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Abstract. The opportunity of using Cloud resources on a pay-as-you-go basis and the availability of powerful data centers and
high bandwidth connections are speeding up the success and popularity of Cloud systems, which is making on-demand computing
a common practice for enterprises and scientific communities. The reasons for this success include natural business distribution,
the need for high availability and disaster tolerance, the sheer size of their computational infrastructure, and/or the desire to provide
uniform access times to the infrastructure from widely distributed client sites. Nevertheless, the expansion of large data centers
is resulting in a huge rise of electrical power consumed by hardware facilities and cooling systems. The geographical distribution
of data centers is becoming an opportunity: the variability of electricity prices, environmental conditions and client requests,
both from site to site and with time, makes it possible to intelligently and dynamically (re)distribute the computational workload
and achieve as diverse business goals as: the reduction of costs, energy consumption and carbon emissions, the satisfaction of
performance constraints, the adherence to Service Level Agreement established with users, etc. This paper proposes an approach
that helps to achieve the business goals established by the data center administrators. The workload distribution is driven by a
fitness function, evaluated for each data center, which weighs some key parameters related to business objectives, among which,
the price of electricity, the carbon emission rate, the balance of load among the data centers etc. For example, the energy costs can
be reduced by using a “follow the moon” approach, e.g. by migrating the workload to data centers where the price of electricity
is lower at that time. Our approach uses data about historical usage of the data centers and data about environmental conditions to
predict, with the help of regressive models, the values of the parameters of the fitness function, and then to appropriately tune the
weights assigned to the parameters in accordance to the business goals. Preliminary experimental results, presented in this paper,
show encouraging benefits.

BUSINESS GOALS IN DISTRIBUTED DATA CENTERS

The administrators of a geographically distributed data center can exploit the variability of conditions both from site
to site and temporally, to achieve a number of different business goals. The variability involves the price of electricity,
the weather conditions, the availability of green energy, etc. Some of the most critical business objectives are:

e Reduction of consumed energy. Moderns data centers are equipped with instrumentation to monitor the energy
consumed in computational resources. The total energy, including that needed for cooling and power distribu-
tion, is obtained by multiplying the power used for computation by the PUE (Power Usage Efficiency) index;

e Reduction of energy costs. The cost of electricity is generally different from site to site and also varies with time,
even on a hour-to-hour basis, therefore the overall cost may be reduced by shifting portions of the workload to
more convenient sites;

e Reduction of carbon emissions. Companies are today strongly encouraged to reduce the amount of carbon
emissions, not only to compel to laws and rules, but also to advertise their green effort and attract customers
that are increasingly careful about sustainability issues.

All the above mentioned goals are important, yet different data centers may focus on different aspects (i.e.,
depending on the specific operating conditions and on the priorities prescribed by the management) and it is up to
the company’s management to specify the objectives and their relative weights. Dealing with this issue, in [1] a
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FIGURE 1. Architecture for the management of distributed data centers.

hierarchical architecture is illustrated, which aims at supporting the efficient management of the workload in a multi-
site scenario. The architecture is depicted in Figure 1 for the case of two interconnected data centers. Each data
center (DC) is composed of two layers: the upper layer and the lower layer. The upper layer is handled by a data
center manager (DCM) that exchanges information among the different sites and takes decisions about the migration
of workload from one site to another, combining the information related to single DCs. On the other side the local
manager (LM), in charge of handling the functionalities of the lower layer, manages the internal workload using its
own consolidation algorithm and autonomously decides whether or not to accommodate a VM (i.e., virtual machine)
or trigger a VM migration within the local DC.

Since the single DCs are autonomous regarding the choice of the internal algorithms for workload management,
the focus here is on the algorithms of the upper layer. Two basic algorithms are executed at each DCM: (i) the
assignment algorithm that determines the appropriate target DC for each new VM; (ii) the migration algorithm that
periodically evaluates whether the current load distribution is appropriate, decides whether an amount of workload
should be migrated and, if so, determines from which source site to which target site.

ALGORITHMS FOR WORKLOAD ASSIGNMENT AND REDISTRIBUTION

In this section, we describe the two basics algorithms executed by the DCMs, i.e. the assignment and migration
algorithms, and some strategies based on predictive data mining that help improve the effectiveness of the approach.
In particular, the objective is to appropriately tune the weights of the parameters related to the different business
objectives, so as to achieve the desired goals.

Assignment Algorithm. The optimal distribution of the workload among the data centers is driven by a purposely
defined assignment function, which balances and weighs the chosen business goals. This function associates to each
DC a value that represents the cost to run some workload in that DC, with low values corresponding to low overall
cost of the DC. To balance the load among the data centers, the function also includes the load currently assigned
to each data center. The strategy, then, is to assign each new VM to the DC with the lowest value of the function.
For example, if the objectives are the reduction of consumed energy, the minimization of carbon emissions and the

minimization of costs related to energy, the assignment function fzis.\'ign’ for each DC i, is defined as follows:
Ci PUE; E; U,

1 4 4 + k . 1 (1)
Emax Umax

i . = - =+ . + .
e = G P PUE ., Y

where the coefficients a, 3, y and k are positive and @ + 8+ 7y + k = 1. The values C;, PUE;, E; and U; state for carbon
emissions, achieved PUE, energy costs and relative load (fraction of the capacity of the data center that is currently
loaded) at the i DC, respectively. The parameters are normalized with respect to the maximum values communicated
by DCs. The mentioned goals are weighed through the values of the coefficients. After computing the values of fiign
for each DC, the VM is assigned to the data center having the lowest value. Once consigned to the target DC, the VM
is allocated to a physical host using the local assignment algorithm, that is out of the scope of this paper.

Migration Algorithm. The assignment algorithm optimizes the distribution of the VMs on the basis of the chosen
objectives and their respective weights. Since a data center with a lower value of f,,, attracts more load, and addi-
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tional load will increase the value of fisign, the function tends to have the same value at all the data centers. However,
this balance can be altered when the conditions change, e.g., when the price of energy or the PUE varies in one or
more data centers. In such cases, inter-DC VM migrations are performed to redistribute the workload. The migration
algorithm is triggered when the values of the fiyig, functions of two DCs differ by more than a predetermined thresh-
old (e.g., 3%). In such a case, VMs are migrated from the data center having the highest value of fi., to the data
center with the minimum value, until the values reenter within the tolerance range.

PREDICTIVE MODELS FOR OPTIMAL WORKLOAD MANAGEMENT

The effectiveness of the fign formula described in the previous section completely depends both (i) on a good
forecasting of the values will be assumed by C;, PUE; and E; and (ii) on the optimal setting of the fiie, coefficients.
The values of the coefficients «, 8 and y represent de facto the weights to achieve the corresponding mentioned goals,
and their best value setting is a hard task for the DCM. To deal with these two aspects, we describe an approach aimed
at improving the outcome of the f;i,, formula and driving the described hierarchical architecture towards an optimal
distribution of the workload. The general idea of the approach, depicted in Figure 2, includes two steps. First, given
the availability of historic environmental data (i.e., price of electricity, green energy availability, etc.) and business
value trends (i.e., carbon emissions, energy costs, PUEs, consumed energy, etc.), the Analytics Modeling component
processes such data to infer knowledge models for business value forecasts. Second, taking into account the values
predicted at the first step, the Weights Optimizer module automatically tunes the values of the f,,, coeflicients to
achieve the business goals.

The Analytics Modeling component performs C;, PUE; and E; forecasting through ARIMA models, that are a
combination of differencing, auto-regression and moving average methods with the goal of forecasting a variable of
interest using a linear combination of predictors [2]. As an example, let us consider the auto-regression of the PUE
time series {y, : t = 1...n}, where y, is the value of the time series (the value of PUE) at the timestamp . Then, an
ARIMA(p,d, g) model is written in the form

ygd) =c+ ¢1y§‘_1)l +...+ gbpygg +0e 1 +.. .+ 04 +e 2)
where:
ygd) is the d"*-differenced series of y;, that is: ygd) = yfdfl) - yfﬁ'), s yg, = yﬁ‘_ﬁ,l) - yi‘;ljl;
@1,...,¢p and 6, ..., 0, are the regression coeflicients of the auto-regressive and of the moving average part,
respectively;
e eri,...,e_g4arelagged errors, e, is the white noise and ¢ is a correcting factor.

The regression model above described is referred as ARIMA(p,d, q), where the order of the model is stated
by three parameters: p (order of the auto-regressive part), d (degree of first differencing involved) and ¢ (order of
the moving average part). The best parameter values are obtained by minimizing the BIC (Bayesian Information
Criterion) and AIC (Akaike Information Criterion) measures, as described in [2].

Now, let us provide also some considerations about the optimal setting of the f;,, coefficients. Even though this
research topic is still a work-in-progress, we outline here an approach to be further analyzed in detail. As aforemen-
tioned, the coefficients represent de facto the weights assigned to the corresponding business goals, and their optimal
value settings is a crucial task for the human administrator. Therefore, it is useful to design a methodological frame-
work (e.g., based on a genetic algorithm, or a classification algorithm, etc.) that can automatically give hints in their
value setting. In particular, given a set of business goals (i.e., maintaining the overall carbon emissions under a given
threshold, limiting the overall utilization in a predefined range values, etc.) and the values C;, PUE; and E; forecasted
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FIGURE 2. Prediction framework.
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FIGURE 3. Trends and residuals of forecasted and observed values of PUE.

by the ARIMA models, the framework offers the user some rules to tune the values of the coefficients so as to achieve
the business goals.

EXPERIMENTAL EVALUATION

This section presents a preliminary evaluation of the regressive function, modeled by Equation 2, performed over
synthetic data. In particular, we used an ad-hoc data generator [3] to produce PUE data series for three geographically
distributed DCs, each one adhering to a predefined pattern (introducing a 5% noise). Then, the whole dataset (of each
DC) has been split in training set and test set: the first one has been used to infer the regressive function, while the
second one has been exploited as test bed to validate the approach. Figure 3(a) shows six curves representing, for a
temporal window of the test set, the observed and forecasted data of the three DC. It is interesting to highlight that
forecasted data adhere very well to the observed data and that fluctuations are well modeled and predicted by the
regressive model. As forecasting error, we measured an average error of 4%, that appears to be an encouraging result.
Finally, Figure 3(b) shows the distribution of the residuals (with overlaid normal curve with mean 0). The distribution
of forecast errors is centered on zero and normally distributed, which is another good property of forecasting accuracy.

CONCLUSION AND FUTURE WORK

This paper proposes an approach to optimize the workload management among geographically distributed data cen-
ters, driven by a fitness function which weighs some key parameters related to business objectives. In particular,
historical data about both DC resource usage and environmental conditions are exploited to predict, with the help
of regressive models, the values of the parameters of the fitness function, and then to appropriately tune the weights
assigned to the parameters in accordance to the business goals. Preliminary experimental results are encouraging.
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