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Abstract

The Grid is an infrastructure for resource sharing and coordinated use of those resources in dynamic heteroge-
neous distributed environments. The effective use of a Grid requires the definition of metadata for managing the
heterogeneity of involved resources that include computers, data, network facilities, and software tools provided
by different organizations. Metadata management becomes a key issue when complex applications, such as data-
intensive simulations and data mining applications, are executed on a Grid. This paper discusses metadata models
for heterogeneous resource management in Grid-based data mining applications. In particular, it discusses how
resources are represented and managed in the KNOWLEDGE GRID, a framework for Grid-enabled distributed data
mining. The paper illustrates how XML-based metadata is used to describe data mining tools, data sources, mining
models, and execution plans, and how metadata is used for the design and execution of distributed knowledge
discovery applications on Grids.

1. Introduction

The Grid allows sharing and coordinated use of re-
sources in dynamic geographically distributed envi-
ronments. The effective use of a Grid requires the
definition of a model to manage the heterogeneity of
the involved resources that can include computers,
data, network facilities, sensors, and software tools
generally provided by different organizations. Hetero-
geneity in Grids arises mainly from the large variety of
resources available within each category. For example,
a software package can run only on some particular
host machines whereas data can be extracted from
different data management systems such as relational
databases, semi-structured databases, plain files, etc.

The management of such heterogeneous resources
requires the use of metadata, whose purpose is to pro-
vide information about the features of resources and
their effective use. A Grid user needs to know which
resources are available, where resources can be found,
how resources can be accessed and when resources

are available. Metadata can provide answers about in-
volved computing resources such as data repositories
(e.g., databases, file systems, web sites), machines,
networks, programs, documents, user agents, etc.
Therefore, metadata can represent a key element for
the effective discovery and utilization of resources on
the Grid.

The role of metadata for resource management on
Grids is more and more important as Grid applications
become more and more complex. Thus, Grids mech-
anisms and models that define rich metadata schemas
able to represent the variety of involved resources are
a key element.

This paper discusses heterogeneous resource man-
agement in Grid-based data mining applications. We
address the problem of locating and allocating com-
putational, data and information resources, and other
operations required to use data mining resources in
knowledge discovery processes on Grids. In particular,
the paper presents an XML-based approach for man-
aging heterogeneous resources in the KNOWLEDGE
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GRID environment [1]. The work presented in this pa-
per is an extended version of a work presented in [2].
This new version includes a more detailed description
of the proposed system, describes some extensions,
and presents its implementation.

The KNOWLEDGE GRID architecture uses basic
Grid services and defines a set of additional layers,
to support distributed knowledge discovery on world
wide connected computers, where each node can be
a sequential or a parallel machine. The KNOWLEDGE

GRID architecture (see Figure 1) is designed on top
of mechanisms provided by Grid environments such
as Globus [3]. The KNOWLEDGE GRID uses the basic
Grid services such as communication, authentication,
information, and resource management to build more
specific parallel and distributed knowledge discovery
(PDKD) tools and services.

The KNOWLEDGE GRID services are organized
into two layers: the Core K-Grid layer, which is
built on top of generic Grid services, and the High
level K-Grid layer, which is implemented over the
core layer. The Core K-Grid layer comprises two ba-
sic services: the Knowledge Directory Service (KDS)
and the Resources Allocation and Execution Manage-
ment Service (RAEMS). The KDS manages metadata
describing the characteristics of relevant objects for
PDKD applications, such as data sources, data mining
software, results of computations, tools for manip-
ulating data and results, execution plans, etc. The
information managed by the KDS is stored into three
repositories: metadata describing features of data,
software and tools expressed in XML documents, is
stored in a Knowledge Metadata Repository (KMR),
information about the knowledge discovered after a
PDKD computation is stored in a Knowledge Base
Repository (KBR), whereas the Knowledge Execution
Plan Repository (KEPR) stores the execution plans
describing PDKD applications over the Grid. The
goal of RAEMS is to find a mapping between an
execution plan and the available Grid resources that
satisfies user, data and algorithms requirements and
constraints.

The High level K-Grid layer comprises the ser-
vices used to build and execute PDKD computations
over the Grid. The Data Access Service (DAS) is
used for the search, selection, extraction, transforma-
tion and delivery of data to be mined. The Tools and
Algorithms Access Service (TAAS) is responsible for
search, selection, and download of data mining tools
and algorithms. The Execution Plan Management Ser-
vice (EPMS) is used to generate a set of different

possible execution plans, starting from the data and
the programs selected by the user. Execution plans
are stored in the KEPR to allow the implementation
of iterative knowledge discovery processes, e.g., peri-
odical analysis of dynamic data sources. The Results
Presentation Service (RPS) specifies how to generate,
present and visualize the PDKD results (rules, associa-
tions, models, classification, etc.), and offers methods
to store those results in the KBR in different formats.

By using services, tools, and repositories pro-
vided by the two layers of the KNOWLEDGE GRID,
a user can search and identify data sources, data min-
ing tools, and computational resources. Then she/he
can combine all these components to build a dis-
tributed/parallel data mining application that can be
executed on a Grid.

The remainder of the paper discusses how re-
sources are represented and managed in the KNOWL-
EDGE GRID, how XML-based metadata is used to
define data mining tools, data sources, mining mod-
els and execution plans, and how metadata is used
to design and execute distributed data mining appli-
cations on Grids. The paper is organized as follows.
Section 2 discusses the management of Grid resources.
Section 3 describes the representation of resource
metadata. Section 4 discusses the representation of ex-
ecution plans. Section 5 describes the implementation
of the Knowledge Directory Service and a peer-to-
peer approach to metadata management. Section 6
discusses related work and Section 7 concludes the
paper.

2. Management of the Resources in the
KNOWLEDGE GRID

Several approaches have been investigated to rep-
resent and manage metadata in Grid environments.
Some of them have been proposed in systems such as
Globus [3], DICE [4], and the NASA’s Information
Power Grid [5]. In particular, in the Globus Toolkit 2 –
on which the current implementation of the KNOWL-
EDGE GRID is based – the Monitoring and Discovery
Service (MDS) provides information about the status
of the system components [6]. The MDS uses the
Lightweight Directory Access Protocol (LDAP) [7] as
a uniform interface to such information. MDS includes
a configurable information provider called Grid Re-
source Information Service (GRIS) and a configurable
aggregate directory service called Grid Index Infor-
mation Service (GIIS). A GRIS can answer queries
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about the resources of a particular Grid node. Exam-
ples of information provided by this service include
host identity (e.g., operating systems and versions), as
well as more dynamic information such as CPU and
memory availability. A GIIS combines the informa-
tion provided by a set of GRIS services managed by
an organization, giving a coherent system image that
can be explored or searched by Grid applications.

The KNOWLEDGE GRID manages typical re-
sources involved in distributed data mining computa-
tions such as:
• Computational resources (computers, storage de-

vices, etc.).
• Data to be mined, such as databases, plain files,

semi-structured documents and other structured or
unstructured data (data sources).

• Tools and algorithms used to extract, filter and
manipulate data (data management tools).

• Tools and algorithms used to mine data, that is data
mining tools available on the Grid nodes.

• Knowledge obtained as a result of the mining
process, i.e. learned models and discovered pat-
terns.

• Tools and algorithms used to visualize, store, and
manipulate discovered models.
This large set of different resources – that in some

cases require a complex description – motivated the
definition of a metadata model that extends the basic
Globus model.

The basic objectives that guided us through the
definition of the resource metadata are:
• Metadata should document in a simple and human-

readable fashion the features of a data mining
application.

• Metadata should allow for the effective search of
resources.

• Metadata should provide an efficient way to access
resources.

• Metadata should be used by software tools that
support a user in building KNOWLEDGE GRID

applications. For example, VEGA [8] is a visual
toolset for designing and executing data mining
applications over the KNOWLEDGE GRID that
uses metadata to describe and show the available
resources.
The current KNOWLEDGE GRID implementation

uses the Globus 2 MDS, and therefore the LDAP
protocol to publish, discover, and manage informa-
tion about the generic resources of the underlying
Grid (e.g., CPU performance, memory size, etc.). As
mentioned before, the complexity of the information

associated to more specific KNOWLEDGE GRID re-
sources (data sources, mining algorithms, knowledge
models) led us to design a different model to represent
and manage the corresponding metadata.

We adopted the eXtensible Markup Language
(XML), that provides a set of functionalities and capa-
bilities that are making it a common emerging model
for describing data structure and data set frameworks:
• XML provides a way to define infrastructure inde-

pendent representations for information.
• XML allows a user to define complex data struc-

tures: for example the XML Schema formalism [9]
provides a means for defining a strong control
on simple and complex data types in XML doc-
uments.

• XML allows for the use of powerful query lan-
guages: for instance, the XML Query [10] pro-
vides SQL-like query facilities to extract data from
real and virtual documents on the Web.

• It is easy to map XML documents into the data
structures of an object-oriented programming lan-
guage: for example, the Xerces library [11] per-
forms the parsing of an XML document in a Java
or C++ environment.

On the basis of these features, we decided to repre-
sent metadata by XML documents according to a set
of XML schemas defined for the different classes of
resources, as we discuss in the next section.

It is worth noting that by using XML for metadata
definition we benefit from a standard language that
makes our model flexible and extensible. Furthermore,
the resulting metadata model could be used to describe
other advanced Grid applications.

In the KNOWLEDGE GRID, metadata is accessed
and managed by means of a set of services. In partic-
ular, the KNOWLEDGE GRID architecture defines, as
mentioned above, the KDS, which maintains metadata
and allows applications to query and manage it. The
information managed by the KDS is stored into three
repositories (see Figure 1):
(1) the Knowledge Metadata Repository (KMR)

that stores metadata describing features of data
sources, software, and tools;

(2) the Knowledge Base Repository (KBR) that stores
information about the discovered models, and

(3) the Knowledge Execution Plan Repository (KEPR)
that stores the execution plans describing distrib-
uted data mining applications over the Grid.
The KNOWLEDGE GRID DAS and TAAS services

make use of the KDS for, respectively:
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Figure 1. The KNOWLEDGE GRID architecture.

• search, selection (data search services), extrac-
tion, transformation and delivery (data extraction
services) of data to be mined and

• search, selection and downloading of data mining
tools and algorithms.
Figure 1 shows the main metadata flows among

KNOWLEDGE GRID services and repositories. The
high level DAS and TAAS services use the core level
KDS service to manage metadata about algorithm and
data sources. In turn, the KDS interacts with the
KMR repository to access and store such metadata.
The EPMS service manages execution plan metadata,
which is accessed through the core level RAEMS
service, and stored in the KEPR database. Further-
more, execution results and related model metadata
are stored in the KBR repository, and processed by the
RPS service.

The metadata management process is a key aspect
in the development of data mining applications over
the KNOWLEDGE GRID, and on the whole develop-
ment process of complex applications on Grids. A
typical life cycle of metadata consists of the following
steps:
(1) Resource metadata is published in the KMRs of

the corresponding nodes.
(2) A user specifies the features of the resources

she/he needs to design a data mining application.
(3) The DAS and TAAS services search the KMRs of

the KNOWLEDGE GRID nodes for the requested
resources.

(4) Metadata describing the resources of interest is
delivered by such services to the requesting user.

(5) Metadata related to software, data, and operations
is combined into an execution plan (see Section 4)
to design a complete data mining application.

(6) After application execution, results are stored into
the KBR; metadata related to new and/or modified
resources is published in the respective KMRs for
future use.

3. Resource Metadata Representation

As mentioned before, our goal is to define metadata
needed to identify and classify all the heterogeneous
resources used in data mining applications on Grids.
The first step in designing metadata is the categoriza-
tion of resources. In the current implementation of the
KNOWLEDGE GRID, we focused on the definition of
metadata related to data sources, data mining tools,
and discovered knowledge. In Subsections 3.1–3.3
a sample metadata document is reported for each re-
source type. The sample documents are extracted from
a real data mining application based on the AutoClass
clustering tool [12].

In this section we address the problem of giving
metadata a proper structure (schema) that allows for
properly representing information about the different
types of resources. However, the definition of meta-
data structure is not sufficient to solve the problem
of giving the right meaning to metadata information.
To allow applications to automatically manage infor-
mation represented in metadata documents, it is also
necessary to associate semantics to them. This is usu-
ally accomplished through the use of ontologies. This
issue is discussed in Subsection 3.4.

3.1. Data Mining Software

We categorized data mining software on the basis of
the following parameters [13]:
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Table 1. Classification of data mining software.

Classification parameter XML tag Possible values

Kind of data sources <KindOfData> Relational database, transaction database, object-oriented
database, deductive database, spatial database, temporal data-
base, multimedia database, heterogeneous database, active
database, legacy database, semi-structured data, flat file.

Kind of knowledge to be mined <KindOfKnowledge> Association rules, clusters, characteristic rules, classifica-
tion rules, sequence discovery, discriminant rules, evolution
analysis, deviation analysis, outlier detection, regression.

Type of techniques to be utilized <KindOfTechnique> Statistics, decision trees, neural networks, genetic algo-
rithms, Apriori, fuzzy logic, SVD, bayesian networks, nearest
neighbors. . .

Driving method <DrivingMethod> Autonomous knowledge miner, data-driven miner, query-
driven miner, interactive data miner.

• the kind of input data sources;
• the kind of knowledge that is to be discovered;
• the type of techniques that data mining software

tools use in the mining process;
• the driving method of the mining process.

Table 1 summarizes a set of values for each clas-
sification parameter. This table is mapped on an XML
schema which defines the format and the syntax of the
XML file that will be used to describe the features of
a generic data mining software. The second column of
Table 1 reports the XML elements that correspond to
the classification parameters.

As an example, Figure 2 reports XML metadata re-
lated to the data mining software AutoClass [12]. The
XML file is composed of two parts. The first part is
the software Description, the second one is the soft-
ware Usage. The Description section specifies one
or more values, among those reported in Table 1, for
each classification parameter. The Usage section con-
tains information that can be used by a client to access
and use the software package. This section is com-
posed of a set of subsections, among which Syntax,
Hostname, ManualPath, and DocumentationURL. The
Syntax subsection describes the format of the com-
mand that a client should use to invoke the AutoClass
software tool. This subsection is defined as a tree,
where each node is an Arg element, and the root is the
name of the software itself. The children of the root
node specify the arguments that follow the software
name in the software invocation, and these arguments
can in turn have children, i.e. sub-arguments, and so
on. Each Arg element has the following attributes: the
description attribute is a textual description of the
argument; the type attribute specifies if the argument
is optional, required, or alternative. In the last

case, all the sibling arguments should have the same
value for this attribute, meaning that only one of the
siblings should be used in the software invocation. Fi-
nally, the value attribute (optional) specifies the fixed
value of the argument. If the value attribute is omit-
ted, the value is to be provided by the client. In the ex-
ample shown in Figure 2, in the AutoClass execution
command, the executable name should be followed by
the -search argument to ask for a classification, or by
the -reports argument, to obtain the model file. If the
-search argument is chosen, it should be followed by
four sub-arguments, all required.

Therefore, AutoClass can be invoked with
the command /usr/autoclass/autoclass –search
aFile.db2 aFile.hd2 aFile.model aFile.s-
params

3.2. Data Sources

Data sources are analyzed by data mining algorithms
to extract knowledge from them [13]. They can origi-
nate from relational databases, plain files, Web pages
and other structured and semi-structured documents.
In spite of the wide variety of the possible data source
types, we aim to define a common structure of data
source metadata in order to standardize the access and
search operations on such resources.

The common structure of metadata is composed of
two parts:
• an Access section that includes information for

retrieving a data source;
• a Structure section that provides information

about the logical and/or physical structure of a data
source.
As an example, Figure 3 shows an XML meta-

data document for a flat file that can be used as an
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<DataMiningSoftware name= “AutoClass”>

<Description>

<KindOfData>flat file</KindOfData>

<KindOfKnowledge>clusters</KindOfKnowledge>

<KindOfTecnique>statistics</KindOfTecnique>

<DrivingMethod>autonomous knowledge miner</DrivingMethod>

</Description>

<Usage>

. . .

<Syntax>

<Arg description= “executable” type= “required” value= “/usr/autoclass/autoclass”>

<Arg description= “make a classification” type= “alternative” value= “-search”>

<Arg description= “a .db2 file” type= “required”/>

<Arg description= “a .hd2 file” type= “required”/>

<Arg description= “a .model file” type= “required”/>

<Arg description= “a .s-params file” type= “required”/>

</Arg>

<Arg description= “create a report” type= “alternative” value= “-reports”>

<Arg description= “a .results-bin file” type= “required”/>

. . .

</Arg>

. . .

</Arg>

</Syntax>

<Hostname>icarus.cs.icar.cnr.it</Hostname>

<ManualPath>/usr/autoclass/read-me.text</ManualPath>

<DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/. . .</DocumentationURL>

. . .

</Usage>

</DataMiningSoftware>

Figure 2. An extract from an XML metadata sample for the AutoClass software.

input by the AutoClass software. The Access section
includes file system information, e.g., the Location
and the Size of the file, etc. The Structure section
includes two subsections, Format and Attributes.
The Format subsection contains information about the
physical structure of the flat file, e.g., the strings that
are used to separate the records and the attributes
within a record.

The Attributes subsection contains information
about the logical structure, i.e. it lists the table at-
tributes and provides the relative specifications (such
as the name of the Attribute, its type, etc.).

Although the high-level XML metadata format is
the same for all kinds of data sources, the content
of the Access and Structure sections may depend

on the specific characteristics of a given data source.
As an example, for relational databases the Format
subsection is no more needed, since the physical
formatting is managed by the database management
system. Furthermore, new subsections should be de-
fined; for instance, in the Access section, information
should be provided for the connection to the database
(e.g., the ODBC specifications).

3.3. Data Mining Models

The knowledge discovered through a data mining
process is represented by “data mining models.”
Whereas till today no common language has been pro-
posed for the definition of the data mining resources
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<FlatFile>

<Access>

<Location>/usr/share/imports-85c.db2</Location>

<Size>26756</Size>

. . .

</Access>

<Structure>

<Format>

<AttributeSeparatorString>,</AttributeSeparatorString>

<RecordSeparatorString>#</RecordSeparatorString>

<UnknownTokenString>?</UnknownTokenString>

. . .

</Format>

<Attributes>

<Attribute name= “symboling” type= “discrete”>

<SubType>nominal</SubType>

<Parameter>range 7</Parameter>

</Attribute>

<Attribute name= “normalized-loses” type= “real”>

<SubType>scalar</SubType>

<Parameter>zero_point 0.0</Parameter>

<Parameter>rel_error 0.01</Parameter>

</Attribute>

. . .

</Attributes>

</Structure>

</FlatFile>

Figure 3. An extract from an XML metadata sample for a flat file.

discussed before, a standard framework, called Pre-
dictive Model Markup Language (PMML), has been
defined to describe data mining results. PMML is an
XML language which provides a vendor-independent
method for defining data mining models [14]. PMML
provides a Document Type Definition (DTD) to de-
scribe different kinds of models such as classification
rules and association rules. We used it to define data
mining models in the KNOWLEDGE GRID. As an
example, Figure 4 shows an extract from a PMML
document that represents the clustering model ex-
tracted by AutoClass from the dataset whose metadata
is reported in Figure 3. In this example, AutoClass
performs a clustering task on records concerning car
imports in 1985.

The MiningSchema element of the model reported
in Figure 4 points out that the clustering process is
based on three record attributes: make, num-of-doors

and body-style. For the sake of shortness, two clusters
(out of 12) are partially shown, the former composed
of 28 records and the latter composed of 4 records.

Notice that each cluster record can be recon-
structed by taking the values located in the same posi-
tion within each clustering field. For example, <bmw
two sedan> is the first record belonging to Cluster 1.
The portion of the PMML DTD that we used for this
clustering model is available at [15].

3.4. Semantics in the Knowledge Grid

In the Grid computing community there is an effort
to define the so called Semantic Grid [16], whose
approach is based on the systematic description of re-
sources through metadata and ontologies. The use of
ontologies in Grid applications integrates XML-based
metadata information models by associating semantics
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<PMML version= “2.0”>

. . .

<ClusteringModel modelName= “Clustering on imports-85c”

modelClass= “distributionBased” numberOfClusters= “12”>

<MiningSchema>

<MiningField name= “make”/>

<MiningField name= “num-of-doors”/>

<MiningField name= “body-style”/>

</MiningSchema>

. . .

<Cluster name= “Cluster 1”>

<Partition name= “Partition 1”>

<PartitionFieldStats field= “make”>

<Array n= “28” type= “string”>bmw bmw jaguar nissan . . .</Array>

</PartitionFieldStats>

<PartitionFieldStats field= “num-of-doors”>

<Array n= “28” type= “string”>two four four four . . .</Array>

</PartitionFieldStats>

<PartitionFieldStats field= “body-style”>

<Array n= “28” type= “string”>sedan sedan sedan wagon . . .</Array>

</PartitionFieldStats>

</Partition>

</Cluster>

<Cluster name= “Cluster 2”>

<Partition name= “Partition 2”>

<PartitionFieldStats field= “make”>

<Array n= “4” type= “string”>chevrolet chevrolet chevrolet dodge</Array>

</PartitionFieldStats>

. . .

</Partition>

</Cluster>

. . .

</ClusteringModel>

</PMML>

Figure 4. An extract from a PMML model file.

to them. The Semantic Grid approach exploits the use
of
• services for querying over metadata and ontolo-

gies,
• tools for knowledge extraction and reasoning, and
• semantic search engines.

Those services and tools represent an evolution with
respect to current basic Grid services, such as the
Globus MDS pattern-matching based search.

Within the KNOWLEDGE GRID project, an effort
is on the way to extend the architecture with ontology-
based services. In [17], Cannataro and Comito propose
an ontology for the data mining domain (DAMON) to
enhance the design of distributed data mining appli-
cations on the KNOWLEDGE GRID. DAMON offers a
reference model for the different kinds of data mining
tasks, methodologies, and software available to solve
a given task.
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To exploit the DAMON capabilities, some novel
components are introduced in the KNOWLEDGE GRID

architecture. In particular, the Ontology Directory Ser-
vice (ODS) is responsible for maintaining the ontolog-
ical data and allows applications to query and manage
them. Ontological data is represented by RDF schema
files and is stored in an Ontological Data Repository
(ODR), whereas metadata regarding availability, loca-
tion, and configuration of resources is stored into the
KMR.

According to this approach, the search and selec-
tion of the resources is split into two phases:
(1) Ontology-based selection of the resources. Brows-

ing and searching the ontology allows a user to
locate the more appropriate tasks, methods, al-
gorithms and finally data mining software to be
used in a certain phase of the knowledge discovery
process.

(2) Access to the resource metadata. The ontology
gives the URLs of all the instances of the selected
resources available on the KNOWLEDGE GRID

nodes, i.e. the URLs of the relevant metadata files
stored in the KMRs.

4. Execution Plan Representation

A distributed data mining application is a process
composed of several steps that are executed sequen-
tially or in parallel. In the KNOWLEDGE GRID

framework, the management of complex data min-
ing processes is carried out through the definition of
an execution plan. An execution plan is a graph that
describes the interaction and data flow between data
sources, data mining tools, visualization tools, and
output models.

Starting from the XML representation of data min-
ing resources, an execution plan defines the high-
level logical structure of a data mining process. The
KNOWLEDGE GRID provides a visual environment,
called VEGA [8], which allows a user to build an
execution plan in a semi-automatic way.

An execution plan may contain concrete resources
and abstract resources. A concrete resource is com-
pletely specified by its metadata that has been previ-
ously retrieved from remote and local KMRs. In meta-
data describing an abstract resource some features are
expressed as constraints. For instance, whereas the
metadata described in Section 3 describes an instance
of AutoClass, available on a given node, the meta-
data document shown below describes an abstract data

mining software that is able to perform a clustering
task on flat files.

<DataMiningSoftware name= “genericSoftware”>

<Description>

<KindOfData>flat file</KindOfData>

<KindOfKnowledge>clusters</KindOfKnowledge>

</Description>

</DataMiningSoftware>

An abstract resource can be instantiated into an ex-
isting concrete resource whose metadata matches the
specified constraints. An execution plan that contains
at least one abstract resource is an abstract execu-
tion plan, whereas an execution plan containing only
concrete resources is referred to as an instantiated ex-
ecution plan. Such a distinction is made to take into
account the dynamic nature of a Grid environment,
in which resources fail and become available, data
gets deleted, software gets updated, etc. In general, a
user builds an abstract execution plan and the RAEMS
service attempts to transform it into an instantiated
execution plan, by resolving abstract resources into
concrete resources. Such an action is performed by
a scheduler that allows the generation of the optimal
execution plan. From an abstract execution plan, dif-
ferent instantiated execution plans could be generated,
depending on the resources that are available on the
KNOWLEDGE GRID at different times.

For long-running applications, it could be useful
to evaluate the instantiation of abstract resources not
only before the application execution, but also during
the execution itself. Indeed, a concrete resource (e.g.,
a host or a software) chosen for the execution of a
task could become unavailable after the starting of the
overall application but before the execution of that par-
ticular task. On the other hand, novel useful resources
might become available, so they could be taken into
account at run time for a more efficient execution of
the application. We deal with this problem by using an
approach based on two elements:
(1) An instantiated execution plan can provide a list

of several concrete resources that properly match
an abstract resource; the list is ordered so that
the first concrete resource is to be considered the
most convenient, and so forth. In this way, should
a resource become unavailable before task exe-
cution, it could be immediately replaced without
re-invoking the scheduler.

(2) A number of resource checkpoints can be inserted
within an execution plan, either by the user or
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by the designing tool: when a resource check-
point is reached, the scheduler is invoked in order
to reconsider the instantiation of the abstract re-
sources comprised between that checkpoint and
the successive one encountered in the execution
plan. Two kinds of re-scheduling operations are
defined: a “soft” rescheduling allows for check-
ing the availability of the listed concrete resources
and possibly for changing their ordering, with-
out looking for new concrete resources. A “hard”
rescheduling is used to search further concrete re-
sources that may have become available during the
execution of the application. “Hard” rescheduling
provides a better resource selection, but it could be
remarkably slower.
Figure 5 shows an extract from a sample instan-

tiated execution plan. An execution plan gives a list
of tasks and task links, which are specified using
the XML tags Task and TaskLink, respectively. The
label attribute in a Task element identifies one basic
task in the execution plan, and it is used to link various
basic tasks to compose the overall task flow. In gen-
eral, each Task element contains three sub-elements:
the Program element, which specifies the software to
execute, and the Input and Output elements, that de-
scribe input and output files. The href attributes of
such elements specify, respectively, the location of
metadata related to executable, input, and output files.
Note that a file transfer is managed exactly as a pro-
gram execution, where the software to be invoked is a
GridFTP client, or another available file transfer agent.

The shown execution plan specifies that the Auto-
Class software in task6 should be run on the abstract
host abstract_host1: it means that the correspond-
ing concrete host, to be selected by the scheduler, must
have a copy of the program AutoClass that satisfies the
constraints specified in the related XML metadata. On
the same host, data source, i.e. the input of AutoClass,
has to be transferred using the GridFTP program, as
described in the specification of task2.

In the execution plan, a checkpoint is denoted
as a particular Task element having a sub-element
ResourceCheck that indicates if the checkpoint re-
quests a hard or a soft rescheduling.

A TaskLink element represents a relation between
two tasks in an execution plan. For instance, the shown
TaskLink elements indicate, as specified by their from
and to attributes, that the task flow proceeds from
task1 to task2 (with the checkpoint check1 between
them), then to task3, and so on.

Besides the value of the attribute type at the
root element of the execution plan, the feature that

distinguishes an instantiated execution plan from an
abstract execution plan, is the presence of the element
ResourceInstantiation. Within this element, for
each abstract resource defined in the execution plan,
a list of candidate concrete resources, selected by the
scheduler, is given: e.g., Figure 5 shows two hosts that
can be used to resolve the abstract_host1 abstract
resource. At the time of execution, the execution man-
ager tries to access the specified concrete resources
respecting their ordering. As mentioned before, con-
crete resources can be reordered at a “soft” resource
checkpoint, while further concrete resources can be
added within a “hard” checkpoint.

An instantiated execution plan will be translated
into the language of a specific Grid resource broker
for its execution. The KNOWLEDGE GRID implemen-
tation uses the Globus Resource Allocation Manager
(GRAM) [18] whose script language is the Resource
Specification Language (RSL) [19].

The instantiated execution plan is translated into
a set of RSL scripts. Each RSL script corresponds to
a segment of the instantiated execution plan included
between two consecutive ResourceCheck tags.

Figure 6 shows an RSL script corresponding to
the second segment of the sample execution plan in
Figure 5. Such an RSL script includes two resource
descriptions corresponding respectively to the tasks
labeled as task2 and task6 in the instantiated execu-
tion plan. A typical resource description is composed
of several attribute-value relationships in a conjunc-
tion.

For instance, the first description in this RSL
script specifies that a data transfer is to be
performed by using the globus-url-copy exe-
cutable, located in the minos.cs.icar.cnr.it
node, to copy the imports-85c.db2 dataset from
minos.cs.icar.cnr.it to icarus.cs.icar.cnr.it.
Note that the shown RSL script is generated by substi-
tuting the abstract_host1 of Figure 5 with the first
concrete host in the related list of candidate resources.

To allow for the dynamic scheduling of the execu-
tion plan, an RSL script related to a given segment
is generated after the concrete resources have been
chosen at the corresponding ResourceCheck.

5. Metadata Management in the KNOWLEDGE

GRID

Distributed metadata management in the KNOWL-
EDGE GRID is performed through the Knowledge
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<ExecutionPlan type= “instantiated”>

<Task label= “task1”>

<Program href= “minos.cs.icar.cnr.it/software/DB2Extractor.xml”

title= “DB2Extractor on minos.cs.icar.cnr.it”/>

<Input href= “minos.cs.icar.cnr.it/data/car-imports_db2.xml”

title= “car-imports.db2 on minos.cs.icar.cnr.it”/>

<Output href= “minos.cs.icar.cnr.it/data/imports-85c_db2.xml”

title= “imports-85c.db2 on minos.cs.icar.cnr.it”/>

</Task>

<Task label= “check1”>

<ResourceCheck method= “soft”/>

</Task>

<Task label= “task2”>

<Program href= “minos.cs.icar.cnr.it/software/GridFTP.xml”

title= “GridFTP on minos.cs.icar.cnr.it”/>

<Input href= “minos.cs.icar.cnr.it/data/imports-85c_db2.xml”

title= “imports-85c.db2 on minos.cs.icar.cnr.it”/>

<Output href= “abstract_host1/data/imports-85c_db2.xml”

title= “imports-85c.db2 on abstract_host1”/>

</Task>

. . .

<Task label= “task6”>

<Program href= “abstract_host1/software/autoclass3-3-3.xml”

title= “autoclass on abstract_host1”/>

<Input href= “abstract_host1/data/imports-85c_db2.xml”

title= “imports-85c.db2 on abstract_host1”/>

<Output href= ” abstract_host1/data/classes.xml”

title= “classes on abstract_host1”/>

</Task>

. . .

<TaskLink ep:from= “task1” ep:to= “check1”/>

<TaskLink ep:from= “check1” ep:to= “task2”/>

<TaskLink ep:from= “task2” ep:to= “task3”/>

. . .

<TaskLink ep:from= “task5” ep:to= “task6”/>

. . .

<ResourceInstantiation abstractResource= “abstract_host1”>

<candidateResource>icarus.cs.icar.cnr.it</candidateResource>

<candidateResource>telesio.cs.icar.cnr.it</candidateResource>

</ResourceInstantiation>

</ExecutionPlan>

Figure 5. An extract from an instantiated execution plan.
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+

(&(resourceManagerContact= minos.cs.icar.cnr.it)

(subjobStartType= strict-barrier)

(label= task2)

(executable= $(GLOBUS_LOCATION)/bin/globus-url-copy)

(arguments= gsiftp://minos.cs.icar.cnr.it/. . ./imports-85c.db2

gsiftp://icarus.cs.icar.cnr.it/. . ./imports-85c.db2

)

)

. . .

(&(resourceManagerContact= icarus.cs.icar.cnr.it)

(subjobStartType= strict-barrier)

(label= task6)

(executable= . . ./autoclass)

(arguments= -search . . ./imports-85c.db2 . . ./imports-85c.hd2 . . ./imports-85c.model

. . .

)

)

. . .

Figure 6. An extract from an RSL script.

Directory Service (KDS) that allows users to publish
and discover metadata about Grid resources. This sec-
tion describes an implementation of the KDS based on
the Globus Toolkit 2 (GT2). In particular, the KDS
prototype uses the Monitoring and Discovery Service
provided by GT2 which adopts the LDAP protocol and
model to represent, publish, and query information.

The KDS implementation based on the MDS-2 of-
fers the opportunity for an easy integration with the
other KNOWLEDGE GRID components, which are in
turn based on the GT2 services (GSI, GRAM, etc.).
The MDS-2 arranges the information servers accord-
ing to a hierarchical architecture. This approach is well
suited for small-medium size Grids in which nodes are
organized in a hierarchical fashion, but it requires that
information servers belonging to the highest levels of
the hierarchy are characterized by a high degree of
availability.

In large-scale Grids characterized by a high degree
of dynamicity, the MDS-2 architecture, and conse-
quently the discussed KDS implementation, suffers
of scalability and reliability problems that are typ-
ical in a client/server hierarchical architecture. To
overcome such limitations, we are adopting a novel
approach for the KDS architecture which is based on
the peer-to-peer (P2P) paradigm.

Section 5.1 describes the current KDS implemen-
tation based on the GT2, whereas Section 5.2 out-
lines the envisioned evolution of the KDS architecture
according to the peer-to-peer approach.

5.1. Knowledge Directory Service Implementation

The Knowledge Directory Service provides two
classes of components:
(1) The KDS publishing system, which enables to cre-

ate, modify, and delete XML documents in the
local Knowledge Metadata Repository (KMR),
and to publish documents stored in the KMR, so
that they can be accessed by remote applications.

(2) The KDS discovery system, which enables to
search, retrieve, and select XML metadata stored
in the KMR of remote nodes.

The design of the KDS aims to achieve a clear sep-
aration between the metadata representation model
(that uses XML) and the metadata access model (that
currently uses LDAP), so that redesigning the access
model would not affect the representation model.

The main components of the KDS publishing sys-
tem are:
• the Knowledge Metadata Repository (KMR),
• the Grid Resource Information Service (GRIS), and
• the KDS provider.
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Table 2. Attributes of the objectclass KGridMetadata.

Attribute Description

KGrid-Metadata-url URL of the XML document.

KGrid-Metadata-content Content of the XML document, coded in the base 64 notation.

KGrid-Metadata-creation Creation time of the XML document.

KGrid-Metadata-last-modified Last modification time of the XML document.

KGrid-Metadata-size Dimension in byte of the XML document.

The KMR is implemented as a directory of the file
system in which metadata about resources is stored as
XML files. Each metadata document is characterized
by an URL having the following format:

kds://<hostname>/<relative path of the

document in the KMR of hostname>

As discussed in the previous sections, the KNOWL-
EDGE GRID provides a set of XML schemas that allow
for the description of different types of resources. An
XML editor is used to perform the creation, modifi-
cation, and deletion of XML documents in the KMR,
ensuring that such documents are valid with respect to
the corresponding XML schemas.

The GRIS is the MDS component used to pub-
lish XML metadata on the Grid. As mentioned in
Section 2, each Globus node executes a local GRIS
which provides information about resources of that
node by means of the LDAP protocol [6]. By default,
a Globus node owns a set of information providers
used to generate static and dynamic information about
the resources of that node, such as operating system,
memory size, CPU speed, file system size, system
load, etc., which is published by the GRIS. An infor-
mation provider is a program that, when invoked by
the GRIS, returns a sequence of records that are pub-
lished through an LDAP server. The records returned
by the information providers are expressed in the LDIF
format [20], and must respect the LDAP schema [7]
stored in the GRIS. LDAP data is published in a hi-
erarchical structure named Directory Information Tree
(DIT).

Globus allows for the creation of customized in-
formation providers for publishing data through the
GRIS [21]. The KDS defines an LDAP schema (the
KDS schema) and an information provider (the KDS
provider) to make KMR information accessible by re-
mote applications. The KDS schema specifies how
the information in the KMR is represented in the
DIT maintained by the GRIS. For each XML doc-
ument stored in the KMR, a corresponding entry is

published in the DIT. To represent the structure of
such entries, the KDS schema defines the object-
class KGridMetadata, which specifies the attributes
described in Table 2.

Figure 7 shows the main steps through which the
KDS publishing system replies to a search request.
When the GRIS receives an LDAP search request from
a remote application (step 1), it invokes the KDS
provider (step 2). The KDS provider reads the XML
files stored in the KMR directory (step 3) and, for
each XML file, returns an LDIF entry that represents
the information related to that file using the attributes
described in Table 2 (step 4). The LDIF records are
validated against the KDS schema (step 5), and are
returned to the requesting client (step 6). Steps 2–5
can be skipped if the results of the search operation
can be retrieved from the GRIS cache.

As mentioned in Section 2, the information of a set
of GRIS can be collected and provided by a GIIS index
server. Hence, it is possible to query a single GIIS to
search metadata stored in a set of GRIS registered to
it.

The KDS discovery system allows for searching,
selecting, and retrieving the XML metadata stored
in the KMRs of the KNOWLEDGE GRID nodes. The
KMR metadata selected as a result of a KDS search is
stored in the Task Metadata Repository (TMR), a local
directory that caches metadata needed to compose an
application.

The KDS discovery system provides a simple Java
library that includes:
• the KDSRetriever class, and
• the KDSSelector interface.

Figure 8 shows how the KDS discovery system
is used by a client application to search metadata in
remote KMRs. The KDSRetriever class allows for
retrieving and selecting metadata stored in the KMRs
of remote nodes, and for saving them in the local
TMR. A KDSRetriever object sends requests to GRIS
and/or GIIS servers to perform an LDAP search for
KGridMetadata entries (step 1). The search operation
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Figure 7. The KDS publishing system.

Figure 8. The KDS discovery system.

returns a set of LDIF entries, each one containing the
information extracted from a single XML metadata file
located in a remote KMR (step 2). The KDSRetriever
submits the LDIF entries to a KDSSelector object
(step 3), which responds by indicating the entries that
should be selected on the basis of a given criterion
(step 4). Selected entries are translated into XML files
and are stored in the local TMR (step 5). In essence,
a KDSRetriever object performs a local copy of the
remote XML metadata documents that are selected by
a customized KDSSelector object.

The interface KDSSelector is used to select meta-
data on the basis of different selection filters and
parameters. To this end, a set of different classes
implementing the KDSSelector interface can be de-
veloped to perform several selection tasks, ranging
from very simple (e.g., based on the XML document
modification time) to very complex ones (e.g., based
on advanced content filtering and specified through
specialized query languages such as XML Query).

5.2. A P2P Approach for Metadata Management

An attractive model that shares same common features
with Grid computing systems and applications is the

peer-to-peer model. P2P is a class of self-organizing
systems or applications that takes advantage of dis-
tributed resources – storage, processing, information,
and human presence – available at the Internet’s edges.
The P2P model could thus help to ensure Grid scalabil-
ity: designers could use the P2P philosophy and tech-
niques to implement non-hierarchical decentralized
Grid systems.

In the last few years the Grid community has
undertaken a development effort to align Grid tech-
nologies with Web Services. The Open Grid Services
Architecture (OGSA) defines Grid Services as an ex-
tension of Web Services and lets developers integrate
services and resources across distributed, heteroge-
neous, dynamic environments and communities [24].
The OGSA model provides an opportunity to inte-
grate P2P models in Grid environments since it offers
an open cooperation model that allows Grid entities
to be composed in a decentralized way. In Globus
Toolkit 3 – the current implementation of the OGSA
– resource discovery is based, as well as in Globus
Toolkit 2, on a hierarchical information service. The
key component of such a service is the Index Ser-
vice, a Grid Service that holds metadata about a set
of resources registered to it.

We are designing an alternative architecture for
discovering and querying resource metadata in Grids,
which is based on OGSA but adopts a P2P approach
for managing global queries on multiple Index Ser-
vices.

Figure 9 shows the main components of this sys-
tem. Three types of Grid Services are defined: Index
Services, Peer Services, and Contact Services. As
mentioned before, Index Services can be organized
in a hierarchical structure. A top-level Index Service
provides information about all the resources in a given
Virtual Organization (VO). Peer Services are used to
implement resource discovery across different VOs.
There is one Peer Service per VO. Each Peer Service
has a set of neighbour Peer Services, and exchanges
query/response messages with them in a P2P mode.
Contact Services are cache servers that store the URLs
of known Peer Services. A Peer Service may contact
one or more well known Contact Services to obtain the
URLs of other Peer Services.

The system supports both local and global queries.
A local query attempts to find information about re-
sources in a given VO; it is performed by submitting
the query to the Index Service of that VO. A global
query aims to discover resources located in possibly
different VOs; it is performed by submitting the query
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Figure 9. A P2P architecture for resource discovery on OGSA
Grids.

to a Peer Service. This Peer Service will process that
query locally (through the associated Index Service),
and will forward it to its neighbours as in typical P2P
networks. Whenever responses are received back by
the Peer Service, they are forwarded to the requestor.

6. Related Work

The crucial role of metadata management for the ef-
fective designing of distributed data mining systems is
widely recognized in the literature [22, 23, 26, 30, 31].
A recent workshop report released within the e-
Science project [22] highlights the benefits of adopting
standard representation of metadata to face the prob-
lems caused both by increasing data volume and by
the heterogeneous and distributed nature of scientific
data. In particular, the first of twelve recommendations
produced by the mentioned workshop report empha-
sizes the role of XML as a standardization language:
XML aids interoperability and flexibility, since data
represented with XML combines rich structure, rich
choice of tools, and wide acceptance.

In [23] the role of metadata in the context of
the Semantic Grid is discussed. Here metadata is
used to assist a three level programming model: the
lowest level includes traditional code to implement
a service; the next level uses agent technology and
metadata to choose which services to use; the third
level (workflow) links the chosen services to solve
domain specific problems. When exploiting the Open
Grid Services Architecture, based on the Grid Service
technology [24], it is essential to integrate meta-
data embedded in services (i.e. information stored in

the XML-based Service Data Elements provided by
Grid Services) and metadata external to Grid Services,
which could be stored in distributed databases and
repositories with very variable scope and complete-
ness (e.g., LDAP or UDDI indexes).

Several systems that support distributed data min-
ing and data transformation processes have been re-
cently proposed. A few of those systems operate on
Grid environments, whereas most of the proposed
systems work on clusters of computers or over the
Internet.

Discovery Net [25] provides an architecture
for building and managing knowledge discovery
processes on the Grid. Like in the KNOWLEDGE

GRID, metadata is crucial in the Discovery Net in-
frastructure. An XML language called Discovery
Process Markup Language (DPML) is used to describe
simple and compound applications. DPML represents
a process as a data flow graph of nodes, each repre-
senting a service; a node description is an XML file
containing service parameters, history of past para-
meter settings, and notes. Resources are characterized
by the definition of data types stored in a Meta-
Information Server: service composition is performed
by assuring a proper matching of input and output data
types. The use of metadata for scheduling is an issue
not properly addressed in Discovery Net. Therefore,
the approach used in the KNOWLEDGE GRID for man-
aging abstract and instantiated execution plans could
be useful in Discovery Net to cope with the dynamic
nature of Grid resources.

MyGrid [26] is a project targeted at developing
open source high-level middleware to support person-
alized experiments in biology on a Grid. The semantic
complexity of such applications requires a careful de-
finition and integration of metadata about source data,
services, workflows etc. In [27], a mechanism is
proposed to manage metadata directly related to re-
sources (i.e., created at time of resource publishing),
third-party metadata and annotations, and semantic
metadata extracted from a domain specific ontology.
MyGrid aims at providing and integrating different
models for different kinds of metadata: e.g., Web
Services Flow Language (WSFL) for workflow and
DAML-S profile schemas for domain semantic meta-
data. The use of these models can be evaluated and
exploited also in the KNOWLEDGE GRID. In fact, the
Knowledge Discovery Service, as mentioned in Sec-
tion 5, allows for separating the access method from
the XML-based representation model of metadata.

A system implementing software tools and net-
work services for distributed data mining and data
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intensive computing is Papyrus [28]. Papyrus has been
developed for clusters and superclusters of worksta-
tions and it is composed of four software layers:
data management, data mining, predictive modeling,
and agent layer. That system uses PMML for pre-
dictive models and an XML language called Data
Space Markup Language for data and information
contained in clusters. Another distributed data mining
suite based on Java is PaDDMAS [29], a component-
based tool set that integrates pre-developed or custom
packages by using a dataflow approach. Each system
component is wrapped as a Java or CORBA object
whose interface is specified in XML. XML definition
may be used in PaDDMAS to automatically derive
help on a particular component and to check the suit-
ability of a component for analyzing a particular data
set, the type of platforms that may support the compo-
nent, etc. Finally, the Chimera system [30] proposes
a language, called Virtual Data Language (VDL), to
define metadata describing complex applications, in
particular data transformation processes. A VDL doc-
ument is structured in a way similar to an execution
plan defined in the KNOWLEDGE GRID.

Whereas most of the above systems mainly fo-
cus on the data mining phase, Open DMIX [31] aims
to provide OGSA-compliant services to facilitate the
data preprocessing phase in distributed data mining
applications. In particular, Open DMIX provides data
integration services allowing for the integration of
data from disparate sources, and data exploration ser-
vices that permit the investigation of data sets in order
to understand their important characteristics. Open
DMIX is designed upon a layered architecture com-
prising network transport services, data access ser-
vices, data integration and exploration services, data
analysis services, and discovery services. The net-
work transport services and the data access services
are based upon the Data Space Transfer Protocol [32],
a protocol designed to efficiently access and transport
data and metadata.

Besides the systems discussed above, other in-
teresting distributed data mining systems have been
developed. In such systems metadata management
appears to be not a central issue, because they fo-
cus on the use of dedicated platforms or make use
of homogeneous software components. Among such
systems, JAM [33] is an agent-based distributed data
mining system developed to mine data stored in dif-
ferent sites for building the so called meta-models as
a combination of several models learned at the differ-
ent sites where data is stored. JAM uses Java applets

to move data mining agents to remote sites. A sort
of meta-learning, called collective data mining is im-
plemented also in the BODHI system [34]. BODHI
is another agent-based distributed data mining system
implemented in Java.

Metadata management models are also deployed in
other computer science areas such as problem solving
environments (PSEs). Examples of significant PSEs
that use XML-based metadata models for representa-
tion of heterogeneous resources are WebFlow and the
Common Portal Application [35].

In [36] and [37], workflow management on the
Grid is examined under the NSF-funded GridPhysics
Network (GriPhyN) project. Two levels of workflows
are defined: (i) an abstract workflow specifies re-
sources by using logical files and logical component
names; (ii) a concrete workflow is a refined workflow,
ready to be executed. High-level services are devel-
oped to automate the process of building and executing
workflows. In [37], several approaches exploitable
for workflow scheduling and execution are discussed,
ranging from the “full-plan-ahead” approach (schedul-
ing decisions are made statically and globally before
the workflow execution) to the “in-time local schedul-
ing” (scheduling decisions are made dynamically and
locally before the execution of each workflow task).
The management of abstract and concrete workflows
in GriPhyN has much in common with our manage-
ment of abstract and instantiated execution plans. With
regard to workflow scheduling, our use of resource
checkpoints can be a useful compromise between
static/global and dynamic/local approaches. Indeed,
rescheduling operations are requested only at some
specific and critical points within a workflow and such
operations are facilitated by the availability of lists of
concrete resources that have been discovered before
workflow execution.

7. Conclusions

This paper discussed implementation and use of meta-
data for management of heterogeneous resources in
Grid-based data mining applications. We motivated
and presented the use of an XML-based approach to
represent metadata and build a distributed informa-
tion system for the KNOWLEDGE GRID environment
that can be also used in different high-level Grid
frameworks designed to support complex applications.
We introduced and discussed the metadata structure
for the main classes of resources involved in a data
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mining process (data mining software, data sources,
mining results, and execution plans). For each re-
source class we reported a sample metadata document
extracted from a real data mining application. Further-
more, we presented the implementation of the service
used to publish, search, and retrieve metadata in the
KNOWLEDGE GRID. We are currently using the meta-
data model implementation for developing distributed
data mining applications running on the KNOWLEDGE

GRID. Finally, we presented the architecture of a P2P
model for metadata management on Grids that we are
designing for scalable metadata management in future
large scale Grids.

As a result of our work we experienced the key role
of metadata for the implementation of resource rep-
resentation, search, and discovery services in hetero-
geneous computing environments such as Grids and
meta-computing systems. In particular, metadata mod-
els are at the basis of Grid information systems and
they are major players where complex applications,
such as knowledge discovery processes or scientific
simulations, must be developed in such environments.
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