
A Cloud Framework for Big Data 
Analytics Workflows on Azure 

Fabrizio MAROZZOa, Domenico TALIA 
a,b and Paolo TRUNFIOa 

a
  DIMES, University of Calabria, Rende (CS), Italy 

b
  ICAR-CNR, Rende (CS), Italy 

Abstract. Since digital data repositories are more and more massive and 
distributed, we need smart data analysis techniques and scalable architectures to 
extract useful information from them in reduced time. Cloud computing 
infrastructures offer an effective support for addressing both the computational and 
data storage needs of big data mining applications. In fact, complex data mining 
tasks involve data- and compute-intensive algorithms that require large and 
efficient storage facilities together with high performance processors to get results 
in acceptable times. In this chapter we present a Data Mining Cloud Framework 
designed for developing and executing distributed data analytics applications as 
workflows of services. In this environment we use data sets, analysis tools, data 
mining algorithms and knowledge models that are implemented as single services 
that can be combined through a visual programming interface in distributed 
workflows to be executed on Clouds. The first implementation of the Data Mining 
Cloud Framework on Azure is presented and the main features of the graphical 
programming interface are described. 

Keywords. Distributed data mining, Cloud computing, Service-oriented 
computing. 

 

Introduction 

Digital data repositories are more and more massive, complex, and ubiquitous. 
Therefore, we need smart data analysis techniques and scalable architectures to extract 
useful information from them efficiently. Research activities in this area must push 
Clouds moving from a computation and data management platform to a pervasive, 
scalable data analytics infrastructure. This trend needs new models and technologies 
for enabling Cloud computing to support the implementation of smart data analysis 
techniques that should become scalable and dynamic in resource allocation on Clouds. 

Cloud computing infrastructures offer an effective support for addressing both the 
computational and data storage needs of big data mining applications. In fact, complex 
data mining tasks involve data- and compute-intensive algorithms that require large and 
efficient storage facilities together with high performance processors to get results in 
acceptable times [1, 2]. However, efforts must be carried out to implement Cloud-based 
big data analytics services, tools and applications. 



In this chapter we present a Data Mining Cloud Framework designed for 
developing and executing distributed data analytics applications as workflows of 
services. In this environment we use data sets, analysis tools, data mining algorithms 
and knowledge models implemented as single services. These services can be 
combined through a visual programming interface to program distributed workflows to 
be executed on Clouds. The first implementation of the Data Mining Cloud Framework 
on Azure is presented and the main features of the programming interface are described. 

The chapter is organized as follows. Next section introduces big data analytics 
concepts and sketches implementation issues on Clouds. Section 3 presents the 
architecture of the Data Mining Cloud Framework and Section 4 describes its 
programming interface through a sample application. Section 5 concludes the chapter. 

 

1. Big Data Analytics 

The term big data today is used to specify a massive collection of digital data that is so 
large and complex to make difficult its processing by using traditional data 
management tools and techniques [1]. Although there is hype on this subject and big 
data is an over-used term, the topic is very important in computer science and in daily 
human activities since the amount of data today available is very huge and it generates 
the need to be effectively used in science, business, and social activities. Big data 
actually does not specifically refers to the large size of data, but it also includes the 
degree of complexity and variety of data, the value that can be obtained from smart 
analysis techniques, and the velocity of data collection and processing. Big data 
nowadays come from mobile devices, social networks, bioinformatics repositories, and 
financial database, from the Web and from the sky. We need to cope with data deluge 
by using innovative data analytics techniques to transform big data in big value. 

In science and business, people are analyzing data to extract information and 
knowledge useful for making new discoveries or for improving the business by smart 
decision. This can be done by exploiting big data analytics techniques and tools. Big 
data analytics is the advanced use of mining techniques on big data sets [3]. Putting big 
data and knowledge discovery techniques together with scalable computing systems 
will produce new insights in shorter time. This combination will provide a significant 
added value in many application domains. In fact, as the size, complexity and number 
of the digital data sources generated in science and business increase, transforming this 
data into information and knowledge requires addressing several challenges. Cloud 
computing can provide the data storage and access facilities together with high-
performance computing power needed to support the exploration and extraction of 
knowledge from data sets. 

Unfortunately, very few Cloud-based analytic platforms are available today, even 
if several users could have benefit from them. However, we expect that data analytics 
Clouds will become common platforms for big data analytics within a few years. Some 
solutions are based on Hadoop, others are proprietary solutions as those provided by 
IBM, EMC and Kognitio. As Clouds will become common scalable platforms for big 
data analytics, programming tools, suites and data mining strategies will be ported on 
such platforms for developing big data discovery solutions. 

Both the PaaS (Platform as a Service) and Saas (Software as a Service) models can 
be adopted for implementing big data analytics solution on clouds. PaaS will be useful 



to support data analytics programming suites and environments where data mining 
developers can design scalable data analytics services and applications. On the other 
hand, the SaaS model will offer complete big data analytics applications to end users 
that can execute analysis on large and/or complex data sets by exploiting scalability of 
Clouds in data storage and processing power. 

The Cloud framework described in this chapter can be used as a high-level PaaS 
data analytics programming environment and also to provide a set of SaaS suites for 
big data analytics that, built on the PaaS layer, can be used by end users whose goal is 
to make complex analysis without worrying about the Cloud platform details and the 
way in which the analytics suite has been programmed. 

2. Data Mining Cloud Framework 

The software environment that we developed for supporting data analytics on Clouds is 
called Data Mining Cloud Framework. This framework enables the execution of 
distributed data analysis applications on top of Cloud computing and storage services 
by providing a visual programming interface for knowledge discovery workflows 
design and execution. The framework has been implemented using Windows Azure 
and has been used to run distributed data mining applications on a Microsoft Cloud 
data center. 

Figure 1 shows the architecture of the Data Mining Cloud Framework as it is 
implemented on Windows Azure. The framework includes the following components: 

• a set of binary and text data containers (Azure blobs) used to store data to be 
mined (input datasets) and the results of data mining tasks (data mining 
models); 

• a task queue that contains the data mining tasks to be executed; 

• a task status table that keeps information about the status of all tasks; 

• a pool of k workers, where k is the number of virtual servers available, in 
charge of executing the data mining tasks submitted by the users; 

• a website that allows users to submit, monitor the execution, and access the 
results of data mining tasks. 

 
The following steps are performed to develop and execute a knowledge discovery 

application through the system (see Figure 1): 
1. A user accesses the Website and develops her/his application as a workflow of 

services through a Web-based interface. A service catalog provides the user 
with the available data and software services that can be used to design the 
application as a workflow. After composing the application, she/he can submit 
the workflow for execution on Azure. 

2. After the application submission, a set of tasks that compose the workflow are 
created and inserted into the Task Queue. 

3. Each idle Worker picks a task from the Task Queue, and starts its execution on 
a virtual server. 

4. Each Worker gets the input dataset from the location specified by the 
application. To this end, a file transfer is performed from the container where 



the dataset is located, to the local storage of the virtual server the Worker is 
running on. 

5. After task completion, each Worker puts the result on a data storage element. 
6. The Website notifies the user as soon as her/his task(s) have completed, and 

allows her/him to access the results. 
 

The set of tasks created on the second step depends on the type of application 
submitted by the user. In the case of a simple application expressed by a single task, 
just one data mining task is inserted into the Task Queue. In the general case, the user 
submits a multi-task workflow-based application. In this case the set of tasks created 
depends on how many data mining tools are invoked within the workflow. The Task 
Status Table is dynamically updated whenever the status of a task changes. The 
Website periodically reads and shows the content of such table, thus allowing users to 
monitor the status of their tasks. 

Input data are temporarily staged on a server for local processing. To reduce the 
impact of data transfer on the overall execution time, it is important that input data are 
physically close to the virtual servers where the workers run on. For example, in the 
Azure implementation of our framework, this has been carried out by exploiting the 
Azure's Affinity Group feature, which allows storage and servers to be located near to 
each other in the same data center for optimal performance. 

 
Figure 1. Architecture of the Data Mining Cloud Framework. 

 

3. Visual Programming Interface 

The user interface of the framework is composed of two main parts: one pane for 



composing and running both single-task and parameter-sweeping applications, 
described in a previous work [4], and another pane for programming and execution of 
workflow-based knowledge discovery applications. Since in this paper we focus on the 
workflow programming features of the framework, we discuss the second pane. In 
particular, by using a data mining application composed of several sequential and 
parallel steps, in this section we present the main features of the visual programming 
interface of the Cloud-based framework. 

As mentioned before, we implemented the visual programming interface and its 
services to support the composition and execution of workflow-based knowledge 
discovery applications on Cloud platforms. Workflows allow the implementation of 
research and scientific processes by providing a paradigm that can encompass all the 
steps of discovery based on the execution of complex algorithms and the access and 
analysis of scientific data. In data-driven discovery processes, knowledge discovery 
workflows can produce results that can confirm real experiments or provide insights 
that cannot be achieved in laboratories. In particular, when data sources are massive 
and/or decentralized, service-oriented workflow allow programmers to express analysis 
programs in a direct and user-friendly way. 

Following the approach proposed in [2] and [5], we model a knowledge discovery 
workflow as a graph whose nodes represent resources (datasets, data mining tools, data 
mining models), implemented as Cloud services, and whose edges represent 
dependencies between resources. For supporting workflow composition, we 
implemented the Website by using native HTML 5 features. It allows users to design 
service-oriented knowledge discovery workflows with a simple drag-and-drop 
approach.  

3.1. A distributed data mining application 

Here we use a concurrent data mining application composed of several sequential and 
parallel steps as an example for presenting the main features of the visual programming 
interface of the Data Mining Cloud Framework. 

The example application analyzes a dataset by using n instances of the J48 
classification algorithm (an Java implementation of C4.5 [3] provided by the Weka 
toolkit [6]), which work on n partitions of the training set and generate n knowledge 
models. By using the n generated models and the test set, n classifiers produce in 
parallel n classified datasets (n classifications). In the final step of the workflow, a 
voter generates the final dataset by assigning a class to each data item, choosing the 
class predicted by the majority of the models. 

Figure 2 shows a snapshot of the visual interface where the first step of the 
workflow is designed. In particular, we can see the splitting of the original dataset in 
training and test set operated by a partitioning tool. A set of configuration parameters is 
associated with each workflow node. The parameters of a given node can be specified 
through a pop-up panel that appears when that node is selected. For example, the right 
part of Figure 2 shows the configuration panel for the partitioning tool. In this case, 
only one parameter can be specified, namely the percentage of the input dataset that 
must be used to produce the training set (70% in the given example). 

 



 
Figure 2. First step: The input dataset is partitioned into training and test set. 

 

As a second step, the training set is partitioned into 10 parts by using another 
partitioning tool (see Figure 3). The 10 training sets resulting from the partitioning are 
represented in the workflow as a single data array node, labeled as TrainSetPart[10]. 
A data array is an ordered collection of input/output data sources, e.g., a collection of 
dataset to be analyzed or a collection of models that a classifier can use to classify an 
unlabeled dataset. Using this simple but powerful array notation, the i-th element of the 
data partition is identified by the dataset name and the index i in square brackets (e.g., 
Dpartion[i]) and a similar notation is visualized in the graphical interface, as can be 
seen in the rightmost workflow node in Figure 3. 
 

 
Figure 3. Second step: The train set is partitioned into 10 parts. 

 
Figure 4 shows the third step of the workflow, in which the 10 training sets are 
analyzed in parallel by 10 instances of the J48 classification algorithm, to produce the 
same number of classification models. As in the previous example, the array notation is 
used here also to express an array of similar software tool instances that will be run in 
parallel on a set of Cloud virtual machines. In particular, a tool array node, labeled as 
J48[10], is used to represent the 10 instances of the J48 classification algorithm, while 
another data array node, labeled as Model[10], represents the models generated by the 



classification algorithms. In practice, this portion of the workflow specifies that J48[i] 
takes as input data partition TrainSetPart[i] to produce in parallel Model[i], for 1≤ i ≤ 
10. 
 

 
Figure 4. Third step: Each train set part is analyzed by an instance of the J48 classification tool; as a result, 

10 classification models are produced in parallel. 

 

The fourth step classifies the test set created before by using the ten models generated 
on the previous step (see Figure 5). The classification is performed by ten classifiers 
that run in parallel to produce 10 classified test sets. More in detail, Classifier[i] takes 
in input the TestSet and Model[i] to produce ClassTestSet[i], for 1≤ i ≤ 10. 

Figure 5. Fourth step: The test set is classified by 10 classifiers, which perform the tasks concrrently by 
using the 10 classification models generated on the previous step. 

During the last step of the workflow (see Figure 6), the 10 classified test sets are passed 
to a voter tool that produces the final dataset, labeled as FinalClassTestSet.  



Figure 6. Fifth step: The 10 instances of the classified test set are compared instance-by-instance by a voter 
to produce the final classified test set. 

When the workflow is complete, that is every node has been specified and connected, it 
can be submitted for execution. Figure 7 shows a snapshot of the workflow taken 
during its execution. During the execution, the status of each node (tool or data) is 
shown through a small symbol on the bottom right part of the icon. For example, the 
figure shows that PartitionerTT has completed the execution, Partioner is running, 
while the other tools have been submitted, but not yet executed since they depend on 
the completion of preceding tasks in the workflow.  
 

Figure 7. The final workflow during its execution. 

 

Finally, Figure 8 shows the workflow visualization after completion of its execution. 
Some statistics about the overall application are shown on the upper left part of the 
window. In this example, it is shown that, by using 10 virtual machines, the workflow 
completed 264 seconds after its submission, with a total execution time (i.e., the sum of 
the execution times of all the tasks) of 1604 seconds. 
The total execution time corresponds to the sequential execution time of all the 
workflow tasks. Therefore, although this data analysis example includes sequential 
tasks and parallel ones (and so the scalability cannot be linear), we can have a simple 
measure of how the completion time can be reduced by using at most 10 Cloud virtual 
machines. By running concurrently the parallel tasks included in the workflow, the data 



analysis was completed in 1/6 of the sequential time. Even if the example is not so 
huge, this result shows the effectiveness of the proposed approach based on Cloud 
resource exploitation for running data analysis applications. 
 

 
Figure 8. The final workflow after completion of its execution. 

 

4. Conclusions 

New parallel and distributed computing infrastructures are vital to run smart scalable 
analysis techniques to solve more challenging problems in science, particularly when 
large data sets are involved or real-time evaluation is needed. Cloud computing systems 
today are used for implementing dynamic data centers and for high-performance 
computing on massive number of processors. They can also be effectively used as 
scalable infrastructures for running big data analysis that often involve large data sets 
and complex algorithms. Thus, Clouds can be platforms for the implementation and 
delivery of scalable service-oriented knowledge discovery applications.  
Based on this approach, we designed the Cloud Data Mining Framework, a service-
oriented software environment for large-scale data analysis on Cloud infrastructures. 
Here we described, through an application example, the main features of the visual 
programming interface of the framework, focusing in particular on the workflow 
programming interface. In this environment we use data sets, analysis tools, data 
mining algorithms and knowledge models that are implemented as single services that 
can be combined in distributed workflows to be executed on Clouds.  
We also evaluated the execution time of the data analysis application using our 
framework on ten virtual servers hosted by a Microsoft Cloud data center. The 
experimental results, presented in this chapter, showed the effectiveness of the 
framework, as well as the potential scalability that can be achieved through the parallel 
execution of the workflow tasks on a pool of virtual servers. 
Currently, we are working on the workflow composition interface with the aim of 
extending the supported design patterns (e.g., conditional branches and iterations) and 
to experimentally evaluate its functionality and performance on Windows Azure during 
the design and execution of complex knowledge discovery workflows on large data on 



the Cloud. 
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