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ABSTRACT
Pharmacogenomics studies the impact of genetic variation of
patients on drug responses and searches for correlations be-
tween gene expression or Single Nucleotide Polymorphisms
(SNPs) of patient’s genome and the toxicity or efficacy of a
drug. SNPs data, produced by microarray platforms, need
to be preprocessed and analyzed in order to find correla-
tion between the presence/absence of SNPs and the toxicity
or efficacy of a drug. Due to the large number of samples
and the high resolution of instruments, the data to be an-
alyzed can be very huge, requiring high performance com-
puting. The paper presents the design and experimentation
of Cloud4SNP, a novel Cloud-based bioinformatics tool for
the parallel preprocessing and statistical analysis of pharma-
cogenomics SNP microarray data. Experimental evaluation
shows good speed-up and scalability. Moreover, the avail-
ability on the Cloud platform allows to face in an elastic way
the requirements of small as well as very large pharmacoge-
nomics studies.

Keywords
Pharmacogenomics, Single Nucleotide Polymorphisms, Sta-
tistical Analysis, Cloud Computing

1. INTRODUCTION
Among the main omics disciplines, genomics studies the ac-
tivity of genes, proteomics studies the activity of proteins,
and interactomics concerns the study of protein interactions
inside a cell [3]. In a typical case-control study, microarray
technology is able to measure the expression level of genes

present in biological case-control samples, that results in a
matrix of real numbers where the (i, j) value represents the
expression of gene i on sample j. More recently, genotyp-
ing microarrays allow to detect the genetic variant among
samples, i.e. detect nucleotide variations with respect to a
reference population1. A nucleotide variation or Single Nu-
cleotide Polymorphism (SNP) is defined as a stable substi-
tution of a single base of DNA2 occurring with a frequency
of more than 1% in at least one population. For instance,
in the short sequences ATGT and ACGT a base change oc-
curs at position 2. Each individual has a unique sequence
of DNA that determines his/her characteristics and differ-
ences can be measured in terms of substitutions of bases in
the same position. In a case-control genotyping study, mi-
croarray technology produces a matrix of SNPs where the
(i, j) vaue represents the SNP found on the DNA sequence
or gene i on sample j.

Pharmacogenomics is an important branch of genomics that
studies the impact of individual’s genetic variations on drug
response and is at the basis of the so-called “personalized
medicine”. It correlates gene expression or SNPs with the
toxicity or efficacy of a drug, with the aim to improve drug
therapy with respect to the patients’ genotype, e.g. allowing
to choose drugs matching the genetic profile of each patient.
[17]. Pharmacogenomics experiments involve the gene se-
quencing and the individuation of SNPs by using microar-
ray technology and computational analysis. The DMET
(drug metabolism enzymes and transporters) Plus Premier
Pack is an Affymetrix3 microarray platform for gene pro-
filing designed specifically to detect in human samples the
presence/absence of SNPs on 225 genes that are related
with drug absorption, distribution, metabolism and excre-

1Genotyping or genotypization determines differences in the
genetic profile of an individual by comparing the individual’s
DNA sequence with another individual’s sequence or with a
reference sequence.
2DNA is made up of four subunits, or bases, called adenine
(A), cytosine (C), guanine (G) and thymine (T).
3www.affymetrix.com



tion (ADME) [2].

SNPs data produced by the DMET platform must be pre-
processed and analyzed in order to find correlation between
the presence/absence of SNPs and the condition of samples
(e.g. type of drug treatment or response to a drug). Main
steps include: (i) preprocessing of binary microarray data
(e.g. a .CEL Affymetrix raw data file for each sample); (ii)
aggregation of data coming from all samples of a dataset
to form a single table of alleles4; (iii) statistical analysis
of alleles. For instance, the apt-dmet-genotype command
line software of the Affymetrix Power Tools suite, or the
DMET Console platform [2], generally allow the sequential
preprocessing of binary data, but do not allow to test the
association of the presence of SNPs with the response to
drugs. Consequently, researchers have to export and manu-
ally process SNPs tables produced by the DMET Console.
Main issues in analyzing DMET SNPs data are: (i) the ef-
ficient management of huge data due to the high number of
samples and genes investigated in pharmacogenomics stud-
ies; (ii) the issues in analyzing SNP symbolic data that need
to undergo different preprocessing compared to gene expres-
sion numeric data; (iii) the need to provide a result that is
biologically interpretable.

Recently we introduced DMET-Analyzer [10], a sequential
software tool5 that supports the statistical analysis of phar-
macogenomics data in an automatic way, by providing the
list of SNPs that discriminate among two classes of sam-
ples according to the Fisher test. This tool has been vali-
dated in some pharmacogenomics studies [7, 8], but it is slow
when huge datasets have to be analyzed. To solve this limit
we designed Cloud4SNP, a novel parallel version of DMET-
Analyzer that carries out data analysis on a Cloud platform.
This paper presents Cloud4SNP and presents some experi-
ments run on it.

Compared to the sequential version, Cloud4SNP is able to
perform statistical tests in parallel, by partitioning the in-
put data set and using the virtual servers made available
by the Cloud, thus supporting data parallelism. Moreover,
different statistical corrections such as Bonferroni, False Dis-
covery Rate, or none correction, can be applied in parallel
on the Cloud, allowing the user to choice among different
statistical models, implementing a sort of parameter sweep
computation.

The rest of the paper is structured as follows. Section 2
recalls the main software platforms for analyzing SNP geno-
typing data for pharmacogenomics. Section 3 presents the
main functionalities of Cloud4SNP. Section 4 describes the
main steps needed to implement Cloud4SNP on the Data
Mining Cloud Framework [15]. Section 5 presents the per-
formance evaluation of Cloud4SNP that reports near linear
speed-up and scale-up. Finally, Section 6 concludes the pa-
per and outlines future work.

2. RELATED WORK
4In the rest of the paper the terms SNPs and alleles are used
interchangeably.
5DMET-Analyzer is available at:
http://sourceforge.net/projects/dmetanalyzer/files.

Microarray technology comprises two main categories of mi-
croarray chips: (i) expression microarrays that aim to inves-
tigate the activity of genes in different conditions, and (ii)
the so called genomic microarrays (such as DMET arrays)
that aim to study the variations on sequence of genomes.

The typical dimension of a microarray dataset is growing for
two main factors: (i) the increasing of dimension of files en-
coding a single chip, and (ii) the growing number of samples
and then arrays that are usually produced in a single experi-
ment. Let us consider, for instance, two common Affymetrix
microarray files (also known as CEL files): the older Hu-
man 133 Chip CEL file that has a dimension of 5MB and
contains 20, 000 different genes and the newer Human Gene
1.0 st that has a typical dimension of 10 MB and contains
33, 000 genes. On the other hand, a single array of the Exon
family (e.g. Human Exon or Mouse Exon) can have up to
100 MB of size. Finally, a recent trend in genomics is to
perform microarray experiment considering a large number
of patients.

In this scenario arises the need for the introduction of tools
and technologies to process such huge volume of data in an
efficient way. A way for developing efficient preprocessing
of microarray data can be implemented by the paralleliza-
tion of existing algorithms on multicore architectures. In
such a scenario the whole computation is distributed onto
different processors, that perform computations on smaller
sets of data and results are finally integrated. This requires
the design of new algorithms for summarisation and nor-
malisation that take advantage of the underlying parallel
architectures. Nevertheless a first step in this direction can
be represented by the replication on different nodes of exist-
ing preprocessing techniques that run on smaller datasets.
Despite its relevance, the parallel processing of microarray
data is a relatively new field. In fact, several projects are
currently in their initial stage.

One of the main research works is affyPara [18] that is a Bio-
conductor6 package for parallel preprocessing of Affymetrix
microarray data. It is freely available from the Bioconduc-
tor project. Similarly, the micro-CS project [11] presents a
framework for the analysis of microarray data based on a
distributed architecture made of different web-services in-
ternally parallel for the annotation and preprocessing of
data. Compared to affyPara, such an approach presents
three main differences: (i) the possibility to realize more
summarisation schemes such as Plier, (ii) the easily exten-
sion to newer SNP arrays, (iii) it does not require the instal-
lation of the Bioconductor platform.

EMAAS (Extensible MicroArray Analysis System) [1] is
a web-application based on the Rich Internet Application
(RIA) paradigm providing to the user management and
analysis of Affymetrix arrays. It is based on a high perfor-
mance computing architecture that uses Grid technology to
provide computing resource for the analysis of large datasets.
Among its main characteristics, EMAAS (i) is able to pro-
cess only a subset of Affymetrix Expression arrays (3’ and
Exon Arrays); (ii) supports collaboration among users; and
(iii) requires the upload of data onto the web server, so it

6http://www.bioconductor.org/



may require large upload time when Internet speed is not
sufficient or it may cause legal problems for SNP data in
some countries.

Since the majority of biology laboratories or clinical centres
using microarray are not equipped with parallel computers,
the parallelization of the microarray data analysis pipeline
is not enough. The use of Cloud computing systems can
offer also to small research groups the possibility to exploit
parallel bioinformatics tools.

The use of Cloud systems as parallel and distributed com-
puting platforms, and the support to visual workflows for
high-level programming, are at the basis of the Data Mining
Cloud Framework[15][16], the data analysis platform used
to implement our Cloud4SNP application. There are other
workflow-based systems for scientific applications running
on clusters or Grids, including Kepler [13], Pegasus [6], Tav-
erna [12] and Triana [5].

Kepler [13], developed by a team of the University of Cal-
ifornia, provides a graphical user interface and a run-time
engine that can execute workflows either from within the
graphical interface or from a command line. It works based
on the concept of directors, which dictate the models of exe-
cution used within a workflow. Kepler is a java-based appli-
cation that is maintained for the Windows, OSX, and Linux
operating systems.

The Pegasus [6] project, developed at the University of
Southern California, encompasses a set of technologies to ex-
ecute workflow-based applications in a number of different
environments, i.e., desktops, campus clusters and grids, and
clouds. The worfklow management system of Pegasus can
manage the execution of complex workflows on distributed
resources and it is provided with a sophisticated error recov-
ery system.

Taverna [12] is an open source tool for designing and ex-
ecuting workflows, developed at the University of Manch-
ester. Its own workflow definition language is characterized
by an implicit iteration mechanism (single node implicit par-
allelism). The Taverna team has primarily focused on sup-
porting the Life Sciences community (biology, chemistry and
medical imaging) although does not provide any analytical
or data services itself.

Triana [5] is a problem solving environment, developed at
the Cardiff University, which combines a visual interface
with data analysis tools. It can connect heterogeneous tools
(e.g. Web services, Java units, JXTA services) on one work-
flow. Triana uses its own custom workflow language, al-
though it can use other external workflow language repre-
sentations, which are available through pluggable language
readers and writers.

Differently from other frameworks that are oriented to
general-purpose scientific workflows, the Data Mining Cloud
Framework focuses on data mining applications by employ-
ing a workflow language specific for this domain. For in-
stance, it provides some data-mining-specific workflow for-
malisms (Data and Tool arrays) that significantly ease the
design of parallel and distributed knowledge discovery ap-

plications.

In addition, DMCF has been designed as a Software-as-a-
Service (SaaS). This means that no installation is required
on the user’s machine: the DMCF visual user interface works
in any modern Web browser, and so it can be run from most
devices, including desktop PCs, laptops, and tablets. This is
a key feature for users and who need ubiquitous and seamless
access to high-performance data mining services, without
having to cope with installation and system management
issues.

Recently, two cloud-based platforms for bioinformatics and
biomedical applications have been deployed: Galaxy and
Globus Genomics.

Galaxy [9] makes available to the user a set of functions for
analyzing biomedical data with a special focus on the anal-
ysis of genomics sequences. Although the effectiveness of
Galaxy, a main limitation on the use of this public server
is the fact that data is not encrypted neither during data
transfer nor during data storage, while DMET SNP data
may be protected by laws in many country for privacy rea-
sons. Moreover, the Data Mining Cloud Framework offers
more mining algorithms with respect to Galaxy.

Globus Genomics7 is based on Amazon Elastic Computing
and Galaxy workflows, thus it presents the same limitations
mentioned for Galaxy.

3. CLOUD4SNP FUNCTIONALITIES
The goal of Cloud4SNP is to allow to statistically test the
significance of the presence of SNPs in two classes of samples
using the well known Fisher test. The Fisher test allows to
test if two distributions are significantly different, i.e. the
eventual difference is not due by chance.

The main steps that Cloud4SNP supports are the following:

1. Loading of the input dataset and sample class assign-
ment. The input dataset text file (SNPs Table) is a
table containing for each sample and for each probe
the detected SNPs, as produced by the DMET Con-
sole. The SNPs Table is a np × ns matrix of alleles,
where np is the number of probes (np = 1936 for cur-
rent DMET chips) and ns is the number of samples.
Table 1 depicts a portion of an example dataset con-
taining the SNPs detected in 8 samples (S1, . . . , S8)
on 2 probes. Samples are assigned to class A or B by
mouse selection or by providing a list of samples for
class B. In the example, samples (S1, . . . , S4) belong
to class A and samples (S5, . . . , S8) belong to class B.

2. Execution of statistical tests (Fisher tests). The Fisher
test is applied to couples of SNPs, e.g. SNPh vs
SNPk, occurring on a probe Probei on classes A and
B. The algorithm uses the occurrences of the two alle-
les SNPh and SNPk on each class A and B that are
reported in a 2 × 2 contingency table used to com-
pute the Fisher test. Thus, to perform the Fisher
test, Cloud4SNP needs to count the occurrences of the

7http://www.globus.org/genomics/solution



SNPs for each probe and class. Tables 2 and 3 con-
tain the occurrences of SNPs in class A and B respec-
tively for dataset of Table 1. For simplicity those tables
do not show the occurrences of alleles not present in
any of the two classes: such occurrences are of course
zero. As an example, Table 4, is the contingency ma-
trix to perform the Fisher test on SNPs A/A vs T/T
on probe Probe1, while Table 5 is the contingency ma-
trix to perform the Fisher test on SNPs A/A vs C/T
on probe Probe2. Such tests present respectively p-
value = 0.0286 and p-value = 0.3333. The Fisher
Filter threshold (Ft) is a Cloud4SNP parameter used
to accept or not the performed Fisher tests, i.e. Fisher
tests results with p-value > Ft are discarded and not
visualized to the user.

3. Statistical correction of p-values. Fisher tests results
are ordered by p-values and SNPs are annotated with
URLs to dbSNP and PharmaGKB. If none statistical
correction is selected the results are displayed to the
user, otherwise p-values are first corrected by applying
the proper statistical correction (Bonferroni or FDR)
and then displayed to the user.

Table 1: Example SNPs dataset.
SNPs Table

Probes S1 S2 S3 S4 S5 S6 S7 S8

Probe1 a/a a/a a/a c/t t/t t/t t/t t/t
Probe2 a/a a/c a/a t/t a/c a/c c/t t/t

Table 2: Class A SNPs Table.
Class A
Probes S1 S2 S3 S4

Probe1 a/a a/a a/a c/t
Probe2 a/a a/c a/a t/t

Table 3: Class B SNPs Table.
Class B
Probes S5 S6 S7 S8

Probe1 t/t t/t t/t t/t
Probe2 a/c a/c c/t t/t

Table 4: Probe1 A/A and T/T SNPs Occurrences for
Fisher Test.

Class A Class B
a/a 3 0
t/t 0 4

Table 5: Probe2 A/A and C/T SNPs Occurrences for
Fisher Test.

Class A Class B
a/a 2 0
c/t 0 1

Cloud4SNP employs an optimization technique to avoid the
execution of useless Fisher tests, through the filtering of
probes with similar SNPs distributions. In fact, discard-
ing a probe means that the Fisher tests involving the alleles

detected on that probe are not computed, thus reducing the
computational load of the system. The Fisher Significance
threshold (Fs) parameter is used to find probes whose SNPs
distributions among the two classes A and B are very close.
A probe i is discarded if for each allele j, ‖FDT [i, j]‖ ≤ Fs.
FDT is the Frequency Difference Table where the (i, j) el-
ement contains the difference among the frequencies of the
j − th allele detected on the i − th probe, respectively in
class B and in class A. Figure ??, Table f), shows a portion
of the Frequency Difference Table for the dataset of Table
a).

Figure 1 summarizes the overall workflow of activities man-
aged by Cloud4SNP:

- Data Loading and Results Visualization. The Graph-
ical User Interface manages the interaction with the
user and allows the user to provide the input data file
name, the assignment of samples to classes (A or B),
the Fisher Significance threshold (Fs), the Fisher Fil-
ter threshold (Ft), and the type of statistical correction
parameters. Before executing Fisher tests, the user
sets the Fs and Ft parameters and selects one of the
available multiple test correction, i.e. none, Bonferroni
or False Discovery rate (FDR) correction. Multiple
tests corrections adjust p-values derived from multi-
ple statistical tests to correct for occurrence of false
positives. Details on test corrections may be found in
[10]. Then the Graphical User Interface invokes the
Cloud4SNP Statistical Tests and the Cloud4SNP Sta-
tistical Corrections modules (see Figure 1) to perform
statistical tests, and finally it visualizes results.

- Execution of Statistical Tests. The Cloud4SNP Statis-
tical Tests module preprocesses input data, eventually
filters probes having the same or similar distributions
in class A and B by using the Fs parameter, computes
statistical tests (Fisher tests), discards tests not statis-
tically significant according to Ft (i.e. the tests whose
p-value is greater than Ft), and annotates results with
URLs to dbSNP8 and to PharmaGKB9.

- Execution of Statistical Corrections. The Cloud4SNP
Statistical Corrections module performs one of the
available multiple tests corrections (none, Bonferroni
or False Discovery Rate) that adjust p-values derived
from multiple statistical tests to correct for occurrence
of false positives. Annotated and eventually corrected
results are finally displayed to the user through the
Graphical User Interface. In summary, Cloud4SNP
Statistical Tests and Cloud4SNP Statistical Correc-
tions are the core modules of Cloud4SNP and provide
the analysis of SNP data.

4. CLOUD4SNP IMPLEMENTATION
The implementation of Cloud4SNP starting from DMET-
Analyzer has been done using the Data Mining Cloud
Framework [15][16], a software environment that allow users
to design and execute data mining and knowledge discovery

8http://www.ncbi.nlm.nih.gov/projects/SNP
9http://www.pharmgkb.org



Figure 2: Cloud4SNP workflow in the Data Mining Cloud Framework.

Figure 1: Workflow of Cloud4SNP activities.

workflows on the Cloud. In the following we outline the Data
Mining Cloud Framework and explain how Cloud4SNP has
been implemented on it.

4.1 Data Mining Cloud Framework
Following the approach proposed in [19] and [4], the Data
Mining Cloud Framework models knowledge discovery work-
flows as graphs whose nodes represent resources (datasets,
data mining tools, data mining models) and whose edges
represent dependencies between resources. The framework
includes a Website to compose workflows and to submit their
execution to the Cloud, following a Software-as-a-Service ap-
proach.

Figure 3 shows the architecture of the Data Mining Cloud
Framework, which includes the following components:

- A set of binary and text data containers used to store
data to be mined (Input datasets) and the results of
data mining tasks (Data mining models).

- A Task Queue that contains the workflow tasks to be
executed.

- A Task Table and a Tool Table that keep information
about current tasks and available tools.

- A pool of k Workers, where k is the number of virtual
servers available, in charge of executing the workflow
tasks.
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Figure 3: Architecture of the Data Mining Cloud
Framework.

- A Website that allows users to submit, monitor the ex-
ecution, and access the results of knowledge discovery
workflows.

The following steps are performed to develop and execute
a knowledge discovery application through the Data Mining
Cloud Framework (see Figure 3)[14]:

1. A user accesses the Website and develops her/his ap-
plication as a workflow through an HTML-5 interface.
A service catalog provides the user with the available
data and tools that can be used for application design.

2. After application submission, a set of tasks that com-
pose the workflow are created and inserted into the
Task Queue.

3. Each idle Worker picks a task from the Task Queue,
and starts its execution on a virtual server.

4. Each Worker gets the input dataset from its original
location.



5. After task completion, each Worker puts the result on
a data storage element.

6. The Website notifies the user as soon as her/his task(s)
have completed, and allows her/him to access the re-
sults.

The Data Mining Cloud Framework has been designed to
be implemented on different Cloud systems. The current
implementation is based on Windows Azure 10.

4.2 Cloud4SNP Tools and Workflow
Since the sequential DMET-Analyzer software was designed
as a stand-alone application, we had to extract its main mod-
ules and export them as individual tools to the Data Mining
Cloud Framework. In particular, starting from the DMET-
Analyzer Statistical Tests module we created a DMETAna-
lyzer tool, while the DMET-Analyzer Statistical Corrections
module was used to implement a Corrector tool. For what
concerns the DMET-Analyzer GUI module, it is not used for
Cloud4SNP implementation as the user interface is provided
by the Data Mining Cloud Framework Website.

In addition to the tools that have been derived from the se-
quential DMET-Analyzer software, we introduced three new
tools in the Data Mining Cloud Framework to support par-
allel processing of SNP input data: (i) a Partitioner tool,
which creates a set of partitions from a single SNP dataset;
(ii) a ModelMerger tool, which merges into a single model
the partial models generated by the DMETAnalyzer, either
corrected or not by a Corrector ; (iii) a ModelsMerger tool,
which takes in input three single models (with FDR, Bon-
ferroni or none correction) and produces a single HTML file.

Using the Data Mining Cloud Framework interface, the tools
described above have been composed into the Cloud4SNP
workflow shown in Figure 2.

The workflow performs the following steps. The initial
dataset is partitioned into n parts using the Partitioner tool,
where n is equal to the number of available Workers (16 in
this case). Each part DatasetPart[i], i = 1, ..., n is ana-
lyzed by an instance of the DMETAnalyzer tool (DMETAn-
alyzer[i]) producing a partial result PartialModel[i], which
contains the p-values of each probe. The partial models
PartialModel[n] are corrected using two different instances
of the Corrector tool: Corrector 0 that uses an FDR cor-
rection, and Corrector 1 that uses a Bonferroni correction.
Then, three instances of the ModelMerger tool are used
to create three models, ModelNC, ModelFDR and Mod-
elBONF, which are respectively the model with no cor-
rections (composition of PartialModel[n]), the model with
FDR correction (composition of PartialModelFDR[n]), and
the model with Bonferroni correction (composition of Par-
tialModelBONF[n]). Finally, the ModelsMerger tool com-
bines ModelNC, ModelFDR and ModelBONF to produce a
single HTLM file with all the output results. Figure 4 shows
the Cloud4SNP workflow at the end of the execution, with
the visualization of the final result.

10http://www.microsoft.com/windowsazure

5. PERFORMANCE EVALUATION
This section presents an experimental evaluation of the
Cloud4SNP application executed on the Windows Azure
platform. The Cloud setting included 1 virtual server to
run the Data Mining Cloud Framework Website, and up
to 16 virtual servers for the Workers. Each virtual server
was equipped with a single-core 1.66 GHz CPU, 1.75 GB
of memory, and 225 GB of disk space. Each test has been
executed by varying both the size of the input dataset and
the number of virtual servers used to run the application.

As performance indicators, we used the turnaround time and
the achieved speedup. To evaluate the scalability with in-
creasing workloads, we analyzed three SNP datasets with
size of 12.5 MB, 25 MB and 50 MB. These datasets have a
constant number of samples (28), with an increasing num-
ber of probes: around 10,000 probes for the dataset of 12.5
MB, 20,000 for the 25 MB dataset, and 40,000 for the 50
MB dataset.

Figure 5 shows the turnaround times of the application for
the three datasets using 1 to 16 virtual servers. For the 12.5
MB dataset the turnaround time decreases from around 35
minutes obtained with a single server, to about 2.6 minutes
using 16 servers. For the 25 MB dataset the turnaround
time passes from 1.2 hours to 5 minutes. With the 50 MB
dataset, the turnaround time ranges from about 2.5 hours
to about 10 minutes.
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Figure 5: Turnaround times of the Cloud4SNP ap-
plication.

The corresponding execution speedup values are shown in
Figure 6. The speedup is almost linear with all three
datasets. In particular, for the 12.5 MB dataset, the speedup
passes from 1.9 using 2 servers to 13.7 using 16 servers. For
the 25 MB dataset, the speedup ranges from 2.0 to 14.9.
Finally, with the 50 MB dataset, the speedup ranged from
2.0 to 15.2.

To better highlight the scalability that can be achieved us-
ing the Cloud4SNP approach, Figure 7 measures the sys-
tem scale-up by showing the turnaround times obtained by



Figure 4: Cloud4SNP workflow at the end of the execution, with visualization of the final result.
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Figure 6: Speedup values of the Cloud4SNP appli-
cation.

Cloud4SNP when the size of the input dataset increases pro-
portionally to the number of virtual servers used (i.e., 6.25
MB on 1 server, 12.5 MB on 2 servers, and so on). The
results show that the turnaround time is almost constant,
hovering around 1,100 seconds in all cases. This demon-
strates that the amount of data that can be analyzed in
a given amount of time increases almost linearly with the
number of computing resources available.

6. CONCLUSION
This paper discussed the use of a Cloud-based comput-
ing infrastructure for the analysis of SNP microarray data.
We presented the design, implementation, and evaluation
of Cloud4SNP, a novel Cloud-based bioinformatics tool for
the parallel preprocessing and statistical analysis of phar-
macogenomics SNP microarray data. Experimental evalu-
ation shows efficient execution times and very good scala-
bility. Moreover, the system implementation shows how the
exploitation of a Cloud platform allows researchers and pro-
fessionals to face in an elastic way the requirements of small
as well as very large pharmacogenomics studies.
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Figure 7: Turnaround times to evaluate the scale-up
of Cloud4SNP application.
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