spark can be considered a better alternative to
Hadoop, in many other applications it has limitations that make it complemen-
tary to Hadoop. The main limitation of Spark is that it does not provide its own
distributed and scalable storage system, that is a fundamental requirement for
Big Data applications that use huge and continually increasing volume of data
stored across a very large number of nodes. To overcome this lack, Spark has
been designed to run on top of several data sources, such as Cloud object stor-
age (e.g., Amazon S3 Storage, Swift Object Storage), distributed filesystem (e.g.,
HDFS), no-SQL databases (e.g., HBase, Apache Cassandra), and others. Today
an increasing number of big vendors, such Microsoft Azure or Cloudera, offer
Spark as well as Hadoop, so developers can choose the most suitable framework
for each data analytic application.

With respect to Hadoop, Spark loads data from data sources and executes
most of its tasks in RAM memory. In this way, Spark reduces significantly the
time spent in writing and reading from hard drives, so that the execution is far
faster than Hadoop. Regarding task recovering in case of failures, Hadoop flushes
all of the data back to the storage after each operation. Similarly, Spark allow
recovering in case of failures by arranging data in Resilient Distributed Datasets
(RDD), which are a immutable and fault-tolerant collections of records which
can be stored in the volatile memory or in a persistent storage (e.g., HDFS,
HBase). Moreover, Spark’s real-time processing capability is increasingly being
used by Big Data analysts into applications that requires to extract insights
quickly from data, such as recommendation and monitoring systems.

Several big companies and organizations use Spark for Big Data analysis
purpose: for example, Ebay uses Spark for log transaction aggregation and ana-
lytics, Kelkoo for product recommendations, SK Telecom analyses mobile usage
patterns of customers.

4.3 Mahout

Apache Mahout12 is an open-source framework that provides scalable imple-
mentations of machine learning algorithms that are applicable on big input.
Originally, the Mahout project provided implementations of machine learning
algorithms executable on the top of Apache Hadoop framework. But the com-
parison of the performance of Mahout algorithms on Hadoop with other machine
learning libraries, showed that Hadoop spends the majority of the processing
time to load the state from file system at every intermediate step [44].

For these reasons, the latest version of Mahout goes beyond Hadoop and
provides several machine learning algorithms for collaborative filtering, classifi-
cation, and clustering, implemented not only in Hadoop MapReduce, but also
in Spark, H2O13. Both Apache Spark and H2O process data in memory so they

12 http://mahout.apache.org/
13 http://www.h2o.ai



12 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

can achieve a significant performance gain when compared to Hadoop frame-
work for specific classes of applications (e.g., interactive jobs, real-time queries,
and stream data) [44]. In addition, the latest release of Mahout introduces a
new math environment, called Samsara [29], that helps users in creating their
own math providing general linear algebra and statistical operations. In the fol-
lowing, some examples for each algorithm’s category are listed: analyzing user
history and preferences to suggest accurate recommendations (collaborative fil-
tering), selecting whether a new input matches a previously observed pattern or
not (classification), and grouping large number of things together into clusters
that share some similarity (clustering) [41]. In the future, Mahout will support
Apache Flink14, an open source platform that provides data distribution, com-
munication, and fault tolerance for distributed computations over data streams.

4.4 Hunk

Hunk15 is a commercial data analysis platform developed by Splunk for rapidly
exploring, analyzing and visualizing data in Hadoop and NoSQL data stores.
Hunk uses a set of high-level user and programming interfaces to offer speed
and simplicity of getting insights from large unstructured and structured data
sets. One of the key components of the Hunk architecture is the Splunk Virtual
Index. This system decouples the storage tier from the data access and analytics
tiers, so enabling Hunk to route requests to different data stores. The analytics
tier is based on Splunks Search Processing Language (SPL) designed for data
exploration across large, different data sets. The Hunk web framework allows
building applications on top of the Hadoop Distributed File System (HDFS)
and/or the NoSQL data store.

Developers can use Hunk to build their Big Data applications on top of
data in Hadoop using a set of well known languages and frameworks. Indeed,
the framework enables developers to integrate data and functionality from Hunk
into enterprise Big Data applications using a web framework, documented REST
API and software development kits for CSharp,Java, JavaScript, PHP and Ruby.
Also common development languages such as HTML5 and Python can be used
by developers.

The Hunk framework can be deployed on on-premises Hadoop clusters or pri-
vate Clouds and it is available as a preconfigured instance on the Amazon public
Cloud using the Amazon Web Services (AWS). This public Cloud solution al-
lows Hunk users to utilize the Hunk facilities and tools from AWS, also exploiting
commodity storage on Amazon S3, according to a pay-per-use model. Finally, the
framework implements and makes available a set of applications that enable the
Hunk analytics platform to explore, explore and visualize data in NoSQL and
other data stores, including Apache Accumulo, Apache Cassandra, MongoDB
and Neo4j. Hunk is also provided in combination with the Cloudera’s enterprise
data hub to develop large-scale applications that can access and analyze Big
Data sets.
14 https://flink.apache.org/
15 http://www.splunk.com/en us/products/hunk.html



Big Data Analysis on Clouds 13

4.5 Sector/Sphere

Sector/Sphere16 is a Cloud framework designed at the University of Illinois-
Chicago to implement data analysis applications involving large, geographically
distributed datasets in which the data can be naturally processed in parallel [19].
The framework includes two components: a storage service called Sector, which
manages the large distributed datasets with high reliability, high performance
IO, and a uniform access, and a compute service called Sphere, which makes use
of the Sector service to simplify data access, increase data IO bandwidth, and
exploit wide area high performance networks. Both of them are available as open
source software17. Sector is a distributed storage system that can be deployed
over a wide area network and allows users to ingest and download large datasets
from any location with a high-speed network connection to the system. The
system can be deployed over a large number of commodity computers (called
nodes), located either within a data center or across data centers, which are
connected by high-speed networks.

In an example scenario, nodes in the same rack are connected by 1 Gbps net-
works, two racks in the same data center are connected by 10 Gbps networks, and
two different data centers are connected by 10 Gbps networks. Sector assumes
that the datasets it stores are divided into one or more separate files, called
slices, which are replicated and distributed over the various nodes managed by
Sector.

The Sector architecture includes a Security server, a Master server and a
number of Slave nodes. The Security server maintains user accounts, file access
information, and the list of authorized slave nodes. The Master server maintains
the metadata of the files stored in the system, controls the running of the slave
nodes, and responds to users’ requests. The Slaves nodes store the files managed
by the system and process the data upon the request of a Sector client. Sphere
is a compute service built on top of Sector and provides a set of programming
interfaces to write distributed data analysis applications. Sphere takes streams
as inputs and produces streams as outputs. A stream consists of multiple data
segments that are processed by Sphere Processing Engines (SPEs) using slave
nodes. Usually there are many more segments than SPEs. Each SPE takes a
segment from a stream as an input and produces a segment of a stream as
output. These output segments can in turn be the input segments of another
Sphere process. Developers can use the Sphere client APIs to initialize input
streams, upload processing function libraries, start Sphere processes, and read
the processing results.

4.6 BigML

BigML18 is a system provided as a Software-as-a-Service (SaaS) for discovering
predictive models from data and it uses data classification and regression algo-

16 http://sector.sourceforge.net/
17 http://sector.sourceforge.net
18 https://bigml.com



14 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

rithms. The distinctive feature of BigML is that predictive models are presented
to users as interactive decision trees. The decision trees can be dynamically vi-
sualized and explored within the BigML interface, downloaded for local usage
and/or integration with applications, services, and other data analysis tools. Re-
cently, BigML launched its PaaS solution, called BigML PredictServer, which is
a dedicated machine image that can be deployed on Amazon AWS.

Fig. 2. Example of BigML prediction model for air pollution (source: bigml.com).

Extracting and using predictive models in BigML consists in multiple steps,
as detailed as follows:

– Data source setting and dataset creation. A data source is the raw data from
which a user wants to extract a predictive model. Each data source instance
is described by a set of columns, each one representing an instance feature,
or field. One of the fields is considered as the feature to be predicted. A
dataset is created as a structured version of a data source in which each field
has been processed and serialized according to its type (numeric, categorical,
etc.).

– Model extraction and visualization. Given a dataset, the system generates
the number of predictive models specified by the user, who can also choose



Big Data Analysis on Clouds 15

the level of parallelism level for the task. The interface provides a visual tree
representation of each predictive model, allowing users to adjust the support
and confidence values and to observe in real time how these values influence
the model.

– Prediction making. A model can be used individually, or in a group (the
so-called ensemble, composed of multiple models extracted from different
parts of a dataset), to make predictions on new data. The system provides
interactive forms to submit a predictive query for a new data using the input
fields from a model or ensemble. The system provides APIs to automate the
generation of predictions, which is particularly useful when the number of
input fields is high.

– Models evaluation. BigML provides functionalities to evaluate the goodness
of the predictive models extracted. This is done by generating performance
measures that can be applied to the kind of extracted model (classification
or regression).

4.7 Kognitio Analytical Platform

Kognitio Analytical Platform19, available as Cloud based service or supplied as
a pre-integrated appliance, allows users to pull very large amounts of data from
existing data storage systems into high-speed computer memory, allowing com-
plex analytical questions to be answered interactively. Although Kognitio has its
own internal disk subsystem, it is primarily used as an analytical layer on top of
existing storage/data processing systems, e.g., Hadoop clusters and/or existing
traditional disk-based data warehouse products, Cloud storage, etc. A feature
called External Tables allows persistent data to reside on external systems. Us-
ing this feature the system administrator, or a privileged user, can easily setup
access to data that resides in another environment, typically a disk store such
as the above-mentioned Hadoop clusters and data warehouse systems. To a final
user, the Kognitio Analytical Platform looks like a relational database manage-
ment system (RDBMS) similar to many commercial databases. However, unlike
these databases, Kognitio has been designed specifically to handle analytical
query workload, as opposed to the more traditional on-line transaction process-
ing (OLTP) workload. Key reasons of Kognitios high performance in managing
analytical query workload are:

– Data is held in high-speed RAM using structures optimized for in-memory
analysis, which is different from a simple copy of disk-based data, like a
traditional cache.

– Massively Parallel Processing (MPP) allows scaling out across large arrays
of low-cost industry standard servers, up to thousands nodes.

– Query parallelization allows every processor core on every server to be equally
involved in every query.

– Machine code generation and advanced query plan optimization techniques
ensure every processor cycle is effectively used to its maximum capacity.

19 www.kognitio.com



16 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

Parallelism in Kognitio Analytical Platform fully exploits the so-called shared
nothing distributed computing approach, in which none of the nodes share mem-
ory or disk storage, and there is no single point of contention across the system.

4.8 Data Analysis Workflows

A workflow consists of a series of activities, events or tasks that must be per-
formed to accomplish a goal and/or obtain a result. For example, a data anal-
ysis workflow can be designed as a sequence of pre-processing, analysis, post-
processing, and interpretation steps. At a practical level, a workflow can be
implemented as a computer program and can be expressed in a programming
language or paradigm that allows expressing the basic workflow steps and in-
cludes mechanisms to orchestrate them.

Workflows have emerged as an effective paradigm to address the complexity
of scientific and business applications. The wide availability of high-performance
computing systems, Grids and Clouds, allowed scientists and engineers to im-
plement more and more complex applications to access and process large data
repositories and run scientific experiments in silico on distributed computing
platforms. Most of these applications are designed as workflows that include
data analysis, scientific computation methods and complex simulation tech-
niques. The design and execution of many scientific applications require tools
and high-level mechanisms. Simple and complex workflows are often used to
reach this goal. For this reason, in the past years, many efforts have been de-
voted towards the development of distributed workflow management systems
for scientific applications. Workflows provide a declarative way of specifying the
high-level logic of an application, hiding the low-level details that are not funda-
mental for application design. They are also able to integrate existing software
modules, datasets, and services in complex compositions that implement scien-
tific discovery processes.

Another important benefit of workflows is that, once defined, they can be
stored and retrieved for modifications and/or re-execution: this allows users to
define typical patterns and reuse them in different scenarios [5]. The definition,
creation, and execution of workflows are supported by a so-called Workflow Man-
agement System (WMS). A key function of a WMS during the workflow exe-
cution (or enactment) is coordinating the operations of the individual activities
that constitute the workflow. There are several WMSes on the market, most of
them targeted to a specific application domain. In the following we focus on some
well-known software tools and frameworks designed implementing data analysis
workflows on Clouds systems.

Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) [32] is a software system that we
developd at University of Calabria for allowing users to design and execute data
analysis workflows on Clouds. DMCF supports a large variety of data analysis
processes, including single-task applications, parameter sweeping applications,



Big Data Analysis on Clouds 17

and workflow-based applications [33]. A Web-based user interface allows users
to compose their applications and to submit them for execution to a Cloud
platform, according to a Software-as-a-Service approach. Recently, DMCF has
been extended to include the execution of MapReduce tasks [3].

Fig. 3. DMCF architecture.

The DMCFs architecture includes a set of components that can be classified
as storage and compute components (see Figure 3). The storage components
include:

– A Data Folder that contains data sources and the results of knowledge dis-
covery processes. Similarly, a Tool folder contains libraries and executable
files for data selection, pre-processing, transformation, data mining, and re-
sults evaluation.

– The Data Table, Tool Table and Task Table that contain metadata informa-
tion associated with data, tools, and tasks.

– The Task Queue that manages the tasks to be executed.

The compute components are:

– A pool of Virtual Compute Servers, which are in charge of executing the
data mining tasks.

– A pool of Virtual Web Servers host the Web-based user interface.

The user interface provides three functionalities:

– App submission, which allows users to submit single-task, parameter sweep-
ing, or workflow-based applications;

– App monitoring, which is used to monitor the status and access results of
the submitted applications;

– Data/Tool management, which allows users to manage input/output data
and tools.



18 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

The DMCF architecture has been designed as a reference architecture to be
implemented on different Cloud systems. However, a first implementation of the
framework has been carried out on the Microsoft Azure Cloud platform and
has been evaluated through a set of data analysis applications executed on a
Microsoft Cloud data center. The DMCF framework takes advantage of Cloud
computing features, such as elasticity of resources provisioning. In DMCF, at
least one Virtual Web Server runs continuously in the Cloud, as it serves as
user front-end. In addition, users specify the minimum and maximum number
of Virtual Compute Servers. DMCF can exploit the auto-scaling features of Mi-
crosoft Azure that allows dynamic spinning up or shutting down Virtual Com-
pute Servers, based on the number of tasks ready for execution in the DMCFs
Task Queue. Since storage is managed by the Cloud platform, the number of
storage servers is transparent to the user.

For designing and executing a knowledge discovery application, users interact
with the system performing the following steps:

1. The Website is used to design an application (either single-task, parameter
sweeping, or workflow-based) through a Web-based interface that offers both
the visual programming interface and the script.

2. When a user submits an application, the system creates a set of tasks and
inserts them into the Task Queue on the basis of the application require-
ments.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and
concurrently executes it.

4. Each Virtual Compute Server gets the input dataset from the location spec-
ified by the application. To this end, file transfer is performed from the
Data Folder where the dataset is located, to the local storage of the Virtual
Compute Server.

5. After task completion, each Virtual Compute Server puts the result on the
Data Folder.

6. The Website notifies the user as soon as her/his task(s) have completed, and
allows her/him to access the results.

The set of tasks created on the second step depends on the type of appli-
cation submitted by a user. In the case of a single-task application, just one
data mining task is inserted into the Task Queue. If users submit a parameter
sweeping application, a set of tasks corresponding to the combinations of the in-
put parameters values are executed in parallel. If a workflow-based application
has to be executed, the set of tasks created depends on how many data analysis
tools are invoked within the workflow. Initially, only the workflow tasks without
dependencies are inserted into the Task Queue.

In DMCF workflows may encompass all the steps of discovery based on the
execution of complex algorithms and the access and analysis of scientific data.
In data-driven discovery processes, knowledge discovery workflows can produce
results that can confirm real experiments or provide insights that cannot be
achieved in laboratories. In particular, DMCF allows to program workflow ap-
plications using two languages:



Big Data Analysis on Clouds 19

– VL4Cloud (Visual Language for Cloud), a visual programming language that
lets users develop applications by programming the workflow components
graphically [33].

– JS4Cloud (JavaScript for Cloud), a scripting language for programming data
analysis workflows based on JavaScript [34].

Both languages use two key programming abstractions:

– Data elements denote input files or storage elements (e.g., a dataset to be
analyzed) or output files or stored elements (e.g., a data mining model).

– Tool elements denote algorithms, software tools or complex applications per-
forming any kind of operation that can be applied to a data element (data
mining, filtering, partitioning, etc.).

Another common element is the task concept, which represents the unit of
parallelism in our model. A task is a Tool, invoked in the workflow, which is in-
tended to run in parallel with other tasks on a set of Cloud resources. According
to this approach, VL4Cloud and JS4Cloud implement a data-driven task paral-
lelism. This means that, as soon as a task does not depend on any other task in
the same workflow, the runtime asynchronously spawns it to the first available
virtual machine. A task Tj does not depend on a task Ti belonging to the same
workflow (with i 6= j), if Tj during its execution does not read any data ele-
ment created by Ti. In VL4Cloud, workflows are directed acyclic graphs whose
nodes represent data and tools elements. The nodes can be connected with each
other through direct edges, establishing specific dependency relationships among
them. When an edge is being created between two nodes, a label is automatically
attached to it representing the type of relationship between the two nodes. Data
and Tool nodes can be added to the workflow singularly or in array form. A data
array is an ordered collection of input/output data elements, while a tool array
represents multiple instances of the same tool. Figure 4 shows an example of
data analysis workflow developed using the visual workflow formalism of DMCF
[6].

Fig. 4. Example of data analysis application designed using VL4Cloud.

In JS4Cloud, workflows are defined with a JavaScript code that interacts
with Data and Tool elements through three functions:



20 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

– Data Access, for accessing a Data element stored in the Cloud;
– Data Definition, to define a new Data element that will be created at runtime

as a result of a Tool execution;
– Tool Execution: to invoke the execution of a Tool available in the Cloud.

Once the JS4Cloud workflow code has been submitted, an interpreter translates
the workflow into a set of concurrent tasks by analysing the existing dependencies
in the code. The main benefits of JS4Cloud are:

1. It extends the well-known JavaScript language while using only its basic
functions (arrays, functions, loops).

2. It implements both a data-driven task parallelism that automatically spawns
ready-to-run tasks to the Cloud resources, and data parallelism through an
array-based formalism.

3. These two types of parallelism are exploited implicitly so that workflows can
be programmed in a totally sequential way, which frees users from duties
like work partitioning, synchronization and communication.

Figure 6 shows the script-based workflow version of the visual workflow shown in
Figure 4. In this example, parallelism is exploited in the for loop at line 7, where
up to 16 instances of the J48 classifier are executed in parallel on 16 different
partitions of the training sets, and in the for loop at line 10, where up to 16
instances of the Predictor tool are executed in parallel to classify the test set
using 16 different classification models.

Fig. 5. Example of data analysis application designed using JS4Cloud.

Figure 6 shows a snapshot of the parallel classification workflow taken during
its execution in the DMCFs user interface. Beside each code line number, a col-
ored circle indicates the status of execution. This feature allows user to monitor
the status of the workflow execution. Green circles at lines 3 and 5 indicate that
the two partitioners have completed their execution; the blue circle at line 8
indicates that J48 tasks are still running; the orange circles at lines 11 and 13
indicate that the corresponding tasks are waiting to be executed.



Big Data Analysis on Clouds 21

Microsoft Azure Machine Learning

Microsoft Azure Machine Learning (Azure ML) is a SaaS that provides a Web-
based machine learning IDE (i.e., integrated development environment) for cre-
ation and automation of machine learning workflows. Through its user-friendly
interface, data scientists and developers can perform several common data anal-
ysis/mining tasks on their data and automate their workflows. Using its drag-
and-drop interface, users can import their data in the environment or use special
readers to retrieve data form several sources, such as Web URL (HTTP), OData
Web service, Azure Blob Storage, Azure SQL Database, Azure Table. After
that, users can compose their data analysis workflows where each data process-
ing task is represented as a block that can be connected with each other through
direct edges, establishing specific dependency relationships among them. Azure
ML includes a rich catalog of processing tools that can be easily included in a
workflow to prepare/transform data or to mine data through supervised learn-
ing (regression e classification) or unsupervised learning (clustering) algorithms.
Optionally, users can include their own custom scripts (e.g., in R or Python)
to extend the tools catalog. When workflows are correctly defined, users can
evaluate them using some testing dataset.

Fig. 6. Example of Azure Machine Learning workflow (source: studio.azureml.net).

Users can easily visualize the results of the tests and find very useful infor-
mation about models accuracy, precision and recall. Finally, in order to use their
models to predict new data or perform real time predictions, users can expose
them as Web services. Always through a Web-based interface, users can monitor



22 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

the Web services load and use by time. Azure Machine Learning is a fully man-
aged service provided by Microsoft on its Cloud platform; users do not need to
buy any hardware/software nor manage virtual machine manually. One of the
main advantage of working with a Cloud platform like Azure is its auto-scaling
feature: models are deployed as elastic Web services so as users do not have to
worry about scaling them if the models usage increased.

ClowdFlows

ClowdFlows [22] is an open source Cloud-based platform for the composition,
execution, and sharing of data analysis workflows. It is provided as a software
as a service that allows users to design and execute visual workflows through
a simple Web browser and so it can be run from most devices (e.g., desktop
PCs, laptops, and tablets). ClowdFlows is based on two software components:
the workflow editor (provided by a Web browser) and the server side application
that manages the execution of the application workflows and hosts a set of stored
workflows. The server side consists of methods for supporting the client-side
workflow editor in the composition and for executing workflows, and a relational
database of workflows and data. The workflow editor includes of a workflow
canvas and a widget repository. The widget repository is a list of all available
workflow components that can be added to the workflow canvas. The repository
includes a set of default widgets.

Fig. 7. Example of CloudFlow workflow (source: clowdflows.org).

According to this approach, the CloudFlows service-oriented architecture al-
lows users to include in their workflow the implementations of various algorithms,
tools and Web services as workflow elements. For example, the Weka’s algorithms
have been included and exposed as Web services and so they can be added in a
workflow application. ClowdFlows is also easily extensible by importing third-
party Web services that wrap open-source or custom data mining algorithms. To



Big Data Analysis on Clouds 23

this end, a user has only to insert the WSDL URL of a Web service to create a
new workflow element that represents the Web service in a workflow application.

Pegasus

Pegasus [12] is a workflow management system developed at the University of
Southern California for supporting the implementation of scientific applications
also in the area of data analysis. Pegasus includes a set of software modules
to execute workflow-based applications in a number of different environments,
including desktops, Clouds, clusters and grids. It has been used in several scien-
tific areas including bioinformatics, astronomy, earthquake science, gravitational
wave physics, and ocean science. The Pegasus workflow management system can
manage the execution of an application expressed as a visual workflow by map-
ping it onto available resources and executing the workflow tasks in the order of
their dependencies. In particular, significant activities have been recently per-
formed on Pegasus to support the system implementation on Cloud platforms
and manage computational workflows in the Cloud for developing data-intensive
scientific applications (Juve et al., 2010) (Nagavaram et al, 2011). The Pegasus
system has been used with IaaS Clouds for workflow applications and the most
recent versions of Pegasus can be used to map and execute workflows on com-
mercial and academic IaaS Clouds such as Amazon EC2, Nimbus, OpenNebula
and Eucalyptus (Deelman et al., 2015). The Pegasus system includes four main
components:

– the Mapper, which builds an executable workflow based on an abstract work-
flow provided by a user or generated by the workflow composition system.
To this end, this component finds the appropriate software, data, and com-
putational resources required for workflow execution. The Mapper can also
restructure the workflow in order to optimize performance, and add trans-
formations for data management or to generate provenance information.

– the Execution Engine (DAGMan), which executes in appropriate order the
tasks defined in the workflow. This component relies on the compute, storage
and network resources defined in the executable workflow to perform the
necessary activities. It includes a local component and some remote ones.

– the Task Manager, which is in charge of managing single workflow tasks by
supervising their execution on local and/or remote resources.

– The Monitoring Component, which monitors the workflow execution, ana-
lyzes the workflow and job logs and stores them into a workflow database
used to collect runtime provenance information. This component sends no-
tifications back to users notifying them of events like failures, success and
completion of workflows and jobs.

The Pegasus software architecture includes also an error recovery system
that attempts to recover from failures by retrying tasks or an entire workflow,
re-mapping portions of the workflow, providing workflow-level checkpointing,
and using alternative data sources, when possible. The Pegasus system records



24 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

provenance information including the locations of data used and produced, and
which software was used with which parameters. This feature is useful when a
workflow must be reproduced.

Swift

Swift [53] is a implicitly parallel scripting language that runs workflows across
several distributed systems, like clusters, Clouds, grids, and supercomputers.
The Swift language has been designed at the University of Chicago and at the
Argonne National Lab to provide users with a workflow-based language for grid
computing. Recently has been ported on Clouds and exascale systems. Swift sep-
arates the application workflow logic from runtime configuration. This approach
allows a flexible development model.

As the DMCF programming interface, the Swift language allows invocation
and running of external application code and allows binding with application
execution environments without extra coding from the user. Swift/K is the pre-
vious version of the Swift language that runs on the Karajan grid workflow engine
across wide area resources. Swift/T is a new implementation of the Swift lan-
guage for high-performance computing. In this implementation, a Swift program
is translated into an MPI program that uses the Turbine and ADLB runtime
libraries for scalable dataflow processing over MPI. The Swift-Turbine Compiler
(STC) is an optimizing compiler for Swift/T and the Swift Turbine runtime is
a distributed engine that maps the load of Swift workflow tasks across multiple
computing nodes. Users can also use Galaxy [17] to provide a visual interface
for Swift.

The Swift language provides a functional programming paradigm where work-
flows are designed as a set of code invocations with their associated command-line
arguments and input and output files. Swift is based on a C-like syntax and uses
an implicit data-driven task parallelism [54]. In fact, it looks like a sequential
language, but being a dataflow language, all variables are futures, thus execution
is based on data availability. When input data is ready, functions are executed
in parallel. Moreover, parallelism can be exploited through the use of the foreach
statement. The Turbine runtime comprises a set of services that implement the
parallel execution of Swift scripts exploiting the maximal concurrency permit-
ted by data dependencies within a script and by external resource availability.
Swift has been used for developing several scientific data analysis applications,
such as prediction of protein structures, modeling the molecular structure of new
materials, and decision making in climate and energy policy.

4.9 NoSQL Models for Data Analytics

With the exponential growth of data to be stored in distributed network scenar-
ios, relational databases exhibit scalability limitations that significantly reduce
the efficiency of querying and analysis [1]. In fact, most relational databases



Big Data Analysis on Clouds 25

have little ability to scale horizontally over many servers, which makes challeng-
ing storing and managing the huge amounts of data produced everyday by many
applications.

The NoSQL or non-relational database approach became popular in the last
years as an alternative or as a complement to relational databases, in order to
ensure horizontal scalability of simple read/write database operations distributed
over many servers [8]. Compared to relational databases, NoSQL databases are
generally more flexible and scalable, as they are capable of taking advantage of
new nodes transparently, without requiring manual distribution of information
or additional database management [46]. Since database management may be a
challenging task with huge amounts of data, NoSQL databases are designed to
ensure automatic data distribution and fault tolerance [15]. In the remainder of
this section, we describe some representative NoSQL systems, and discuss some
use cases for NoSQL databases, with a focus on data analytics.

NoSQL databases provide ways to store scalar values (e.g., numbers, strings),
binary objects (e.g., images, videos), or more complex values. According to their
data model, NoSQL databases can be grouped into three main categories [8]:
Key-value stores, Document stores, Extensible Record stores.

Key-value stores provide mechanisms to store data as (key, value) pairs over
multiple servers. In such kind of databases a distributed hash table (DHT) can
be used to implement a scalable indexing structure, where data retrieval is per-
formed by using key to find value [8].

Document stores are designed to manage data stored in documents that
use different formats (e.g., JSON), where each document is assigned a unique
key that is used to identify and retrieve the document. Therefore, document
stores extend key-value stores because they provide for storing, retrieving, and
managing semi-structured information, rather than single values. Unlike the key-
value stores, document stores generally support secondary indexes and multiple
types of documents per database, and provide mechanisms to query collections
based on multiple attribute value constraints [8].

Finally, Extensible Record stores (also known as Column-oriented data stores)
provide mechanisms to store extensible records that can be partitioned across
multiple servers. In this type of database, records are said to be extensible be-
cause new attributes can be added on a per-record basis. Extensible record stores
provide both horizontal partitioning (storing records on different nodes) and ver-
tical partitioning (storing parts of a single record on different servers). In some
systems, columns of a table can be distributed over multiple servers by using col-
umn groups, where pre-defined groups indicate which columns are best stored
together.

A brief comparison of noSQL databases is shown in Table 1. For a more
detailed comparison see also [20][28][39].

20 Last queries can be lost as explained in http://redis.io/topics/persistence



26 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

DynamoDB Cassandra Hbase Redis CouchDB BigTable MongoDB Neo4j

Type Key-Value Column Column Key-Value Document Column Document Graph
Data Storage MEM, FS HDFS, CFS HDFS MEM, FS MEM, FS GFS MEM, FS MEM, FS
MapReduce yes yes yes no yes yes yes no
Persistence yes yes yes yes, with limits20 yes yes yes yes
Replication yes yes yes yes yes yes yes yes
Scalability high high high high high high high high
Performance high high high high high high high high, variable
High availability yes yes yes yes yes yes yes yes
Language Java Java Java Ansi-C Erlang Java, Python, Go, Ruby C++ Java
License Proprietary Apache 2.0 Apache 2.0 BSD Apache 2.0 Proprietary GNU AGPL3 GNU GPL3

Table 1. Comparison of some NoSQL databases. FS=File System; MEM=In-Memory

Google Bigtable

Google Bigtable21 is a popular table store. Built above the Google File System, it
is able to store up to petabytes of data and supporting tables with billions of rows
and thousands of columns. Thanks to its high read and write throughput at low
latency, Bigtable it is an ideal data source for batch MapReduce operations [9]
and other applications oriented to the processing and analysis of large volumes
of data.

Data in Bigtable are stored in sparse, distributed, persistent, multi-dimensional
tables composed of rows and columns. Each row is indexed by a single row key,
and a set of columns that are grouped together into sets called column fami-
lies. Instead, a generic column is identified by a column family and a column
qualifier, which is a unique name within the column family. Each value in the
table is indexed by a tuple (row key, column key, timestamp). To improve scal-
ability and to balance the query workload, data are ordered by row key and the
row range for a table is dynamically partitioned into contiguous blocks, called
tablets. These tablets are distributed among different Bigtable cluster’s nodes
(i.e., Tablet Servers). To improve load balancing, the Bigtable master is able
to split larger and merge smaller tablets, redistributing them across nodes as
needed. To ensure data durability, Bigtable stores data on Google File System
(GFS) and protects it from disaster events through data replication and backup.
Bigtable can be used into applications through multiple clients, including Cloud
Bigtable HBase, a customized version of the standard client for the industry-
standard Apache HBase.

Apache Cassandra

Apache Cassandra22 is a distributed database management system providing
high availability with no single point of failure. Born at Facebook and inspired
by Amazon Dynamo and Google BigTable, Apache Cassandra is designed for
managing large amount of data across multiple data centers and Cloud avail-
ability zones.

Cassandra uses a masterless ring architecture, where all nodes play an iden-
tical role, that allows any authorized user to connect to any node in any data

21 https://cloud.google.com/bigtable/
22 http://cassandra.apache.org/



Big Data Analysis on Clouds 27

center. This is a really simple and flexible architecture that allows to add nodes
without service downtime. The process of data distribution across nodes is very
simple and no programmatic operations are needed by the developers.

Since all nodes communicate each other equally, Cassandra has no single
point of failure, that ensures continuous data availability and service uptime.
Moreover, Cassandra provides very customizable data replication service that
allows to replicate data across nodes that participate in a ring. In this manner,
in case of node failure, one or more copies of the needed data are available on
other nodes.

Cassandra also provides built-in and customizable replication, which stores
redundant copies of data across nodes that participate in a Cassandra ring. This
means that if a node in a cluster goes down, one or more copies of data stored
on that node is available on other machines in the cluster. Replication can be
configured to work across one data center, many data centers, and multiple Cloud
availability zones. Focusing on performance and scalability, Cassandra reaches
a quite linear speedup, that means the OPS (Operations Per Second) capacity
can be increased by adding new nodes (e.g., if 2 nodes can handle 10,000 OPS,
4 nodes will support 20,000 OPS, and so on).

Many companies have successfully deployed and benefited from Apache Cas-
sandra including some large companies such as: Apple (75,000 nodes storing over
10 PB of data), Chinese search engine Easou (270 nodes, 300 TB, over 800 mil-
lion reqests per day), and eBay (over 100 nodes, 250 TB), Netflix (2,500 nodes,
420 TB, over 1 trillion requests per day), Instagram, Spotify, eBay, Rackspace,
and many more.

Neo4j Graph Database

If we need to take into account real time data relationships (e.g. create queries
using data relationships), NoSQL databases are not the best choice. In fact,
relationship-based or graph databases has been created for naturally supporting
operations on data that use data relationships. Graph databases provide a novel
and powerful data modeling technique that does not store data in tables, but in
graph models [43], with several benefits in storing and retrieving data connected
by complex relationships.

There are several graph data models, such as Neo4j, OrientDB, Virtuoso,
Allegro, Stardog, InfiniteGraph. Among all we focus on Neo4j. Neo4j is an open-
source NoSQL graph database implemented in Java and Scala that is considered
the most popular graph database used today. The Neo4j source code and is-
sue tracking are available on GitHub, with a large support community. It is
used today by a very large number of organizations working in different sectors,
including software analytics, scientific research, project management, recommen-
dations, and social networks.

In the Neo4j graph model, each node contains a list of relationship records
that refer to other nodes, and additional attributes (e.g. timestamp, metadata,
key-value pairs, and more). Each relationship record must have a name, a direc-
tion, a start node and an end node, and can contains additional properties. One



28 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

o more labels can be assigned both to nodes and relationships. In particular,
such labels can be used for representing the roles a node plays in the graph (e.g.,
user, address, company, and so on) or for associating indexes and constraints to
groups of nodes. Figure 8 shows an example of a graph model used for detecting
bank fraud.

Fig. 8. Example of Bank Fraud Graph Dataset (source: neo4j.com).

Moreover, Neo4j clusters are designed for high availability and horizontal
read scaling using master-slave replication. Focusing on performance, Neo4j is
thousands of times faster than SQL in executing traversal operation. The traver-
sal operation consists of visiting a set of nodes in the graph by moving along
relationships (e.g., find potential friends in social network from user friendship).
With such kind of operations, graph models allow to take into account only
the data that is required, without doing expensive grouping operations as done
by relational database during join operations [51]. Queries in Neo4j are written
using Cypher, a declarative and SQL-based language for describing patterns in
graphs. Cypher is a relative simple but very powerful language, that allows to
execute queries in a easy way on a very complex graph database.

4.10 Visual Analytics

A primary problem in data analysis is to interpret results easily. To overcome
this problem, in the last years, great progress has been made in the field of
visual analytics. As defined by [50], visual analytics is the science of analytical
reasoning facilitated by interactive visual interfaces. Nowadays, people use visual
analytics tools and methodologies to extract synthetic information from often
confusing data and use them in further analysis or business operations. The



Big Data Analysis on Clouds 29

power of visual analytics techniques relies on human brain capabilities to process
graphics faster than text. In particular, through a graphical data presentation,
the human brain could be able to find complex and often hidden patterns and
relationships in data that are difficult to discover using automatic methods. Also
in the Big Data context, the tools used to visualize results and to interact with
data play a key role. Thus, in order to support data presentation and interaction
also in presence of Big Data, innovative methodologies (e.g, interactive charts,
animations, diagrams, and much more) have been developed.

In particular, to ride the wave of visual analytics technologies, several big
IT company, such as Microsoft, Google, and SAS, developed advanced data
presentation and data visualization tools able to interact with existent Big Data
platforms, including Hadoop-based ones. For example, Microsoft extended Excel
functions to allow integration with its Big Data solution. In particular, Excel’s
users can be connected to Azure Storage associated to an Hadoop HDInsight
cluster using the Microsoft Power Query for Excel add-in. Once data has been
retrieved, users can exploit Excel functions to make more interesting charts or
graphs.

Google Fusion Tables23 is an other alternative for turning data into graphics
in a very easy way. It allows to load tabular data, filter and summarize across
hundreds of thousands of rows, and create geo maps, heat maps, graphs, charts,
animations, and more. Also Google Charts24 are a powerful Javascript library for
making interactive charts for browsers and mobile devices. Google Charts allows
to create several types of charts, from simple line charts to complex hierarchical
tree maps. In the field of maps and location-based applications, advanced plat-
forms, such as Google Maps25, Mapbox26, can be used to create interactive and
dynamic maps, display additional layers on a map or generate routes. In the field
of visual data analysis, several Big Data start-ups spring up in the last years.
Tableau27, for example, is a Big Data company from Stanford with multina-
tional operations in fifteen cities, and more than 39,000 customer accounts in 150
countries. It developed software solutions for easily creating complex charts from
huge amount of data. In fact, thanks to its Cloud analytics platform, Tableau
allows users to manipulate data through a simple web control panel. In this way,
users can interact directly with data to find interesting insights. Among all the
competitors in this field, SAS28 probably stands out among its peers.

SAS Visual Analytics, in fact, represents a complete solution for advanced
data visualization and exploratory analyses. Thanks to its drag-and-drop capa-
bilities and no code requirements, it allows users to easily solve complex issues
using several sophisticated techniques for data analysis (e.g. decision trees, net-
work diagrams, scenario analysis, path analysis, sentiment analysis) and business

23 https://tables.googlelabs.com
24 https://developers.google.com/chart
25 https://www.google.com/maps
26 https://www.mapbox.com/
27 http://www.tableau.com
28 https://www.sas.com



30 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

intelligence. In addition, exploiting in-memory processing, SAS software makes
analytic applications faster.

4.11 Big Data funding projects

Open-source projects discussed in the previous sections (e.g., Hadoop, Spark, and
NoSQL databases) have been widely used in several public funding projects. As
examples:

– BigFoot project29 is a cloud-based solution featuring scalable and optimized
engines to store, process and interact with Big Data. It has received funding
from the European Union’s Horizon 2020 program.

– Optique30 is a EU funding project with a total budget of about 14 million
EUR. It is aims to provide a novel end-to-end OBDA (Ontology-Based Data
Access) [38][7] solution for improving Big Data access. In particular, Op-
tique platform allows to quickly formulate intuitive queries exploiting user
vocabularies and conceptualizations, and executing them using massive par-
allelism.

Also government agencies invested large amount of money on Big Data tech-
nologies in many public sector fields, such as intelligence, defense, weather fore-
casting, crime prediction and prevention, and scientific research.

As example, US Administration invested more that 250 million USD for Big
Data research and development initiative across multiple agencies and depart-
ments. Moreover, in 2014 UK government decided to invest about 73 million
GBP in Big Data and other analytics technologies with the goals of creating
58,000 new jobs in Britain by 2017, contributing 216 billion GBP to the coun-
trys economy.

4.12 Historical review

In this section a brief historical review of Big Data is presented. Undoubtedly,
main events in Big Data evolution are due to big IT and Internet companies,
like Google and Yahoo, who faced first the need of new solutions for tackling the
rise of Big Data. A significant role in this context has been played by Hadoop
and its related projects, that made Big Data analytics accessible also to a larger
number of organizations.

Hadoop was created by Doug Cutting and it has its origins in Apache Nutch
(2002), an open source web search engine, itself a part of the Lucene project
(2000). After Google released the Google File System (GFS) paper (October
2003) and the MapReduce paper (December 2004), Cutting went to work with
Yahoo and decided to build open source frameworks based on them: in 2006
Yahoo! created Hadoop based on GFS and MapReduce, and one year later,
it started using Hadoop on a 1000 node cluster. In 2006, Yahoo Labs created

29 http://bigfootproject.eu/
30 http://optique-project.eu



Big Data Analysis on Clouds 31

Pig based on Hadoop, and then donated it to the Apache Software Foundation
(ASF). In few years, several other projects was created around Hadoop and,
in a short time, graduated to a Apache Top Level Project: HBase (2008), Hive
(2008), Cassandra (2008), Storm (2011), Giraph (2011), and so on. At the same
time, many Hadoop distributor was founded, such as Cloudera (2008), MapR
(2009), Hortonworks (2011). A short history of Hadoop and related project is
shown in Figure 9.

Fig. 9. A short Hadoop ecosystem’s history.

Spark represents another milestone in Big Data analytics. Spark was initially
created at UC Berkeley’s AMPLab in 2009, open sourced in 2010 under a BSD
license, and donated to the ASF in 2013. Finally, in February 2014, Spark be-
came a Top-Level Apache Project and declared the most active ASF project. As
discussed before, Spark is nowadays considered the primary execution engine for
several Big Data applications, sometimes used to complement Hadoop.

4.13 Summary

It is not easy to summarize all the features of the systems discussed till now
or to do a proof comparison among them. Some of those systems have common
features and, in some cases, using one rather than another is an hard choice. In
fact, given a specific data analytic task, such as a machine learning application,
it is possible to use several tools. Some of those are widely used commercial tools,
provided through cloud services, that can be easily used by no skilled people (e.g.,
Azure Machine Learning or Amazon Machine Learning); other are open-source
frameworks that require skilled users who prefer to program their application
using a more technical approach. In addition, choosing the best solution for
developing a data analytic application may depend on many other factors, such
as budget (e.g., often high-level services are easy-to-use but more expensive than



32 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

low-level solutions), data format, data source, the amount of data to be analyze
and its velocity, and so on. Table 2 presents a brief comparison of the Big Data
analytics systems.

Hadoop represents the most used framework for developing distributed Big
Data analytics application. In fact, Hadoop-ecosystem is undoubtedly the most
complete solution for any kind of problem, but at the same time it is thought
for high skilled users. On the other hand, many other solutions are designed
for low-skilled users or for low-medium organizations that do not want to spend
resources in developing and maintaining enterprise data analytics solutions (e.g.,
Microsoft Azure Machine Learning, Amazon Machine Learning, Data Mining
Cloud Framework, Kognitio Analytical, or BigML). Finally, other solutions have
been created mainly for scientific research purposes and, for this reason, they are
poorly used for developing business applications (e.g., Sector/Sphere, Pegasus).

Analytics
Systems/

Tools Streaming Graph In-Memory
Machine
Learning

SQL
Data
flow

Data
processing

Workflow
Open-
source

Cloud
model

Hadoop x x x x x x x IaaS
Spark x x x x x x x IaaS
Mahout x x x IaaS
Oozie x x IaaS
Tez x x IaaS
Giraph x x IaaS
Storm x x IaaS
Hive x x IaaS
Pig x x IaaS
Hunk SaaS
Sector
/Sphere

x x SaaS

BigML x
SaaS,
PaaS

Kognitio
Analytical

x x PaaS

DMCF x x x x
SaaS,
PaaS

Microsoft
Azure ML

x x x SaaS

Amazon ML x x x x SaaS
Pegasus x x IaaS
ClowdFlows x x PaaS
Swift x x IaaS

Table 2. A brief comparison of most common Big Data analytics systems.

Choosing the best database solution for creating a Big Data application is
another key-step, so several aspects need to be considered. To decide what kind
of database to adopt, the first aspect to be considered is probably the classes
of queries will be run. So graph databases are probably the best solution for
representing and querying highly connected data (e.g., data gathered from social
network) or that have complex relationships and/or dynamic schema. In any
other case, when non-graph data are analyzed, graph databases could result in



Big Data Analysis on Clouds 33

really bad performance. About that, summary considerations on graph databases
are presented in Table 3.

Another aspect to be considered in choosing the best database solution should
be the CAP (Consistency, Availability, and Partition) capabilities offered, be-
cause distributed NoSQL database systems can’t be fully CAP compliant. In fact,
the CAP theorem, also named Brewer’s theorem[18], states that a distributed
system can’t simultaneously guarantee all three of the following properties:

– Consistency (C), that means all nodes see the same data at the same time;

– Availability (A), that means every request will receive a response within a
reasonable amount of time;

– Partition (P) tolerance, that means the system continues to function also if
arbitrary network partitions occur due to failures.

Thus if a distributed database system guarantees Consistency and Partition-
ing, it can never ensure Availability. Similarly, if you need a full Availability and
Partition tolerance, you can’t have Consistency, anyway not immediately. In
fact, on a distributed environment, data changes on one node need some time to
be propagated to the other nodes. During that time the copies will be mutually
inconsistent, that may lead to the possibility of reading not updated data. To try
to overcome this limitation, the Eventual Consistency property is usually pro-
vided: it ensures that the system, sooner or later, will become consistent. This
is a weak property, so if the adopted database system only provides eventual
consistency, the developer must be aware that exists the possibility of reading
inconsistent data. NoSQL databases usually offer a balance among CAP prop-
erties, which is the key difference among the different available solutions. For
each database family, some summary considerations are also provided for Key-
Value databases (Table 4), Column-oriented (Table 5), and Document-oriented
databases (Table 6).

Graph databases

Horizontal scaling Poor horizontal scaling.

When to use
For storing objects without a fixed schema and linked together by
relationships; when users can done naturally their reasoning about
data via graph traversals instead of using complex SQL queries.

CAP tradeoff Usually prefer availability over consistency

Pros
Powerful data modeling and relationships representation;
locally indexed connected data; easy to query.

Cons
Highly specialized query capabilities that make them the best for
graph data, but not suitable for non-graph data.

Table 3. Summary considerations about graph databases.



34 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

Key-value databases

Horizontal scaling Very high scale provided via sharding.

When to use
When you have a very simple data schema
or extreme speed scenario (like real-time)

CAP tradeoff Most solutions prefer consistency over availability.

Pros
Simple data model; very high scalability,
data can be accessed using query language like SQL.

Cons
Some queries could be inefficient or limited due to sharding
(e.g., join operations across shards); no API standardization;
maintenance is difficult; poor for complex data.

Table 4. Summary considerations about Key-Value databases.

Column-oriented databases

Horizontal scaling Very high scale capabilities.

When to use
When you need consistency and higher scalability performance
than a single machine (i.e., usually using more than 1,000 nodes),
without using indexed caching front end.

CAP tradeoff Most solutions prefer consistency over availability.

Pros
Higher throughput and stronger concurrency when it is possible to
partition data; multi-attribute queries; data is naturally indexed by
columns; support semi-structured data.

Cons
More complex than the document stores;
poor for interconnected data.

Table 5. Summary considerations about Column-oriented databases.

Document-oriented databases

Horizontal scaling Scale provided via replication or replication and sharding.

When to use
When your record structure is relatively small and it is possible
to store all of its related properties in a single doc.

CAP tradeoff In most cases prefer consistency over availability.

Pros

High scalability and simple data model;
generally support secondary indexes, multiple types of documents
per database, and nested documents or lists;
MapReduce support for adhoc querying.

Cons
Eventually consistent model with limited atomicity and isolation;
poor for interconnected data;
query model is limited to keys and indexes.

Table 6. Summary considerations about Document-oriented databases.



Big Data Analysis on Clouds 35

5 Research Trends

Big Data analysis is a very active research area with significant impact on in-
dustrial and scientific domains where is important to analyze very large and
complex data repositories. In particular, in many cases data to be analyzed are
stored in Cloud platforms and elastic computing Clouds facilities are exploited
to speedup the analysis. This section outlines and discusses main research trends
in Big Data analytics and Cloud systems for managing and mining large-scale
data repositories.

As we discussed, scalable data analytics requires high-level, easy-to-use de-
sign tools for programming large applications dealing with huge, distributed data
sources. Moreover, Clouds are widely adopted by many organizations, however
several existing issues remain to be addressed, so that Cloud solutions can im-
prove their efficiency and competitiveness at each business size, from medium to
large companies. This requires further research and development in several key
areas such as:

– Programming models for Big Data analytics. Big Data analytics program-
ming tools require novel complex abstract structures. The MapReduce model
is often used on clusters and Clouds, but more research is needed to develop
scalable higher-level models and tools. State-of-the-art solutions generated
major success stories, however they are not mature and suffer several prob-
lems from data transfer bottlenecks to performance unpredictability. Several
other processing models have been proposed as alternative to MapReduce,
such as Dryad [21] or Pregel [30], but they have never been widely used by
developers.

– Data storage scalability. The increasing amount of data generated needs
even more scalable data storage systems. As discussed in the previously, tra-
ditional RDBMS systems are not the best choice for supporting Big Data
applications in the Cloud, and that leads to the popularity of noSQL plat-
forms[8]. Several noSQL solutions have been proposed, with good experimen-
tal results in term of performance gain, but several other improvements are
still needed [52][47]. In fact, RDBMS systems have been around for a long
time, are quite stable and offers lots of features. In the other hand, most
noSQL systems are in its early version and several additional features have
yet to be improved or implemented, such as integrating capabilities from
DBMS (e.g., indexing techniques), facilities for ad-hoc queries, and more.

– Data availability. Cloud service provides have to deal with the problem of
granting service and data availability. Especially in presence of huge amounts
of data, granting high-quality service is an opened challenge. Several solu-
tions have been proposed for improving exploitation, such as using a coop-
erative multi-Cloud model to support Big Data accessibility in emergency
cases [25], but more studies are still needed to handle the continue increasing
demand for more real time and broad network access to Cloud services.

– Data and tool interoperability and openness. Interoperability is a main issue
in large-scale applications that use resources such as data and computing



36 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

nodes. Standard formats and models are needed to support interoperability
and ease cooperation among teams using different data formats and tools.
The National Institute of Standards and Technology (NIST) just released the
Big Data interoperability framework31, a collection of documents, organized
in 7 volumes, which aim to define some standards for Big Data.

– Data quality and usability. Big Data sets are often arranged by gathering
data from several heterogeneous and often not well-known sources. This
leads to a poor data quality that is a big problem for data analysts. In
fact, due to the lack of a common format, inconsistent and useless data
can be produced as a result of joining data from heterogeneous sources.
Defining some common and widely adopted format would lead to data that
are consistent with data from other sources, that means high quality data.
Since real-world data is highly susceptible to inconsistency, incompleteness,
and noise, finding effective methodologies for data preprocessing is still an
open challenge for improve data quality and the analysis results [10]. In this
regard, an interesting discussion about challenges of data quality in the Big
Data has been presented in [6].

– Integration of Big Data analytics frameworks. The service-oriented paradigm
allows running large-scale distributed workflows on heterogeneous platforms
along with software components developed using different programming lan-
guages or tools. Scalable software architectures for fine grain in-memory
data access and analysis. Exascale processors and storage devices must be
exploited with fine-grain runtime models. Software solutions for handling
many cores and scalable processor-to-processor communications have to be
designed to exploit exascale hardware [36][13].

– Tools for massive social network analysis. The effective analysis of social
network data on a large scale requires new software tools for real-time data
extraction and mining, using Cloud services and high-performance comput-
ing approaches [31][35]. Social data streaming analysis tools represent very
useful technologies to understand collective behaviors from social media data.
Tools for data exploration and models visualization. New approaches to data
exploration and models visualization are necessary taking into account the
size of data and the complexity of the knowledge extracted. As data are
bigger and bigger, visualization tools will be more useful to summarize and
show data patterns and trends in a compact and easy-to-see way.

– Local mining and distributed model combination. As Big Data applications
often involve several local sources and distributed coordination, collecting
distributed data sources to a centralized server for analysis is not practical
or in some cases possible. Scalable data analysis systems have to enable
local mining of data sources and model exchange and fusion mechanisms to
compose the results produced in the distributed nodes [55]. According to
this approach the global analysis can be performed by distributing the local
mining and supporting the global combination of every local knowledge to
generate the complete model.

31 http://www.nist.gov/itl/bigdata/bigdatainfo.cfm



Big Data Analysis on Clouds 37

– In-memory analysis. Most of the data analysis tools query data sources on
disks while, differently from those, in-memory analytics query data in main
memory (RAM). This approach brings many benefits in terms of query speed
up and faster decisions. In-memory databases are, for example, very effective
in real-time data analysis, but they require high-performance hardware sup-
port and fine-grain parallel algorithms [49][59]. New 64-bit operating systems
allow to address memory up to one terabyte, so making realistic to cache
very large amount of data in RAM. This is why this research area is very
promising.

6 Conclusions

In the last years the ability to gather data has increased exponentially. Advances
and pervasiveness of computers have been the main driver of the very huge
amounts of digital data that today are collected and stored in digital reposi-
tories. Those data volumes can be analyzed to extract useful information and
producing helpful knowledge for science, industry, public services and in general
for humankind. However, the huge amount of data generated, the speed at which
it is produced, and its heterogeneity, represent a challenge to the current storage,
process and analysis capabilities. Then to extract value from such kind of data,
novel technologies and architectures have been developed by data scientists for
capturing and analyzing complex and/or high velocity data. In this scenario was
born also the Big Data mining field as a discipline that today provides several
different techniques and algorithms for the automatic analysis of large data sets.
But, the process of knowledge discovery from Big Data is not so easy, mainly
due to data characteristics, and to get valuable information and knowledge in
shorter time, high performance and scalable computing systems are needed. In
many cases, Big Data are stored and analyzed in Cloud platforms.

Clouds provide scalable storage and processing services that can be used for
extracting knowledge from Big Data repositories, as well as software platforms
for developing and running data analysis environments on top of such services.
In this chapter we provided an overview of Cloud technologies by describing
the main service models (SaaS, PaaS, and IaaS) and deployment models (pub-
lic, private or hybrid Clouds) adopted by Cloud providers. We also described
representative examples of Cloud environments (Microsoft Azure, Amazon Web
Services, OpenNebula and OpenStack) that can be used to implement appli-
cations and frameworks for data analysis in the Cloud. The development of
data analysis applications on Cloud computing systems is a complex task that
needs to exploit smart software solutions and innovative technologies. In this
chapter we presented the leading software tools and technologies used for de-
veloping scalable data analysis on Clouds, such as MapReduce, Spark, workflow
systems, and NoSQL database management systems. In particular, we particu-
larly focused on Hadoop, the best-known MapReduce implementation, that is
commonly used to develop scalable applications that analyze big amounts of
data. As we discussed, Hadoop is also a reference tool for several other frame-



38 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

works, such as Storm, Hive, Oozie and Spark. Moreover, besides Hadoop and its
ecosystem, several other MapReduce implementations have been implemented
within other systems, including GridGain, Skynet, MapSharp, and Disco.

As such Cloud platforms become available, researchers are increasingly port-
ing powerful data mining programming tools and strategies to the Cloud to
exploit complex and flexible software models, such as the distributed workflow
paradigm. Workflows provide a declarative way of specifying the high-level logic
of an application, hiding the low-level details. They are also able to integrate
existing software modules, datasets, and services in complex compositions that
implement discovery processes. In this chapter we presented several data min-
ing workflow systems, such as Data Mining Cloud Framework, Microsoft Azure
Machine Learning, ClowdFlows.

Then we also discussed NoSQL database technology that became popular in
the latest years as an alternative or as a complement to relational databases.
In fact, NoSQL systems in several application scenarios are more scalable and
provide higher performance than relational databases. We introduced the basic
principles of NoSQL, described representative NoSQL systems, and outlined in-
teresting data analytics use cases where NoSQL tools are useful. Finally, some
research trends and open challenges on Big Data analysis has been discussed,
such as scalable data analytics requirements of high-level, easy-to-use design
tools for programming large applications dealing with huge distributed data
sources.

Acknowledgement

This work is partially supported by EU under the COST Program Action IC1305:
Network for Sustainable Ultrascale Computing (NESUS).

References

1. Abramova, V., Bernardino, J., Furtado, P.: Which nosql database? a performance
overview. Open Journal of Databases (OJDB) 1(2), 17–24 (2014)

2. Barga, R., Gannon, D., Reed, D.: The client and the cloud: Democratizing research
computing. Internet Computing, IEEE 15(1), 72–75 (Jan 2011)

3. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Programming visual and script-
based big data analytics workflows on clouds. In: Big Data and High Performance
Computing, Advances in Parallel Computing, vol. 26, pp. 18–31. IOS Press (2015)

4. Bermingham, L., Lee, I.: Spatio-temporal sequential pattern mining for tourism
sciences. Procedia Computer Science 29(0), 379 – 389 (2014), 2014 International
Conference on Computational Science

5. Bowers, S., Ludäscher, B., Ngu, A.H., Critchlow, T.: Enabling scientificworkflow
reuse through structured composition of dataflow and control-flow. In: Data En-
gineering Workshops, 2006. Proceedings. 22nd International Conference on. pp.
70–70. IEEE (2006)

6. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data Science Journal 14, 2 (2015)



Big Data Analysis on Clouds 39

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

8. Cattell, R.: Scalable sql and nosql data stores. ACM SIGMOD Record 39(4), 12–27
(2011)

9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

10. Che, D., Safran, M., Peng, Z.: Database Systems for Advanced Applications:
18th International Conference, DASFAA 2013, International Workshops: BDMA,
SNSM, SeCoP, Wuhan, China, April 22-25, 2013. Proceedings, chap. From Big
Data to Big Data Mining: Challenges, Issues, and Opportunities, pp. 1–15. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

11. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6. pp. 10–10. OSDI’04, Berkeley, USA (2004)

12. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani,
R., Chen, W., da Silva, R.F., Livny, M., et al.: Pegasus, a workflow management
system for science automation. Future Generation Computer Systems 46, 17–35
(2015)

13. Dongarra, J., et al.: The international exascale software project roadmap. Interna-
tional Journal of High Performance Computing Applications (2011)

14. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.:
Twister: A runtime for iterative mapreduce. In: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing. pp. 810–
818. HPDC ’10, ACM, New York, NY, USA (2010)

15. Gajendran, S.K.: A survey on nosql databases. University of Illinois (2012)
16. Gerber, M.S.: Predicting crime using twitter and kernel density estimation. Deci-

sion Support Systems 61, 115 – 125 (2014)
17. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P.,

Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., et al.: Galaxy: a platform for
interactive large-scale genome analysis. Genome research 15(10), 1451–1455 (2005)

18. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

19. Gu, Y., Grossman, R.L.: Sector and sphere: the design and implementation of a
high-performance data cloud. Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 367(1897), 2429–2445
(2009)

20. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The
rise of big data on cloud computing: Review and open research issues. Information
Systems 47, 98 – 115 (2015)

21. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-
parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev. 41(3),
59–72 (Mar 2007)

22. Kranjc, J., Podpečan, V., Lavrač, N.: Clowdflows: a cloud based scientific workflow
platform. In: Machine Learning and Knowledge Discovery in Databases, pp. 816–
819. Springer (2012)

23. Kurashima, T., Iwata, T., Irie, G., Fujimura, K.: Travel route recommendation
using geotags in photo sharing sites. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management. pp. 579–588. CIKM ’10,
ACM, New York, NY, USA (2010)



40 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

24. Lee, R., Wakamiya, S., Sumiya, K.: Urban area characterization based on crowd
behavioral lifelogs over twitter. Personal and Ubiquitous Computing 17(4), 605–620
(2013)

25. Lee, S., Park, H., Shin, Y.: Cloud computing availability: multi-clouds for big data
service. In: Convergence and Hybrid Information Technology, pp. 799–806. Springer
(2012)

26. Lemieux, A.: Geotagged photos: a useful tool for criminological research? Crime
Science 4(1), 3 (2015)

27. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement. pp. 1–14. ACM (2010)

28. Lourenço, J.R., Cabral, B., Carreiro, P., Vieira, M., Bernardino, J.: Choosing the
right nosql database for the job: a quality attribute evaluation. Journal of Big Data
2(1), 1–26 (2015)

29. Lyubimov, D., Palumbo, A.: Apache Mahout: Beyond MapReduce. Chapman and
Hall/CRC (February 2016)

30. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: A system for large-scale graph processing. In: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data. pp.
135–146. SIGMOD ’10, ACM, New York, NY, USA (2010)

31. Marciani, G., Piu, M., Porretta, M., Nardelli, M., Cardellini, V.: Real-time analysis
of social networks leveraging the flink framework. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. pp. 386–389.
DEBS ’16, ACM, New York, NY, USA (2016)

32. Marozzo, F., Talia, D., Trunfio, P.: A cloud framework for parameter sweeping data
mining applications. In: Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on. pp. 367–374. IEEE (2011)

33. Marozzo, F., Talia, D., Trunfio, P.: Using clouds for scalable knowledge discovery
applications. In: Euro-Par Workshops. Lecture Notes in Computer Science, vol.
7640, pp. 220–227. Rhodes Island, Greece (August 2012)

34. Marozzo, F., Talia, D., Trunfio, P.: Scalable script-based data analysis workflows
on clouds. In: Proceedings of the 8th Workshop on Workflows in Support of Large-
Scale Science. pp. 124–133. ACM (2013)

35. Martin, A., Brito, A., Fetzer, C.: Real-time social network graph analysis using
streammine3g. In: Proceedings of the 10th ACM International Conference on Dis-
tributed and Event-based Systems. pp. 322–329. DEBS ’16, ACM, New York, NY,
USA (2016)

36. Mavroidis, I., Papaefstathiou, I., Lavagno, L., Nikolopoulos, D.S., Koch, D.,
Goodacre, J., Sourdis, I., Papaefstathiou, V., Coppola, M., Palomino, M.: Ecoscale:
Reconfigurable computing and runtime system for future exascale systems. In: 2016
Design, Automation Test in Europe Conference Exhibition (DATE). pp. 696–701
(2016)

37. Mell, P.M., Grance, T.: Sp 800-145. the nist definition of cloud computing. Tech.
rep., National Institute of Standards & Technology, Gaithersburg, MD, United
States (2011)

38. Möller, R., Neumann, B.: Ontology-Based Reasoning Techniques for Multimedia
Interpretation and Retrieval, pp. 55–98. Springer London, London (2008)

39. Moniruzzaman, A.B.M., Hossain, S.A.: Nosql database: New era of databases
for big data analytics - classification, characteristics and comparison. CoRR
abs/1307.0191 (2013)



Big Data Analysis on Clouds 41

40. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Clus-
ter Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International
Symposium on. pp. 124–131 (May 2009)

41. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning Pub-
lications Co., Greenwich, CT, USA (2011)

42. Richardson, L., Ruby, S.: RESTful web services. ”O’Reilly Media, Inc.” (2008)

43. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. CoRR abs/1004.1001
(2010)

44. Shahrivari, S.: Beyond batch processing: Towards real-time and streaming big data.
CoRR abs/1403.3375 (2014)

45. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Computing 13(5), 14–22
(Sept 2009)

46. Stonebraker, M.: Sql databases v. nosql databases. Commun. ACM 53(4), 10–11
(Apr 2010)

47. Tai, A., Wei, M., Freedman, M.J., Abraham, I., Malkhi, D.: Replex: A scalable,
highly available multi-index data store. In: 2016 USENIX Annual Technical Con-
ference (USENIX ATC 16). pp. 337–350. USENIX Association, Denver, CO (Jun
2016)

48. Talia, D., Trunfio, P., Marozzo, F.: Data Analysis in the Cloud. Elsevier (2015),
iSBN 978-0-12-802881-0

49. Tan, K.L., Cai, Q., Ooi, B.C., Wong, W.F., Yao, C., Zhang, H.: In-memory
databases: Challenges and opportunities from software and hardware perspectives.
SIGMOD Rec. 44(2), 35–40 (Aug 2015)

50. Thomas, J.J., Cook, K.A.: A visual analytics agenda. Computer Graphics and
Applications, IEEE 26(1), 10–13 (2006)

51. Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J.: Neo4j in action. Man-
ning (2015)

52. Wang, Z., Chu, Y., Tan, K., Agrawal, D., El Abbadi, A., Xu, X.: Scalable data
cube analysis over big data. CoRR abs/1311.5663 (2013)

53. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift:
A language for distributed parallel scripting. Parallel Computing 37(9), 633–652
(2011)

54. Wozniak, J.M., Wilde, M., Foster, I.T.: Language features for scalable distributed-
memory dataflow computing. In: Data-Flow Execution Models for Extreme Scale
Computing (DFM), 2014 Fourth Workshop on. pp. 50–53 (Aug 2014)

55. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Transac-
tions on Knowledge and Data Engineering 26(1), 97–107 (2014)

56. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark: Sql
and rich analytics at scale. In: Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. pp. 13–24. SIGMOD ’13, ACM, New
York, NY, USA (2013)

57. You, L., Motta, G., Sacco, D., Ma, T.: Social data analysis framework in cloud
and mobility analyzer for smarter cities. In: Service Operations and Logistics, and
Informatics (SOLI), 2014 IEEE International Conference on. pp. 96–101 (Oct 2014)

58. Yuan, J., Zheng, Y., Zhang, L., Xie, X., Sun, G.: Where to find my next passenger.
In: Proceedings of the 13th International Conference on Ubiquitous Computing.
pp. 109–118. UbiComp ’11, ACM, New York, NY, USA (2011)



42 Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

59. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory big data man-
agement and processing: A survey. IEEE Transactions on Knowledge and Data
Engineering 27(7), 1920–1948 (July 2015)


