
Evaluating a Data-Aware Scheduling Approach
to Reduce Processing Costs of DMCF

Workflows
Fabrizio Marozzo∗, Francisco Rodrigo Duro†, Javier Garcia Blas†,

Jesus Carretero†, Domenico Talia∗, Paolo Trunfio∗

∗ DIMES, University of Calabria, Italy
Email: [fmarozzo, talia, trunfio]@dimes.unical.it
†ARCOS, University Carlos III of Madrid, Spain

Email: [frodrigo, fjblas, jesus.carretero]@arcos.inf.uc3m.es

Abstract—As scientific data analysis applications become
more and more complex, there is a great need to simplify
the definition and execution of such applications, particularly
when dealing with large datasets. The Data Mining Cloud
Framework (DMCF) is a system allowing domain experts
to design and execute complex data analysis workflows
on cloud platforms, relying on cloud storage services for
every I/O operation. In order to enhance I/O operations,
we propose the integration of DMCF with Hercules, an
in-memory I/O solution that can be used in combination
with DMCF as an alternative to cloud storage services to
improve the I/O performance of workflow executions. The
integration between DMCF and Hercules is based on a data-
aware scheduler that exploits data locality and in-memory
I/O to reduce run time of workflows. The goal of this work
is to evaluate the reduction of processing costs obtained
by using the proposed data-aware scheduler, compared to
the costs obtained with the original DMCF solution on the
same workflow. The evaluation performed on a 32-node cloud
cluster results in 52% reduction of I/O time, which results in
8% total execution time reduction, and 9% of cloud services
cost reduction.

Index Terms—Workflows, cost reduction, in-memory stor-
age, data locality, Microsoft Azure.

I. Introduction

Workflow management systems are computing plat-
forms widely used today for designing and execut-
ing data-intensive applications over High-Performance
Computing (HPC) systems or distributed infrastructures.
Data-intensive workflows consist of interdependent data
processing tasks, often connected in a DAG style, which
communicate through intermediate storage abstractions,
typically files [1]. While workflow management sys-
tems deployed on HPC systems (e.g., parallel machines)
typically exploit a monolithic parallel file system that
ensures highly efficient data accesses, workflow systems
implemented on a distributed infrastructure (most often, a
public Cloud) must borrow techniques from the Big Data

computing (BDC) field, such as exposing data storage
locality and scheduling work to reduce data movement
in order to alleviate the I/O subsystems under highly
demanding data access patterns.

Our previous work [2] has been focused on improving
the I/O performance of the Data Mining Cloud Frame-
work (DMCF) [3], a system allowing users to design
and execute data analysis workflows on Cloud platforms.
The improvement is based on the use of an in-memory
I/O accelerator, known as Hercules [4], which is used in
DMCF as an alternative to typical cloud storage services.
This approach aims to reduce the impact of I/O load
on workflows execution times. The integration between
DMCF and Hercules is based on a data-aware scheduler
that exploits data locality and in-memory I/O accessess,
with the goal of reducing run time of workflows [5].

The main goal of this work is to evaluate the reduction
of processing costs by using a data-aware scheduler,
compared to the costs obtained with the original DMCF
solution on the same workflow. Multiple simulations
have been carried out on a reference 32-node cloud-based
cluster to evaluate the cost reduction of the proposed
data-aware scheduling strategy executing data analysis
workflows. The simulation results show a 52% reduction
in I/O time, which results in 8% total execution time
reduction, and 9% of cloud services cost reduction.
Monetary cost reduction is achieved for two reasons: i) by
exploiting data locality, we reduce the total execution time
and the price paid for the corresponding CPU time; ii)
by exploiting in-memory storage, we reduce the amount
of cloud storage necessary to stage temporary data and
so the corresponding price paid to the cloud provider.

The remainder of the paper is structured as follows.
Section II describes the main features of DMCF. Section III
discusses Hercules architecture and capabilities. Section



Fig. 1: DMCF and Hercules architecture.

IV emphasizes the advantages of integrating DMCF and
Hercules and outlines how the integration works. Sec-
tion V introduces the cost model used for the evaluation.
Section VI presents the evaluation results. Section VII
discusses related work. Finally, Section VIII concludes
the work and outlines future work.

II. Data Mining Cloud Framework overview

The Data Mining Cloud Framework (DMCF) [6] is a
software system implemented for designing and execut-
ing data analysis workflows on Clouds. A Web-based
user interface allows users to compose their applications
and submit them for execution over Cloud resources,
according to a Software-as-a-Service (SaaS) approach.

The DMCF architecture has been designed to be
deployed on different Cloud settings. Currently, there
are two different deployments of DMCF: i) on top of
a Platform-as-a-Service (PaaS) cloud, i.e., using storage,
compute, and network APIs that hide the underlying
infrastructure layer; ii) on top of an Infrastructure-as-a-
Service (IaaS) cloud, i.e., using virtual machine images
(VMs) that are deployed on the infrastructure layer. In
both deployment scenarios, we use Microsoft Azure1 as
cloud provider.

The DMCF software modules can be grouped into web
components and compute components (see top-left part of
Figure 1). DMCF allows users to compose, check, and
run data analysis workflows through a HTML5 web
editor. The workflows can be defined using two languages:
VL4Cloud (Visual Language for Cloud) [3] and JS4Cloud

1http://azure.microsoft.com

(JavaScript for Cloud) [7]. Both languages use three key
abstractions:

• Data elements, representing input files (e.g., a dataset
to be analyzed) or output files (e.g., a data mining
model).

• Tool elements, representing software tools used to
perform operations on data elements (partitioning,
filtering, mining, etc.).

• Tasks, which represent the execution of Tool elements
on given input Data elements to produce some
output Data elements.

The DMCF editor generates a JSON descriptor of the
workflow, specifying what are the tasks to be executed
and the dependency relationships among them. The JSON
workflow descriptor is managed by the DMCF workflow
engine that is in charge of executing workflow tasks on a
set of workers (virtual processing nodes) provided by the
Cloud infrastructure. The workflow engine implements a
data-driven task parallelism that assigns workflow tasks
to idle workers as soon as they are ready to execute.
Further details on DMCF execution mechanisms are given
in Section IV.

III. Hercules overview

Hercules [4] is a distributed in-memory storage system
based on the key/value Memcached database [8]. The
distributed memory space can be used by the applications
as a virtual storage device for I/O operations. Hercules
has been adapted in this work for being used as an
alternative to cloud storage service, offering in-memory
shared storage for applications deployed over cloud
infrastructures.



Fig. 2: Workflow execution scenarios between DMCF and Hercules.

Hercules architecture (see top-center part of Figure 1,
labeled Hercules instance) has two main layers: front-
end (Hercules client library) and back-end (server layer).
The user-level library is used by the application (or
DMCF workers) for accessing to the Hercules back-
end. The library features a layered design, while back-
end components are based on enhanced Memcached
servers that extend basic functionality with persistence
and tweaks.

Hercules offers four main advantages: scalability, easy
deployment, flexibility, and performance.

Scalability is achieved by fully distributing data and
metadata information among all the available nodes,
avoiding the bottlenecks produced by centralized meta-
data servers. Data and metadata placement is completely
calculated at client-side by a hashing algorithm. The
servers are completely stateless.

Easy deployment and flexibility at worker-side is
provided by a POSIX-like user-level interface in addition
to the classic put/get approach existing in current NoSQL
databases. This approach supports legacy applications
with minimum changes. Servers can also be deployed
without root privileges.

Performance and flexibility are targeted at server-
side by exploiting I/O parallelism. The capacity of
dynamically deploying as many Hercules nodes as nec-
essary provides the flexibility feature. The combination
of both approaches results on each node being accessed
independently, multiplying the total throughput peak
performance.

IV. Integration between DMCF and Hercules

DMCF and Hercules can be configured according with
two main deployment scenarios to achieve different levels
of integration (see Figure 2):

• Scenario 1: Every I/O operation is performed against
the cloud storage service offered by the cloud
provider (Azure Storage, in the current implementa-
tion). There are, at least, four disadvantages in using

this approach: proprietary interfaces, I/O contention
in the service, lack of configuration options, and
persistence-related costs unnecessary for temporary
data.

• Scenario 2: Initial input and final output are stored
on persistent Azure storage, while intermediate data
are stored on Hercules in-memory nodes. Hercules
I/O nodes share virtual instances with the DMCF
workers.

Figure 3 describes, with further implementation details,
the second scenario of integration between DMCF and
Hercules. Four main components are present: DMCF
Worker daemon, Hercules daemon, Hercules client library,
and Azure client library.

Fig. 3: DMCF and Hercules daemons.

The DMCF workers are in charge of executing the
tasks of the workflow (data analysis tools/applications),
Hercules daemons act as I/O nodes (storing data in-
memory and managing data accesses), the Hercules client
library is intended to be used by the applications to access
to the data stored in Hercules (query Hercules daemons),
and the Azure client library is used to read/write data
from/to the Azure storage.

We designed data placement mechanisms that combine
DMCF load-balancing capabilities and Hercules data
distribution for implementing a data-aware scheduling
strategy [5]. Data placement mechanisms focus on group-



ing data related to the same task, while the data-aware
scheduler policy targets the co-location of compute task
in the nodes where the data can be found in-memory.

Exploiting the new data-aware scheduling strategy, the
DMCF Worker cyclically checks whether there are tasks
ready to be executed in the Task Queue. If so, a task is
removed from the Task Queue and its status is changed
to ’running’. To take advantage of data locality, the task
removed from the queue is the one having the highest
number of input data that are available on the local
storage of the worker. This differs from the original data-
locality agnostic scheduling policy adopted in DMCF [3],
in which each worker picks and executes the task from
the queue following a FIFO policy. Then, the transfer
of all the needed input resources (files, executables and
libraries) is performed from their location (Hercules local
or remote node) to two local folders and the Worker
locally executes the task and waits for its completion.

V. Costs Model for In-Memory Storage on Clouds

This section presents an overview of the cost model
used for evaluating the processing costs of workflows in
DMCF and Hercules deployed over the Azure platform.
The most characteristic feature of this model is its
focus on the cost of I/O-related operations, taking into
account every cost related with data access (storage, I/O
operations, persistence, etc.) that is a key point for data-
intensive applications.

The model requires information about the application
and the platform where that workflow is going to be
executed.

• Application. The model requires details about the
application: the CPU time needed for each task in
the workflow benchmarked in the cloud platform,
the I/O operations (put/get) performed by each task,
and the size of these operations (input, output, and
temporary files).

• Platform. It is necessary to know the main cost
concepts: VM deployment, I/O operations, storage
of data, and persistence. In addition, it is necessary
to measure the performance of the I/O operations
in the platform to calculate the time spent on I/O
operations.

The total execution cost of a given application (CTOTAL)
is denoted as the sum of the costs of the cloud storage
services (CCSS) and the costs of compute instances (CCCI):

CTOTAL = CCSS + CCCI (1)

Both costs depend on the characteristics of the ap-
plication, the configuration of the infrastructure, and
the execution time, i.e. the time needed for executing
an application is lower using two computing instances

than using one, but the cost of deploying two virtual
machines is greater than deploying one during the same
amount of time. Although the model was initially based
on the Amazon AWS cost concepts, it is completely
compatible with Microsoft Azure pricing. The main
relevant difference between Amazon AWS and Azure is
the CPU time pricing strategy, with hour slots in Amazon
EC2 and minute slots in Azure. Details on the model are
available in [9].

CCSS is obtained by calculating the total execution time
based on the characteristics of the infrastructure allocated
(number of VMs for DMCF workers and Hercules I/O
nodes). The total execution time includes CPU time
and I/O time, which is dynamically calculated taking
into account the I/O performance of the platform for
each specific configuration. On the other hand, CCCI
depends on the number of I/O operations, the size of
the data stored, and, as in the previous case, the total
execution time. We include only the cost of storing the
data in the cloud storage service during the execution
of the workflow. This is the minimum possible cost
and other approaches could be discussed based on
the characteristics of the workload (requirements of
persistence, iterations over the same data, etc.).

VI. Evaluation of computation costs

This section presents the cost-based evaluation of
the DMCF and Hercules integration using the model
introduced in Section V. The evaluation is focused on
emulating the execution time and processing cost of a real
workflow executed in the Microsoft Azure IaaS platform.
We have simulated the execution using three alternative
configurations:

• Azure-only: every I/O operation of the workflow is
performed by DMCF using the Azure storage service
(Scenario 1 in Figure 2).

• Locality-agnostic: a full integration between DMCF
and Hercules is exploited, where each intermediate
data is stored in Hercules, while initial input and
final output are stored on Azure. DMCF workers
and Hercules I/O nodes share resources (they are
deployed in the same VM instance), however, every
I/O operation is performed over remote Hercules
I/O nodes through the network (Scenario 2 in Figure
2).

• Data-aware: based on the same deployment as in
the previous case, this scenario is based on a full
knowledge of data location, and executes every task
in the same node where data is stored, leading
to fully local accesses over temporary data. Based
on this locality exploitation, most I/O operations
are performed in-memory rather than through the
network (Scenario 2 in Figure 2).



Fig. 4: Classification VL4Cloud workflow.

This evaluation focuses on the cost of execution of
DMCF improved with Hercules over the Azure-only
approach, which is the default scenario in the pay-per-use
model of cloud platforms.

The evaluation is based on a data mining workflow that
analyzes n partitions of a training set using k classification
algorithms so as to generate kn classification models. The
kn models generated are then evaluated against a test
set by a model selector to identify the best model. Then,
n predictors use the best model to produce in parallel
n classified datasets. The classification algorithms used
in the workflow are C4.5 [10], Support Vector Machine
(SVM) [11] and Naive Bayes [12], that are three major
classification algorithms [13]. The training set, test set,
and unlabeled dataset, that represent the input of the
workflow, have been generated from the KDD Cup 1999’s
dataset2, which contains a wide variety of simulated
intrusion records in a military network environment.

Figure 4 shows the VL4Cloud version of the data
mining workflow. The visual formalism clearly highlights
the level of parallelism of the workflow, expressed by
the number of parallel paths and the cardinality of tool
array nodes (20 for the three data classifiers and 80 for
the Filter and the Predictor).

Table I lists all the read/write operations performed
during the execution of the workflow on each data node.
Each row of the table describes: i) the number of files
included in the data array node; ii) the total size of
the data array; iii) the total number of read operations
performed on the files included in the data array; and iv)
the total number of write operations performed on the
files included in the data array. Similarly, Table II lists

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

the number of tasks and their average execution time
associated to each tool node.

TABLE I: Read/write operations performed during the execution
of the workflow.

Data node N. of
files

Total
size

Number of
read operations

Number of
write operations

Train 1 100MB 1 -
Strain 1 100MB 1 1
TrainPart 20 100MB 60 20
Model 60 ≈20MB 60 60
Test 1 50MB 1 -
BestModel 1 300KB 80 1
UnLab 80 8GB 80 -
FUnLab 80 ≈8GB 80 80
ClassDataset 80 ≈6GB - 80

TABLE II: Computing operations performed during the execu-
tion of the workflow.

Tool Node Number of
instances

Average execution
time in secs

Shuffler 1 1
Partitioner 1 1
C45 20 288
SVM 20 600
NaiveBayes 20 791
Filter 80 104
ModelSelector 1 9
Predictor 80 2,321

The simulation results are based on synthetic band-
width measurements performed over the Azure infras-
tructure and the Azure cost concepts3. The benchmark

3https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/linux/ and
https://azure.microsoft.com/es-es/pricing/details/storage/blobs/



0

5

10

15

20

0

1000

2000

3000

4000

5000

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

1 worker 2 workers 4 workers 8 workers 16 workers 32 workers

E
xe

cu
ti

o
n

 C
o

st
 (

U
S

D
 c

e
n

ts
)

To
ta

l 
E

xe
cu

ti
o

n
 T

im
e

 (
s)

CPU time I/O input time I/O temp time I/O output time

Cost Azure-only Cost Locality-agnostic Cost Data-aware

Fig. 5: Breakdown of the estimated execution time of the workflow deployed over different configurations, using up to 32 DMCF
workers. The secondary axis shows the cost of execution of the workflow.

0

5

10

15

20

0

200

400

600

800

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

A
zu

re
-o

n
ly

Lo
c-

a
g

n
o

st
ic

D
a

ta
-a

w
a

re

1 worker 2 workers 4 workers 8 workers 16 workers 32 workers

E
xe

cu
ti

o
n

 C
o

st
 (

U
S

D
 c

e
n

ts
)

To
ta

l 
E

xe
cu

ti
o

n
 T

im
e

 (
s)

I/O input time I/O temp time I/O output time

Cost Azure-only Cost Locality-agnostic Cost Data-aware

Fig. 6: Detailed view of the results present in Figure 5. This figure discards CPU time, and focuses on the time spent in I/O
operations. In the secondary axis the results are enclosed between 14 and 19 to better show the cost differences between cases.

application performs write and read operations over a
256 MB file with a 4 MB chunk size. We have deployed
the application on Azure D2_v2 VM instances in the
West Europe region. The results are summarized in
Table III and represent the expected I/O performance
of the application when deployed over each evaluated
configuration. Table IV presents the cost concepts taken
into account in the simulation.

TABLE III: Synthetic bandwidth measurements performed over
the Azure IaaS platform.

Solution Read op. Write op.

Azure storage 60 MB/s 30 MB/s
Hercules remote 175 MB/s 180 MB/s
Hercules local 800 MB/s 1,000 MB/s

Figures 5 and 6 plot the breakdown of the total
execution time and the cost of execution of the previ-
ously introduced workflow deployed over configurations
ranging from 1 to 32 D2_v2 VM instances in the Azure
platform. Both figures represent the same information

TABLE IV: Azure platform Cost concepts considered in the
simulation.

Concept Cost

D2_v2 VM Instance 0.136 USD/h
PUT op. (per 10,000) 0.108 USD (GRS-HOT)
GET op. (per 10,000) 0.004 USD (GRS-HOT)
GB of data (per month) 0.0392 USD (GRS-HOT)

with a different level of detail.
Figure 5 clearly shows how the performance of the

application scales with the number of worker nodes
available, reducing the total execution time. However, it
should be noted how the total cost of execution remains
constant, because the VM instances are used during a
smaller amount of time. In fact, the efficiency of the
execution scales linearly, paying the same money and
receiving the results in less time.

Figure 6 increases the level of detail of Figure 5 to better
show the differences between configurations. The figure
avoids showing the time spent in CPU operations because
it is not affected by the use of Hercules, and zooms in the



associated execution cost. The execution time breakdown
now is focused only on I/O-related operations, and
clearly shows how Hercules greatly benefits the I/O
operations performed over temporary data, the only
operations affected by the deployment of the in-memory
infrastructure. It should be noted how in the case of
locality-aware cases, the time spent in data accesses over
temporary data is reduced to almost a negligible time.
Following the results presented in [5], the total execution
time is reduced by 8% (6% in locality-agnostic cases),
I/O-related time is reduced by 52% (42% in locality-
agnostic cases) and, focusing only in temporary data,
where Hercules is specifically applied, the time is reduced
by up to 95% (77% in locality-agnostic cases).

In Figure 5, the execution cost remains almost linear,
but Figure 6 better shows how the application of Hercules
reduces costs by around 9% (8% for locality-agnostic
cases) thanks to the reduction of total execution time and
the reduction of costs associated with I/O operations
performed over temporary data.

We can conclude that, on the basis of this evaluation,
our solution not only reduces execution time, but thanks
to this phenomenon plus to the reductions in I/O
operations performed over temporary data through the
Azure Storage service, our solution also provides cost
cuts for users. We would like to highlight how the time
spent in I/O operations over temporary data in the
application evaluated, represents a small fraction of the
total execution time, which implies that these results can
be further improved in other data-intensive applications
with a stronger use of temporary data.

Finally, we consider that the implications of reducing
the execution time and cost at the same time in Figures
5 and 6 can be improved. In order to better show the
combination of both improvements, Figure 7 depicts
a new metric labeled as efficiency/cost. As its name
suggests, this metric divides the efficiency of execution of
the application by the incurred execution costs. Efficiency
is calculated by dividing ideal execution time by the
real execution time. Ideal execution time is calculated
as the total CPU time needed by one CPU to execute
the application, excluding any overhead (load balance,
I/O-related time, etc.), while the real execution is the
total execution time calculated in the simulation. As the
number of worker nodes deployed increases, the total
execution time is reduced, and the efficiency shows both
the speedup and the overhead reductions, which better
express the impact of deploying more DMCF workers
and Hercules I/O nodes.

Figure 7, shows the combination of both efficiency
and execution cost. This metric shows an improvement
close to 20% using Hercules (16% in locality-agnostic
scenarios) in contrast with the default Azure Storage

1 worker
2

workers

4

workers

8

workers

16

workers

32

workers

Azure-only 0.04 0.09 0.17 0.35 0.69 1.38

Loc-agnostic 0.05 0.10 0.20 0.40 0.80 1.60

Data-aware 0.05 0.10 0.21 0.41 0.83 1.66

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

E
ff

ic
ie

n
cy

/c
o

st

Fig. 7: This figure shows a metric named efficiency/cost which
aims to show how the combination of time and cost reductions
benefit each configuration.

only approach, which implies a better utilization of the
resources available and better utilization of the budget
available.

VII. Related work

Due to the increasing popularity of data-intensive
workflows and the expected I/O bottlenecks, there is
extensive literature focusing on solving this challenge.

Parrot and Chirp. On the one hand, Parrot [14] attaches
existing applications to remote I/O solutions offering
a POSIX interface. On the other hand, Chirp [15] is
a user-level filesystem for collaboration in distributed
systems (clusters, clouds, grids, etc.). They are usually
deployed together as a distributed file system ready to
be used by existing programs coded with the POSIX API.
Hercules takes some hints from their design: support
of legacy applications through a highly used interface,
user-level deployment without root requirements, and
easy deployment running a simple command per server.
Hercules is designed to achieve high scalability and
performance taking advantage of as many compute
nodes as possible for I/O operations. Hercules uses
main memory for storage improving performance in data-
locality aware accesses.

MosaStore. MosaStore [16] proposed by Costa et al. [17]
extends the POSIX’s attributes in order to communicate
hints about the data access patterns between the workflow
engine and the file system. The main difference between
MosaStore and Hercules is its centralized metadata server
in contrast with our fully-distributed approach with easy
and flexible deployment.

AMFS. AMFS shell [18] is a simple scripting language
for running parallel scripting applications, taking advan-
tage of in-memory storage in large-scale systems. The
objective of this solution is similar to the DMCF and
Hercules combination, but DMCF additionally offers a
Graphical User Interface (GUI) for visually designing



workflows. AMFS and Hercules share the distributed
metadata approach.

HyCache+. HyCache+ [19] is a distributed storage mid-
dleware that allows I/O to effectively leverage the high bi-
section bandwidth of the high-speed interconnect of mas-
sively parallel high-end computing systems. HyCache+
caches hot information of the shared filesystem (e.g. meta-
data or intermediate or temporary results of workflows)
and asynchronously swaps cold data with the shared
file system. Some similarities between HyCache+ and
Hercules are their fully distributed metadata approach
and the high scalability capabilities. HyCache+ relies
on POSIX while Hercules offers the possibility to use a
POSIX-like interface in addition to put/get operations.
HyCache+ is focused on enhancing parallel file systems
in a generic way while Hercules has been designed to
work specifically with a many-task engine, exposing and
exploiting data locality in current applications. HyCache+
and Hercules share similar ideas but Hercules is ready
to be deployed to improve many-task I/O performance
focusing on easy and flexible deployment options.

VIII. Conclusions

This work evaluated the reduction of processing costs
of data analysis workflows in the Data Mining Cloud
Framework (DMCF) using the in-memory storage fea-
tures of Hercules, compared to the costs registered with
the original DMCF solution based on the use of standard
cloud storage services. The evaluation showed a 52%
improvement in I/O performance, which resulted in 8%
execution time reduction, and 9% of cloud services cost
reduction. The result demonstrates that the in-memory
approach of Hercules, coupled with the locality-aware
scheduler of DMCF, is able to exploit data locality in
data-intensive applications, which results in a valuable
reduction of execution time and costs.

Future work will focus on the evaluation of the ap-
proach by testing the system on workflows characterized
by different workloads (i.e., compute-intensive vs data-
intensive applications). Additionally, we will further
study the trade-off of allocating VMs with a greater
amount of RAM memory for the Hercules infrastructure,
and how this change in configuration affects performance
and cost. Finally, we will investigate the possibility of
dropping items from cache when they are no longer
available, in order to reduce the memory necessary for
storing temporary data over Hercules.

Acknowledgment

This work is partially supported by EU under the
COST Program Action IC1305: Network for Sustainable
Ultrascale Computing (NESUS).

References

[1] Domenico Talia, Paolo Trunfio, and Fabrizio Marozzo. Data
Analysis in the Cloud. Elsevier, October 2015. ISBN 978-0-12-802881-
0.

[2] Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas,
Domenico Talia, and Paolo Trunfio. Exploiting in-memory storage
for improving workflow executions in cloud platforms. The Journal
of Supercomputing, pages 1–20, 2016.

[3] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. A workflow
management system for scalable data mining on clouds. IEEE
Transactions On Services Computing (IEEE TSC), 2017.

[4] Francisco Rodrigo Duro, Javier Garcia Blas, and Jesus Carretero. A
hierarchical parallel storage system based on distributed memory
for large scale systems. In Proceedings of the 20th European MPI
Users’ Group Meeting, EuroMPI ’13, pages 139–140, New York, NY,
USA, 2013. ACM.

[5] Fabrizio Marozzo, Francisco Rodrigo Duro, Javier Garcia Blas,
Jesus Carretero, Domenico Talia, and Paolo Trunfio. A data-
aware scheduling strategy for dmcf workflows over hercules. In
In Proceedings of the Third International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2016), pages 37–44, Sofia,
Bulgaria, 2016.

[6] F. Marozzo, D. Talia, and P. Trunfio. A cloud framework for big
data analytics workflows on azure. Advances in Parallel Computing,
23:182–191, 2013.

[7] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. Js4cloud:
Script-based workflow programming for scalable data analysis
on cloud platforms. Concurrency and Computation: Practice and
Experience, 27(17):5214–5237, 2015.

[8] Brad Fitzpatrick. Distributed caching with memcached. Linux J.,
2004(124):5–, August 2004.

[9] Francisco Rodrigo Duro, Javier Garcia Blas, and Jesus Carretero.
I/O-Focused Cost Model for the Exploitation of Public Cloud Resources
in Data-Intensive Workflows, pages 244–257. Springer International
Publishing, Cham, 2016.

[10] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[11] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy.
Improvements to platt’s smo algorithm for svm classifier design.
Neural Computation, 13(3):637–649, 2001.

[12] George H. John and Pat Langley. Estimating continuous distribu-
tions in bayesian classifiers. In Eleventh Conference on Uncertainty
in Artificial Intelligence, pages 338–345, San Mateo, 1995. Morgan
Kaufmann.

[13] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang
Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu,
Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand,
and Dan Steinberg. Top 10 algorithms in data mining. Knowl. Inf.
Syst., 14(1):1–37, December 2007.

[14] Douglas Thain and Miron Livny. Parrot: Transparent user-level
middleware for data-intensive computing. Scalable Computing:
Practice and Experience, 6(3):9–18, 2005.

[15] Douglas Thain, Christopher Moretti, and Jeffrey Hemmes. Chirp: a
practical global filesystem for cluster and grid computing. Journal
of Grid Computing, 7(1):51–72, 2009.

[16] Samer Al-Kiswany, Abdullah Gharaibeh, and Matei Ripeanu. The
case for a versatile storage system. Operating Systems Review,
44(1):10–14, 2010.

[17] L.B. Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari,
G. Fedak, D. Katz, M. Wilde, M. Ripeanu, and S. Al-Kiswany. The
case for workflow-aware storage:an opportunity study. Journal of
Grid Computing, pages 1–19, 2014.

[18] Zhao Zhang, Daniel S. Katz, Timothy G. Armstrong, Justin M.
Wozniak, and Ian Foster. Parallelizing the execution of sequential
scripts. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13,
pages 31:1–31:12, New York, NY, USA, 2013. ACM.

[19] Dongfang Zhao, Kan Qiao, and Ioan Raicu. Hycache+: Towards
scalable high-performance caching middleware for parallel file
systems. In IEEE/ACM CCGrid, 2014.


	Introduction
	Data Mining Cloud Framework overview
	Hercules overview
	Integration between DMCF and Hercules
	Costs Model for In-Memory Storage on Clouds
	Evaluation of computation costs
	Related work
	Conclusions
	References

