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Abstract—The Cloud computing paradigm allows users to
satisfy their increasing need for on-demand and remote compu-
tational services. These services are provided by data centers that
often consume a huge amount of electrical power. Recently the
ecoCloud algorithm has been proposed as a solution for saving
energy by consolidating Virtual Machines on as few servers as
possible, so as to hibernate the remaining servers and save en-
ergy. The ecoCloud approach founds on probabilistic processes:
mapping and migration of VMs are driven by Bernoulli trials
whose success probability depends on the utilization of single
servers. These processes are self-organizing and decentralized,
which makes them particularly efficient in large data centers.
While in previous work the performance evaluation of ecoCloud
was based on artificial traces, in this paper, a mathematical
analysis is presented along with simulations fed with logs of real
VMs. Results show that efficiency is very close to the theoretical
minimum and comparable to that of one of the best centralized
algorithms devised so far; in addition, ecoCloud notably reduces
the frequency of events, such as VM migrations and server
switches, that can deteriorate the quality of service.

I. INTRODUCTION

The availability of powerful data centers and high band-

width connections have expedited the success of the Cloud

computing paradigm, which is making on-demand computing

a common practice for companies and scientific communities.

The main advantage of the Cloud paradigm is that a company

does not need to operate its own data center, with all the

related costs and administration burdens, but can access to

CPU power, storage facilities, software packages on the basis

of its needs. The choice of using external Cloud facilities

frees the company from the burden of exactly estimating the

required amount of resources, with the risk of under- or over-

provisioning of resources due to inevitable load variations, and

lead to notable money savings [1][2].

One of the main issues related to the success of Cloud com-

puting is that the ever growing number of large data centers

is causing a notable increase of electrical power consumed by

hardware facilities and cooling systems. This increases the cost

of computation itself and affects the carbon footprint of data

centers, thus aggravating, on the global scale, the problem of

global warming. It has been estimated by Gartner that in 2006

the energy consumed by IT infrastructures in USA was about

61 billion kWh, corresponding to 1.5% of all the produced

electricity and 2% of the global carbon emissions, which is

equal to the aviation industry, and these figures were expected

to double by 2011 [3].

A major reason for this huge amount of consumed power

is the inefficiency of data centers, which are often under-

utilized: it has been estimated that only 20-30% of the total

server capacity is used on average [4][5]. Unfortunately, power

consumption is not proportional to the server utilization: an

active but idle server consumes approximately 65-70% of the

power consumed when it is fully utilized [6]. The virtual-
ization paradigm can be exploited to alleviate the problem:

user processes are not assigned directly to servers, but are

first associated to Virtual Machine (VM) instances, which in

turn are run by servers. The use of virtualization facilitates

the consolidation of applications: VMs may be clustered on

a reduced number of servers [7], and other servers can be

unloaded and put in some low consuming sleep modes.

In [8] we presented ecoCloud, an approach partly inspired

by the basic ant algorithms used by Deneubourg et al. [9] to

model the phenomenon of larval clustering in ant colonies. In

the ecoCloud case, the approach aims at clustering VMs in

as few servers as possible, using two types of probabilistic

procedures, for the assignment and the migration of VMs.

Both procedures aim at increasing the utilization of servers

and consolidating the workload dynamically, with the twofold

objective of saving electrical costs and respecting the Service

Level Agreements stipulated with users, especially concerning

the expected quality of service. All this is done demanding the

key decisions to single servers, which makes the management

of the data center easier and more scalable.

The scenario is pictured in Figure 1: an application request

is transmitted from a client to the data center manager, which

selects a VM that is appropriate for the application, on the

basis of application characteristics such as the amount of

required resources (CPU, RAM memory, disk) and the type

of operating system specified by the client. Then, the VM is

assigned to one of the available servers through the assignment
procedure.

Upon an invitation from the central manager, a single server

autonomously decides whether to give or deny its availability

to accept a VM. Decisions are based on information available
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Fig. 1. Assignment and migration of VMs in a data center.

locally – in particular, information on the local CPU utilization

– and are founded on Bernoulli trials. The data center manager

has only a coordinating role, and it does not need to execute

any complex centralized algorithm to optimize the mapping of

VMs.

The workload of each application typically changes with

time: for example, the CPU demand of a Web server depends

on the workload generated by Web users. Therefore, the

assignment of VMs is monitored continuously and is tuned

through the migration procedure. Migrating a VM can be

advantageous either when the CPU utilization is too low,

meaning that the server is under-utilized, or when it is too high,

possibly causing overload situations and quality of service

violations. The migration procedure consists of two steps: in

the first step, a server requests the migration of a VM, on the

basis of its CPU utilization. The purpose of the second step

is to choose the server that will host the migrating VM.

In [8], the ecoCloud algorithm was evaluated through

simulation experiments driven by artificial traces. In this paper,

we analyze the behavior of ecoCloud during 48 hours of

normal operation. This is done through simulation experiments

driven by the traces of real Virtual Machines for a data center

of 400 servers. The behavior of ecoCloud, specifically that of

the assignment procedure, is then analyzed through a mathe-

matical model based on differential equations, and the results

are compared to those of tailored simulation experiments.

Results prove that VMs are consolidated efficiently, while the

frequency and duration of overload events is kept low.

The rest of the paper is organized as follows: section II

summarizes the assignment and migrations procedures, which

have been refined with respect to the version published in

[8]. Section III shows the results of simulation experiments

for a real scenario, and Section IV describes the analytical

model and compares results to those of ad hoc simulation

experiments. Section V illustrates related work and Section

VI concludes the paper.

II. ASSIGNMENT AND MIGRATION PROCEDURES

In this section we describe the two main probabilistic

procedures that are at the basis of ecoCloud: the assignment

and migration procedures.

The assignment procedure is performed when a client asks

the data center to execute a new application, and is defined as

follows. Once the application is associated to a compatible

VM, the data center manager must assign the VM to one

of the servers for execution. Instead of taking the decision

on its own, which would require the execution of a complex

optimization algorithm for a inherently intractable problem (as

discussed in the related work section it was proven to be NP-

Hard), the manager delegates a main part of the procedure

to single servers. Specifically, it sends an invitation to all the

active servers, or to a subset of them, depending on the data

center size and architecture1, to check if they are available to

accept the new VM. Each server decides whether to declare its

availability to accept the VM considering that: (i) a server with

low CPU utilization should reject any new VM and should try

to get rid of the currently running VMs in order to be put in a

sleep mode and save energy; (ii) a server with very high CPU

utilization should reject new VMs, to avoid overload situations

that can penalize the quality of service perceived by users; (iii)

a server with intermediate CPU utilization should accept new

VMs to favor the consolidation.

The server decision is taken performing a Bernoulli trial,

whose success probability depends on the local CPU uti-

lization, u, (valued between 0 and 1), and on the maximum

allowed value of utilization, Ta. The assignment probabilistic
function, fa, is equal to zero when u > Ta, otherwise it is

defined as:

fa(u) =
1

Mp
up(Ta − u) 0 ≤ u ≤ Ta (1)

where p is a parameter, and the factor Mp is used to normalize

the maximum value to 1 and is defined as:

Mp =
pp

(p+ 1)(p+1)
T (p+1)
a (2)

Figure 2 shows the function for some values of the param-

eter p, and Ta = 0.9. The function definition ensures that the

CPU utilization does not exceed the threshold Ta (no further

VMs can be assigned when u reaches this threshold) and that

VMs are preferably assigned to servers having intermediate or

moderately high workload, thus respecting the three guidelines

mentioned above. The value of u at which the function reaches

its maximum - that is, the value at which assignment attempts

succeed with the highest probability - is p/(p + 1)Ta, which

increases and approaches Ta as the value of p increases.

Therefore, the value of p can be used to modulate the shape

of the function and tune the consolidation effort.

If the Bernoulli trial is successful, the server communicates

its availability to the data center manager. Then, the manager

selects one of the available servers, and assigns the new VM

to it. If none of the contacted servers is available – i.e., all

the Bernoulli trials are unsuccessful – it is very likely that all

the servers have CPU utilization very close to the threshold2.

1Data centers are equipped with high-bandwidth networks that naturally
support broadcast messaging. In very large data centers, the servers may
be distributed among several groups of servers: in this case, the invitation
message may be broadcast to one of such groups only.

2The case that all or many servers are not available because under-utilized
is very unlikely because the process tends to consolidate the workload on
highly utilized servers.
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Fig. 2. Assignment probability function fa(u) for three different values of
the parameter p. The value of the threshold Ta is set to 0.9.

This usually happens when the overall workload is increasing,

so that the current number of active servers is not sufficient

to sustain the load. In such a case, the manager wakes up an

inactive server and requests it to run the new VM. The case

in which there is no server to wake up, because all the servers

are already active, is a sign that altogether the servers are

unable to sustain the load: if this situation occurs frequently,

the company should consider the acquisition of new servers.

Even after an efficient mapping of applications, the VMs

running in a server may terminate or may reduce their demand

for CPU, causing the under-utilization of server resources

and the waste of energy. Moreover, when the VMs increase

their CPU requirements, a server may be overloaded, possibly

causing SLA violation events and affecting the dependability

of the data center. In both these situations, under-utilization

and over-utilization of servers, some VMs can be profitably

migrated to other servers, either to switch off a server, or to

alleviate its load.

The migration procedure is defined as follows. Each server

monitors its CPU utilization (a very simple operation that can

be executed every few seconds) and checks if it is between

two specified thresholds, the lower threshold Tl and the upper

threshold Th. When this condition is violated, the server

evaluates the corresponding probability function, f lmigrate or

fhmigrate. In either case, it performs a Bernoulli trial and

decides whether or not to request the migration of one of the

local VMs. The migration probability functions are defined as

follows:

f lmigrate = (1− u/Tl)
α

(3)

fhmigrate =

(
1 +

u− 1

1− Th

)β

(4)

The functions, whose graphs are shown in Figure 3, are defined

so as to trigger the migration of VMs when the CPU utilization

is, respectively, below the threshold Tl or above the threshold

Th. These two kinds of migrations are also referred to as “low

migrations” and “high migrations” in the following. When

the utilization is in between the thresholds, migrations are

inhibited. The shape of the functions can be modulated by

tuning the parameters α and β, which can therefore be used

to foster or hinder migrations.
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Fig. 3. Migration probability functions f lmigrate and fhmigrate (labeled

as f l and fh) for two different values of the parameters α and β. In this
example, the threshold Tl is set to 0.3, Th is set to 0.8.

If the Bernoulli trial is positive, the server considers the

local VMs whose CPU utilization is larger than the difference

between the current server utilization and the threshold Th.

Then one of such VMs is randomly selected for migration, as

this will allow the CPU utilization to go below the threshold3.

The choice of the new server that will accommodate the

migrating VM is made using a variant of the assignment

procedure described previously, with two main differences.

The first one concerns the migration from an overloaded

server: the threshold Ta of the assignment function is set to

0.9 times the CPU utilization of the server that initiated the

procedure, and this value is sent to servers along with the

invitation. This ensures that the VM will migrate to a less

loaded server, and prevents ping-pong situations in which a

VM is continuously migrated from an overloaded server to

another. The second difference concerns the migration from

a lightly loaded server. When no server is available to run a

migrating VM, it would not be acceptable to switch on a new

server in order to accommodate the VM: one server would be

activated to let another one be hibernated. Therefore, when no

server is available, the VM is not migrated at all.

It is worth noting that our approach ensures a gradual and

continuous migration process, while most other techniques

recently proposed for VM migration (some are discussed in

the related work section) require the simultaneous migration

of many VMs.

III. TRACE-DRIVEN SIMULATIONS

To understand how ecoCloud works and to evaluate its

performance, in this section we present the results obtained by

trace-driven simulations. A home-made Java simulator was fed

with the logs of real VMs collected in an operative data center

composed of 400 servers. We used workload traces retrieved

by the data of the CoMon project, a monitoring infrastructure

for PlanetLab [10]. The traces represent the CPU utilization

of 6,000 VMs, monitored in March-April 2012 and updated

every 5 minutes. A graphical characterization of the traces is

provided in the following. Figure 4 reports the distribution

of the average CPU utilization of the VMs, measured as a

3If no VM matches the condition, the largest VM will be chosen and a
new Bernoulli trial will be executed to trigger another migration.
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percentage of the total CPU capacity of the hosting physical

machine. The graph shows that the average CPU utilization

is under 20% for most VMs, even though there are a few

VMs with very high CPU requirements. It is clear that this

kind of distribution leaves much room for clever consolidation

algorithms, since in many cases tens of VMs can be executed

on the same physical machine.

To consider the variability of the VM load in time, we then

collected, for all the VMs, the difference – or deviation –

between the punctual value of utilization (in percentage with

respect to the total CPU capacity) and the average value of the

VM utilization. The distribution of the deviations obtained in

this way is reported in Figure 5. Most values are close to zero,

meaning that for most VMs CPU deviations are very small.

Specifically, about 94% of the deviations are lower than 10%,

which means that if the average CPU utilization of a VM can

be estimated – in most cases this is possible using historical

data – and each VM is allocated as much CPU as this average

value, only 6% of the times the VM will exceed the allocated

CPU by more than 10% of the CPU capacity. Nevertheless,

such deviations can still cause QoS violations, especially when

multiple VMs increase their CPU demand at the same time.
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Fig. 5. Distribution of the deviation between the punctual CPU utilization
and the average CPU utilization of the same VM.

To assess the behavior of ecoCloud in daily conditions, we

report performance metrics for two consecutive days, starting

from the midnight of the first day. This allows us to see

what happens to the system when the overall load follows the

normal daily pattern, with increasing load in the morning and

decreasing load in the evening. All the metrics are computed

every 30 minutes. The VMs are distributed to 400 physical

servers, using the ecoCloud algorithms for assignment and

migration of VMs. These servers are all equipped with 2 GHz

cores. One third of the servers have 4 cores, one third have

6 cores and the remaining third have 8 cores. The parameters

of the assignment and migration functions are set as follows:

Ta=0.90, p=3, Tl=0.50, Th=0.95, α=0.25 and β=0.25. Figure 6

shows the CPU utilization of the servers, along with the overall

load as a reference (blach dots). When the load increases, some

idle servers are activated to allocate the new VMs. When the

load of active servers decreases, low migrations allow some

of the servers to be hibernated, and the load consolidates to a

lower number of servers.
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Fig. 6. CPU utilization of 400 servers during two consecutive days. The
trend of the overall load is shown as a reference.
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Fig. 7. Number of active servers during two consecutive days.

The capacity of consolidating the load is confirmed by the

trend of the number of active servers, shown in Figure 7. This

number is nearly proportional to the overall load reported

in Figure 6, which means that servers are switched on and

consume power when needed, and are hibernated whenever

the decreasing load makes it possible. Figure 8 shows the

power consumed by the data center. Again, the consumed

energy follows the trend of the overall load and does not

present any peak or sudden variation, which confirms that the

asynchronous and self-organizing nature of ecoCloud allows

910



the power to be continuously and smoothly adapted to the

varying load conditions. Figure 9 focuses on the frequency

of high and low migrations. Not surprisingly, high migrations

are more frequent when the load increases, because the CPU

utilization of active servers tends to approach the threshold,

while low migrations are triggered when the load decreases

and some servers can be emptied and hibernated. The total

frequency of migrations is always lower than 200 migrations

per hour for the entire data center, which corresponds to a

migration every 2 hour for a single server and a migration

every 3 days for a single VM (since each server runs about

40 VMs on average). These rates are easily sustainable, also

considering that migrations are performed asynchronously.

Figure 10 reports the frequency of server switches in the

data center. Switches are performed only when needed: in

ascending phases there are only activations and no hibernations

and the opposite happens in descending phases.

 0

 10000

 20000

 30000

 40000

 50000

 0  6  12  18  24  30  36  42  48

p
o
w

er
 (

W
)

time (hour)
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Finally, Figure 11 reports the fraction of time, in percentage,

in which the CPU demanded by a VM cannot be completely

granted by the hosting server because of an overload event.

This index is very small, never higher than 0.02%, thanks to

the possibility of requesting the migration of a VM as soon

as a server approaches the full utilization of its CPU. In the

presence of overload events, the response of the server may be

to forcedly decrease the CPU usage of all the VMs or only of

those that have low priority. Due to the very limited frequency
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Fig. 10. Number of server switches per hour in the data center.
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Fig. 11. Fraction of time of CPU over-demand in percentage.

of these events, normal operations can be rapidly restored.

In these experiments it was found that, thanks to migration

procedures, more than 98% of violations are shorter than 30

seconds, and even in those time intervals the VMs are granted

no less than 98% of the demanded CPU.

A sensitivity study on the parameters of the migration prob-

ability function was also performed, results are not reported

here for the sake of brevity. The analysis shows that the

threshold Th must be higher than the assignment threshold

Ta, otherwise VM migrations would not allow the CPU to

be exploited to the desired extent; the value of Tl should be

chosen so as to ensure that servers are never utilized under

40% of their capacity; the values of α and β can be tuned

depending on the willingness to accept that a server is under-

or over-utilized for a short interval of time.

IV. MATHEMATICAL ANALYSIS

This section is devoted to the analysis of the ecoCloud
assignment procedure. The mathematical model is based on

a set of differential equations inspired by fluid dynamics

problems. Let Ns be the number of servers in a data center, s
the index of a generic server, s = 0, · · · , Ns − 1, and let

Nc be the number of cores in each server. The equations

model the evolution of the server utilization with time, us(t).
Two assumptions are made about us(t). First, the utilization

is proportional to the number of Virtual Machines (VMs) that

at time t are assigned to server s; this means that the load of a
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VM is assumed to be constant. Second, the utilization is a real

number that changes by infinitesimal increments/decrements

over [0, 1]. This assumption implicitly means that the number

of VMs is represented by a real number and changes by

infinitesimal intervals.

The rate at which VMs arrive at the data center is denoted

by λ(t), while μ(t) is the service rate of each server core.

Given the fluid model assumption described above, the VM

arrival process is a continuous process that makes it arrive,

in a time period Δt, a number of VMs equal to λ(t)Δt (a

real number). Similarly, for the departure process according

to which VMs leave the system, in a time period Δt, μ(t)Δt
VMs leave the system.

The set of differential equations is the following:

∂us(t)

∂t
= −Ncμ(t)us(t) + λ(t)As(t)fa(us(t)) (5)

s = 0, · · · , Ns − 1

where As(t) is the fraction of VMs that, at time t, is assigned

to server s. In particular, As(t) depends on the assignment

function fa that, in turn, depends on the server utilization. For

server s, As(t) can be computed by considering that a VM is

assigned to s with probability 1/k if k−1 other servers beyond

s gave their availability to serve the VM. Letting P
(k)
s (t) be

the probability that k servers are available to accept the VM,

we have:

As(t) =
1

1−∏Ns−1
i=0 (1− fa(ui(t)))

Ns−2∑
k=0

1

k + 1
P (k)
s (t) (6)

where the first term is a normalization factor. Pk(t) is derived

by the combinatorial computation that any subset of k servers

accept the VM, while the remaining servers do not accept,

P (0)
s (t) =

Ns−1∏
i=0,i �=s

(1− fa(ui(t))) (7)

P (1)
s (t) =

Ns−1∑
j=0,j �=s

fa(uj(t))

Ns∏
i = 0
i �= s
i �= j

(1− fa(ui(t)))(8)

...

P (Ns−2)
s (t) =

Ns−1∏
i=0,i�=s

fa(ui(t)) (9)

As can be noticed from (5), the utilization of a server s
increases according to the rate at which VMs arrive and are

assigned to s. The utilization decreases in proportion to the

VM leave rate μ(t) and to the number of VMs, i.e., to the

utilization.

The equations can be solved with the initial conditions:

us(0) s = 0, · · · , Ns − 1 (10)

Since the computation of the terms As(t) becomes costly as

the number of servers increases, we also propose a simplified

model. The results of this model proved to be very close to

those of the exact model described so far. Specifically, we

approximate the expression of As(t) by assuming that the

probability that a VM is assigned to s is proportional to the

acceptance probability fa(us(t)). The equations become,

∂us(t)

∂t
= −Ncμ(t)us(t) + λ(t)

fa(us(t))∑Ns−1
i=0 (fa(ui(t)))

(11)

s = 0, · · · , Ns − 1

A simple experiment was performed to compare analytical

and simulation results. Since the equations cannot model mi-

gration events, we performed a simulation experiment in which

migrations are inhibited, and analyze the behavior of ecoCloud
when it is only driven by the assignment procedure. In this

experiment we set the number of servers Ns to 100, each

having Nc = 6 cores with CPU frequency of 2 GHz. These

servers were loaded with 1,500 VMs randomly chosen among

the 6,000 described in the previous section. The simulation

experiment started from a non consolidated scenario, in which

most servers have CPU load between 10% and 30%. The

parameters of the assignment function fa were set as follows:

maximum utilization threshold Ta=0.9, p=3.

Figure 12 shows that at the activation of the assignment

procedure, at time 0, some servers experience a decrease of

their CPU utilization, until they are hibernated, while other

servers keep on accommodating VMs until their CPU utiliza-

tion approaches the threshold Ta. The probabilistic nature of

the procedure is the reason why servers react in a different

fashion and with different speed. After about 6 hours the

system has reached a steady condition, with all the servers

either hibernated or working nearly at their maximum allowed

utilization. The simulation was initiated at midnight, in a phase

of low load. The figure shows that, starting at about 8:30 am,

more servers are activated to accommodate the increasing load.

At the end of the experiment, 45 servers take all the load of

the data centers and 55 are hibernated.
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Fig. 12. CPU utilization of 100 servers, obtained with simulation.

From the traces we computed the values of λ(t) and

μ(t) and put the same values in the approximate differential
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Fig. 13. CPU utilization of 100 servers, obtained with the analytical model.

equations (11), and also the initial conditions (10) were set

as in the simulation experiment. Figure 13 reports the CPU

utilization of the 100 servers.

The behavior is very similar to the one observed in Figure

12, yet some interesting differences can be appreciated. First,

the load consolidates on 43 servers instead of 45. The varia-

tions of CPU utilization, caused by the arrivals and departures

of VMs, are continuous when modeled with the differential

equations and discrete when simulated. Finally, it may be

observed that, when solving the equations, several servers are

activated simultaneously to accommodate the increasing load.

Then some servers are again switched off because their CPU

values does not reach a critical mass, while others continue to

accept VMs until they approach the threshold. This effect is

avoided in the simulation experiment by imposing that a newly

activated server always responds positively to new assignment

requests for a limited interval of time, set to 30 minutes.

V. RELATED WORK

A notable amount of studies focus on algorithms and

procedures that aim at improving the “green” characteristics of

Cloud data centers. A survey and a useful taxonomy are given

in [11], while in [12] focus is on the categorization of green

computing performance metrics: power metrics, thermal met-

rics, combined metrics, etc. Virtualization is a common means

to consolidate applications on as few servers as possible and

in this way reduce power consumption [7]. Some approaches

- e.g., [13] and [14] - try to forecast the processing load and

aim at determining the minimum number of servers that should

be switched on to satisfy the demand, so as to reduce energy

consumption and maximize data center revenues. However,

even a correct setting of this number is only a part of the

problem: algorithms are needed to decide how the VMs should

be mapped to servers in a dynamic environment, and how

live migration of VMs can be exploited to unload servers and

switch them off when possible, or to avoid SLA violations.

The problem of optimally mapping VMs to servers can

be reduced to the bin packing problem [15][3][16]. Unfor-

tunately, this problem is known to be NP-hard, therefore

heuristic approaches can only lead to sub-optimal solutions.

Live migration of VMs between servers is adopted by the

VMWare Distributed Power Management system, using lower

and upper utilization thresholds to enact migration procedures.

The heuristic approaches presented in [3] and in [16] use

techniques derived, respectively, from the Best Fit Decreas-

ing and the First Fit Decreasing algorithms. In both cases,

the goal is to place each migrating VM on the server that

minimizes the overall power consumption of the data center.

These approaches represent important steps ahead for the

deployment of green-aware data centers, but still they share a

couple of notable drawbacks. First, they use deterministic and

centralized algorithms whose efficiency deteriorates as the size

of the data center grows. The second drawback is that mapping

strategies may require the concurrent migration of many VMs,

which can cause considerable performance degradation during

the reassignment process. The ecoCloud approach presented

here is naturally scalable, thanks to its probabilistic nature, and

uses an asynchronous and smooth migration process, which

ensures that VMs are relocated gradually.

Bio-inspired algorithms and protocols are emerging as a

useful means to manage distributed systems, and Clouds are

not an exception. Assignment and migration procedures pre-

sented here are partly inspired by the pick and drop operations

performed by some species of ants that cluster items in their

environment [9]. The pick and drop paradigm, though very

simple and easy to implement, has already proved surprisingly

powerful: for example, it is used to cluster and order resources

in P2P networks, in order to facilitate their discovery [17].

Another ant-inspired mechanism is proposed in [18]: in this

study, the data center is modeled as a P2P network, and ant-

like agents explore the network to collect information that can

later be used to migrate VMs and reduce power consumption.

In our opinion, the main problem of pure P2P approaches is

that the complete absence of centralized control can be seen as

an obstacle by the data center administrator. With ecoCloud,

despite the fact that servers can autonomously decide whether

or not to migrate or accept a VM, final decisions are still

granted to the central manager of the data center, which

ensures a better control of the operations.

In most studies, CPU is the main component on which

energy-efficiency strategies focus to obtain a consistent reduc-

tion of consumed power. The reason is that, among hardware

components, only CPU supports active low-power modes,

whereas other components can only be completely or partially

switched off. Server CPUs can consume less than 30% of

their peak power in low-activity modes, leading to dynamic

power range of more than 70% of peak power [4]. Dynamic

power ranges of other components are much narrower, or even

negligible. Nevertheless, recent experiments have shown that

important fractions of power are consumed by memory, disk,

and power supplies [19]. Moreover, applications hosted by

VMs often present complementary resource usage, so it may

be profitably to let a server execute, for example, a mix of

memory-bound and CPU-bound applications. The probabilistic

approach presented here can be extended to consider multiple
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hardware resources, following at least two possible avenues.

The first one is to define assignment and migration functions

for each resource type. A server executes a Bernoulli trial

for each resource, and declares its availability to execute an

application only when all trials are successful. The second

possibility is to execute a single Bernoulli trial for the most

critical resource and use the other resources as constraints to be

satisfied to enable the accommodation of the new or migrating

applications. These strategies are currently under investigation.

VI. CONCLUSION AND FUTURE WORK

This paper analyzes the performances of ecoCloud, a novel

approach that tackles the issue of energy-related costs in data

centers and Cloud infrastructures. The aim is to consolidate

Virtual Machines on the minimum number of physical servers,

so as to minimize power consumption and carbon emissions.

The decentralized and probabilistic nature of the approach

makes ecoCloud particularly efficient in large data centers.

The scalable behavior derives from the fact that important

decisions on VM assignments and migrations are taken by

single servers exclusively on the basis of local information.

Analysis is performed through a mathematical model based on

fluid-like differential equations and on simulation experiments

driven by real log data of servers and VMs. Experiments

show that the approach succeeds in the combined objective

of reducing power consumption and avoiding overload events

that could deteriorate the quality of service. Moreover, only a

very limited number of VM migrations and server switches are

needed. An important avenue for future work is the extension

of the approach to take assignment decisions on the basis

not only of the CPU utilization but also of other important

parameters, such as memory, disk and bandwidth consumption.
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