
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 22:658–682
Published online 30 November 2009 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1545

Mining@home: toward a
public-resource computing
framework for distributed data
mining

C. Lucchese1,∗,†, C. Mastroianni2, S. Orlando3 andD. Talia2,4

1I.S.T.I.-C.N.R.-HPC Laboratory, Via Moruzzi 1, Pisa 56100, Italy
2I.C.A.R., C.N.R., Rende, Italy
3Department of Computer Science, University of Venice, Italy
4D.E.I.S., University of Calabria, Rende, Italy

SUMMARY

Several classes of scientific and commercial applications require the execution of a large number of
independent tasks. One highly successful and low-cost mechanism for acquiring the necessary computing
power for these applications is the ‘public-resource computing’, or ‘desktop Grid’ paradigm, which
exploits the computational power of private computers. So far, this paradigm has not been applied to
data mining applications for two main reasons. First, it is not straightforward to decompose a data
mining algorithm into truly independent sub-tasks. Second, the large volume of the involved data makes
it difficult to handle the communication costs of a parallel paradigm. This paper introduces a general
framework for distributed data mining applications called Mining@home. In particular, we focus on one
of the main data mining problems: the extraction of closed frequent itemsets from transactional databases.
We show that it is possible to decompose this problem into independent tasks, which however need to
share a large volume of the data. We thus introduce a data-intensive computing network, which adopts a
P2P topology based on super peers with caching capabilities, aiming to support the dissemination of large
amounts of information. Finally, we evaluate the execution of a pattern extraction task on such network.
Copyright © 2009 John Wiley & Sons, Ltd.

Received 10 March 2009; Revised 3 August 2009; Accepted 16 August 2009

KEY WORDS: public-resource computing; desktop grids; data mining; closed frequent itemsets; peer-to-peer
computing

∗Correspondence to: C. Lucchese, I.S.T.I.-C.N.R.-HPC Laboratory, Via Moruzzi 1, Pisa 56100, Italy.
†E-mail: claudio.lucchese@isti.cnr.it

Contract/grant sponsor: European Commission; contract/grant numbers: IST-FP6-004265, IST-FP7-215483

Copyright q 2009 John Wiley & Sons, Ltd.



MINING AT HOME 659

1. INTRODUCTION

Today’s information society has become, with no doubt, a restless producer of data of many kinds.
A diverse amount of data is being collected: from traditional supermarket transactions, credit card
records, phone calls records, census statistics, and GPS tracks to other less usual kinds of data,
such as astronomical images, molecular structures, DNA sequences, and medical records. We are
witnessing an exponential growth in the volume of the data being collected, which implies an
exponential growth in the interest for analyzing and extracting useful knowledge from such data.
The will and the need to benefit from this largely available data may find an answer in data mining.
Nowadays, data mining applications need to deal with increasingly larger amounts of data, so

that, in the future, they will likely become large-scale and expensive data analysis activities. For this
reason, the size of the data and the scalability of algorithms have always been central issues in the
data mining community. While several distributed mining approaches for small-sized workstation
networks have been designed, they can hardly keep up with such data growth. In fact, they have
not been proved to scale to very large data sets (order of terabytes), and usually require expensive
data transfers during every iteration of the mining.
In this work we aim to explore the opportunities offered by the volunteer computing paradigm for

supporting the execution of costly data mining jobs that need to explore very large data sets. During
the recent years, volunteer computing has become a success story for many scientific applications.
In fact, Desktop Grids, in the form of volunteer computing systems, have become extremely popular
as a means for exploiting huge amount of low-cost computational resources with a few manpower
getting involved. BOINC [1] is by far the most popular volunteer computing platform available
today, and to date, over 5 million participants have joined various BOINC projects. The core
BOINC infrastructure is composed of a scheduling server and a number of clients installed on
users’ machines. The client software periodically contacts a centralized scheduling server to receive
instructions for downloading and executing a job. After a client completes the given task, it uploads
the resulting output files to the scheduling server and requests further work. BOINCwas successfully
used in projects such as Seti@home, Folding@home, and Einstein@home.
On the other hand, the nature of data mining applications is very different from the usual ‘@home’

applications. First, they are not easily decomposable into a set of small independent tasks. Second,
they are data-intensive, as any sub-task needs to work on a large portion of the data. These two issues
make it very challenging to distribute sub-tasks to volunteer clients. In fact, no algorithm has been
designed for propagating large amounts of data in a public computing framework. Nevertheless,
we believe that data mining may take advantage of volunteer computing in order to accomplish
complex tasks that would otherwise be intractable.
In this paper we present a general framework, calledMining@home, that supports the distributed

execution of data mining applications by exploiting volunteer computing networks. In particular,
we focus on the closed frequent itemsets mining problem (CFIM). This requires to extract a set
of significant patterns from a transactional data set, among the ones occurring more frequently.
We discuss its parallelization issues, and provide a deep analysis of a set of partitioning strate-
gies addressing the load imbalance problem. We also introduce a novel data-intensive computing
network, which is able to efficiently support our mining task by adopting a volunteer computing
paradigm. The network exploits caching techniques across a super-peer network to leverage the
cost of spreading large amounts of data to all the computing peers.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



660 C. LUCCHESE ET AL.

The paper is structured as follows: Section 2 summarizes the related work in the fields of parallel
mining of frequent itemsets and large-scale distributed computing with the volunteer paradigm.
Section 3 presents D-CLOSED, a distributed algorithm that efficiently solves the CFIM problem.
Section 4 describes theMining@home super-peer network on which the CFIM algorithm is executed
and the protocol exploited to disseminate and cache data and run the CFIM jobs. This section also
defines a number of different caching strategies that can be used depending on the capabilities
of the available hosts. Section 5 evaluates the performance of the envisioned algorithm, with a
particular focus on the scalability features, and compares the different caching strategies. Finally,
Section 6 discusses achievements and the possible future enhancements. Section 7 concludes the
paper.

2. RELATED WORK

Many algorithms and solutions have been devised for the discovery of frequent itemsets, yet targeting
small-scale parallel and distributed environments.
In this work, we aim at moving two steps forward:

• First, we tackle the task of mining closed frequent itemsets, which are a meaningful subset of
frequent itemsets (see Section 3). As regards the extraction of closed itemsets in parallel, there
exists only a multi-threaded algorithm called MT-CLOSED [2].
• Second, we propose a data-intensive computing network, inspired by volunteer computing,
which is able to handle the dynamic behavior of the available resources, and alleviates the cost
of spreading large amount of data through the network of computing nodes (see Section 4).

In the following, we thus review some of the main proposals presented in the literature, regarding
parallel pattern mining and large-scale distributed computing.

2.1. Parallel frequent pattern mining . . .

In order to show the difficulties of data mining algorithms in processing large data sets, we report
in Table I the running time and memory usage of the FP-CLOSE [3] algorithm, which is one of the
fastest closed frequent itemsets mining (FIM) algorithms according to the FIMI 2003 contest [4].
We used ‘medium-sized’ data sets: Accidents (34MB) and USCensus1990 (521MB), and varied
the minimum support threshold, that is the minimum number of occurrence that an itemset must
have in order to be considered relevant. These experiments were run on an Intel Xeon 2GHz box
equipped with 1GB of physical memory. Even with the smallest data set, when decreasing the
minimum support threshold, the memory size becomes an issue: either the process is slowed down
to 7 hours of computation because of memory swaps, or it fails due to large memory requirements,
exceeding the virtual memory capacity of 2GB.
This behavior is typical of most pattern mining algorithms. When increasing the size of the

database, such problems become apparent, since the memory occupation and the running time
increase at least proportionally. As a result, state-of-the-art algorithms are able to run to completion
only with large support thresholds, that is, extracting only a small fragment of the knowledge hidden
inside the data set.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 661

Table I. FP-CLOSE running time (in hh.mm:ss) and memory usage on the data sets Accidents and
USCensus1990.

Data set

Accidents USCensus1990

� (%) Time Memory � (%) Time Memory

5.0 25:03 600MB 45 12:09 452MB
4.0 44:50 1023MB 40 37:05 1273MB
3.0 7.09:12 1225MB 35 failed after 1.15:31
2.0 failed after 3.12:14 30 failed after 21:34

In this scenario, parallelism can be used to overcome the limits of a single machine. On the
one hand, memory requirements can (possibly) be fulfilled by the aggregate memory of a pool of
machines. On the other hand, the speed-up provided by a number of CPUs is very welcome in
such data mining tasks, where the total computational cost can be measured in hours. Still, pattern
mining algorithms cannot be trivially parallelized, and the mining of large data sets usually implies
large communication and synchronization costs.
To the best of our knowledge, MT-CLOSED [2] is the only algorithm for mining in parallel closed

frequent itemsets. However, MT-CLOSED is a multi-threaded algorithm designed for multi-core
architectures, therefore using shared memory and having a limited degree of parallelism. Section 3
discusses the problem of mining closed frequent itemsets, and proposed a new distributed algorithm.
A very recent effort toward the distributed mining of ‘terabyte-sized data sets’ is [5]. The authors

focus on the problem of discovering frequent itemsets, i.e. itemsets occurring more than a given
threshold in a transactional database (see Section 3). First, they show that state-of-the-art algorithms
for parallel pattern mining, such as DD [6], IDD, and HD [7], are not able to scale at all. Only
CD [6] performs sufficiently well in terms of speed-up, but still, the total computation time is
large compared with more efficient non-parallel implementations. Finally, they propose Distributed
FP-Growth (DFP), an algorithm inspired by FP-GROWTH [8], which is one of the fastest sequential
pattern mining algorithms. Not only does DFP have a small computational time, but it has a
considerable speed-up of factor 5.24 when going from 8 to 48 processors (ideal speed-up value
is 6). They use a baseline of 8 processors, because themining task cannot be accomplished on a single
machine. Note that in their work, the authors assume that the data set is already distributed across
the 48 processors, therefore, DFP does not take into consideration any start-up communication to
spread the data set among the various mining nodes. Moreover, the authors assume that the set
of processing nodes is static and continuously available. This assumption may be restrictive when
the cost of the processing increases: even within a small organization, new nodes may become
available, or some nodes may provide their computing power only for a limited amount of time.
In [9], the authors use the Map-Reduce framework [10] to discover co-occurring items on a very

large cluster with more than 2000 machines. This problem has lower complexity compared with
frequent pattern mining, since a small portion of the frequent itemsets, consisting of very short
patterns, is returned. However, the large data sets used and the very promising results obtained,
encourage the research on mining algorithms in large distributed environments.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



662 C. LUCCHESE ET AL.

2.2. . . . and large-scale distributed computing

The term ‘volunteer computing’ or ‘public-resource computing’ [11] is used for applications in
which jobs are executed by privately owned and often donated computers that use their idle CPU
time to support a given, usually scientific, computing project. The pioneer project in this realm
is Seti@home [12], which has attracted millions of participants wishing to contribute to the digi-
tal processing of radio telescope data in the search for extra-terrestrial intelligence. A number of
similar projects, such as Folding@home and Einstein@home, are supported today by the software
infrastructure that evolved out of that project: the Berkeley Open Infrastructure for Network Com-
puting, or BOINC [1]. The core BOINC infrastructure is composed of a scheduling server and a
number of clients installed on users’ machines. The BOINC middleware is especially well suited
for CPU-intensive applications but is somewhat inappropriate for data-intensive tasks due to its
centralized nature that currently requires all data to be served by a centrally maintained server.
XtremWeb [13,14] is another Desktop Grid project that, like BOINC, works well with ‘embar-

rassingly parallel’ applications that can be broken into many independent and autonomous tasks.
XtremWeb follows a centralized architecture and uses a three-tier design consisting of a worker, a
coordinator, and a client. The XtremWeb software allows multiple clients to submit task requests
to the system. When these requests are dispensed to workers for execution, the workers will re-
trieve the necessary data and software to perform the analysis. The role of the third tier, called
the coordinator, is to decouple clients from workers and to coordinate task executions on workers.
Unfortunately this approach cannot support applications that are not ‘embarrassingly parallel’.
Some recent efforts aim to exploit distributed architectures for mining tasks. In [15], a comparison

is presented among four different strategies for the distribution of data to multiple nodes in a Cloud
environment: ‘streaming’, ‘pull’, ‘push’, and ‘hybrid’. The hybrid strategy combines the properties
of pull and push algorithms, where data is first delivered to a subset of intermediate nodes, endowed
with reliable and high-capacity storage devices, and then is requested by the nodes that perform
the mining tasks. In this respect, the caching algorithm defined in Mining@home resembles, and
further enhances, the hybrid strategy described in [15].
In [16], the results of the execution of a distributed algorithm for computing histograms from

multiple high-volume data streams are presented. The tests were executed on a data mining mid-
dleware that uses Composible-UDT, a data transfer protocol specialized for high-bandwidth and
long-haul connections. However, the middleware is specifically focused on the computation of his-
tograms and may not be easily generalized to different data mining tasks. Moreover, experiments
were performed with only a few nodes; therefore, the scalability issues could not be taken into
account.
Grid Weka [17] and Weka4WS [18] are efforts aimed at exploiting Grid facilities and services

to support distributed data mining algorithms. They extend the Weka toolkit to enable the use of
multiple computational resources when performing data analysis. In these systems, a set of data
mining tasks can be distributed across several machines in an ad hoc environment. These kinds of
ad hoc environments limit the maximum number of new machines that may join the computation,
and assume that no faults are possible.
Falcon [19] is a system tailored for distributed application monitoring and steering. Monitoring

is achieved by instrumenting the application code with a collection of sensors. These sensors will
transmit data to a central monitor during execution. The monitor provides user interfaces for the

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 663

online analysis of application performance by a human expert. Falcon, then allows the online
steering (i.e. reconfiguration) either driven by the human expert or dynamically through policies
provided by the user. The goal of steering is to improve the performance of the application, e.g. by
improving the load balance. Even though Falcon is a very general tool, it does not address one of the
major issues of large-scale data mining applications: the data dissemination. Falcon does not provide
any support for a smart and efficient data distribution. Conversely, our data-intensive computing
network provides a replication service that reduces the data transfer costs and the latencies.
In [20], a framework is presented that attempts to combine the strengths of a volunteer distributed

computing approach such as BOINC with decentralized, yet secure and customizable, peer-to-peer
data sharing practices. This approach differs from the centralized BOINC architecture in that it seeks
to integrate P2P networking directly into the system, as job descriptions and input data is provided
to a P2P network instead of directly to the client. The P2P-based public computing framework
discussed in [20] was applied to the analysis of gravitational waveforms for the discovery of user-
specified patterns that may correspond to ‘binary stars’. However, that use case is simpler than the
data mining problem discussed in this paper, because in the astrophysical application, input data
is partitioned in disjoint subsets that are assigned to worker nodes, and jobs are all very similar in
terms of space and time complexity.
Regarding data-dissemination, several solutions have been explored by content delivery services

such as Akamai (www.akamai.com<http://www.akamai.com>). Akamai relies on the smart use of
the DNS services in order to provide the URL of a copy of the requested object that is as close as
possible to the user. Clearly, this approach is not the most effective in our scenario: first, permanent
storage of data is not required, second, and more importantly, our data-intensive network allows
for the replication of portions of data, accommodating the needs of the various sub-tasks.

3. PARALLEL MINING OF CLOSED FREQUENT ITEMSETS

FIM is a demanding task common to several important data mining applications that look for inter-
esting patterns within databases (e.g. association rules, correlations, sequences, episodes, classifiers,
clusters). The problem can be stated as follows.

Definition 1 (FIM: Frequent Itemset Mining Problem). Let I={x1, . . . , xn} be a set of distinct
literals, called items. An itemset X is a subset ofI. If |X | = k, then X is called a k-itemset. A trans-
actional database is a bag of itemsets D={t1, . . . , t|D|} with ti ⊆ I, usually called transactions.
The support of an itemset X in database D, denoted �D(X) or simply �(X) when D is clear from
the context, is the number of transactions that include X . Given a user-defined minimum support �,
an itemset X such that �D(X) ≥ � is called frequent or large (since they have large support). The
FIM Problem requires to discover all the frequent itemsets in D given �.

We denote withL the collection of frequent itemsets, which is indeed a subset of the huge search
space given by the power set of I.
State-of-the-art FIM algorithms visit a lexicographical tree spanning over such search space

(Figure 1), by alternating candidate generation and support counting steps. In the candidate gen-
eration step, given a frequent itemset X of |X | elements, new candidate (|X | + 1)-itemsets Y are
generated as supersets of X that follow X in the lexicographical order. During the counting step, the

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



664 C. LUCCHESE ET AL.

Figure 1. Lexicographic spanning tree of the frequent itemsets, with closed itemsets and their equivalence
classes, mined with �= 1 from the data set D={{B, D}, {A, B,C, D}, {A,C, D}, {C}}.

support of such candidate itemsets is evaluated on the data set, and if some of those are found to be
frequent, they are used to reiterate the algorithm recursively. Note that the aforementioned lexico-
graphical order is typically based on the increasing frequency order of singletons. Such reordering
of items is proved to reduce the search space, since infrequent itemsets are pruned early.
The collection of frequent itemsets L extracted from a data set is usually very large, with a size

exponential w.r.t. the number of frequent literals. This makes the task of the analyst hard, since
he has to extract useful knowledge from a huge amount of patterns, especially when very low
minimum support thresholds are used. The set C of closed itemsets [21] is a concise and lossless
representation of the frequent itemsets that has replaced traditional patterns in many other mining
tasks, e.g. sequences [22], trees [23], graphs [24], etc. In the following section, we describe the
algorithmic issues related to the discovery of closed frequent itemsets from databases.

3.1. CFIM: the closed FIM problem

We now introduce formally the problem of mining closed frequent itemsets. Let T be a set of
transactions in D and I an itemset; the concept of closed itemset is based on the following two
functions f and g:

f (T )= {i ∈I | ∀t ∈ T, i ∈ t}
g(I )= {t ∈D | ∀i ∈ I, i ∈ t}

Function f returns the set of items included in all the transactions in the set T , i.e. their intersec-
tion, whereas function g returns the set of transactions supporting a given itemset I . We can write
�(I )= |g(I )|.
Definition 2. An itemset I is said to be closed if and only if

c(I )= f (g(I ))= f ◦ g(I )= I

where the composite function c= f ◦ g is called the Galois operator or closure operator.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 665

The closure operator defines a set of equivalence classes over the lattice of frequent itemsets: two
itemsets belong to the same equivalence class if and only if they have the same closure. Equivalently,
two itemsets belong to the same class iff they are supported by the same set of transactions. We
call these partitions of the lattice closure-based equivalence classes.
We can also show that an itemset I is closed iff no superset of I with the same support exists.

Therefore mining the maximal elements of all the closure-based equivalence classes corresponds
to the mining all the closed itemsets.

Example 1. Figure 1 shows the lattice of frequent itemsets derived from the simple data set reported
in the same figure, mined with �= 1. We can see that the itemsets with the same closure are grouped
in the same equivalence class. Each equivalence class contains elements sharing the same supporting
transactions, and closed itemsets are their maximal elements. Note that closed itemsets (six) are
remarkably less than frequent itemsets (sixteen).

Definition 3 (CFIM: Closed FIM). LetD be a transactional data set and � a givenminimum support
threshold; the Closed Frequent Itemset Mining Problem requires to discover all the itemsets X such
that �(X) ≥ � (they are frequent) and c(X)= X (they are closed).

CFIM algorithms are quite similar to FIM algorithms, with the addition of a closure calculation
step: as soon as a new frequent itemset is found, its closure is computed and this is later used
to reiterate the mining. Since there are several candidates for a given closed itemset, e.g. A and
CD are candidates with the same closure ACD, some kind of duplicate detection technique must
be exploited. State-of-the-art algorithms such as FP-CLOSE [3], CHARM [25], and CLOSET [26]
exploit the Sub-Sumption lemma to detect useless candidates.

Lemma 1 (Sub-sumption Lemma). Given an itemset X and closed itemset Y = c(Y ), if X ⊂ Y and
�(X)= �(Y ) then c(X)= Y . In this case we say that X is sub-sumed by Y .

Proof 1. If X ⊂ Y , then g(Y ) ⊆ g(X). Since �(X)= �(Y )⇒ |g(Y )| = |g(X)|, then g(Y )= g(X).
Finally, g(X)= g(Y )⇒ f (g(X))= f (g(Y ))⇒ c(X)= c(Y ). �

As soon as a closed itemset is discovered, it is stored in an incremental data structure. This
historical collection is used to understand whether an itemset is closed or not. Given the itemset
X , if there exists an already mined closed itemset Y that includes X and that has the same support
of X , then X is not closed and its closure c(Y ) was already discovered.
According to Lemma 1, we can assess the closed-ness of an itemset by maintaining a global

knowledge of the collection of closed itemsets. The size of this collection grows exponentially
when decreasing the minimum support threshold, which makes this technique expensive both in
time and space. In time because it requires the possibly huge set of closed itemsets mined so far to
be searched for the set-inclusions. In space, because, in order to efficiently perform set-inclusion
checks, all the closed itemsets have to be kept in the main memory.
In a way, the need to maintain a global and evolving data structure does not comply with the

general requirements of a divide et impera approach needed for an efficient parallelization. Instead
of having a pool of independent sub-tasks, a CFIM algorithm is decomposed in dependent sub-
problems that actually co-operate and communicate, meaning that the output of one task, i.e. the

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



666 C. LUCCHESE ET AL.

extracted closed frequent itemsets, is the input of the next task, i.e. the historical collection to be
used for duplicate detection.
In the following, we introduce D-CLOSED, an algorithm inspired to DCI-CLOSED [27] and

MT-CLOSED [2], for mining closed frequent itemsets in a distributed setting.

3.2. D-CLOSED: the first distributed algorithm for the CFIM problem

The first two passes of the algorithm are devoted to the construction of the internal representation
of the data set. A first scan is performed in order to discover the set of frequent singletons L1.
Then, a second scan is needed to create a vertical bitmap BM of the data set. For each item i ∈L1,
a 0 − 1 array of bits is stored, where the j-th bit is set if the item i is present in the transac-
tion j . The resulting bitmap has size |L1| × |D| bits. Note that tid-lists are stored contiguously in
increasing frequency order, i.e. the first row of the bitmap contains the tid-list of the least frequent
item.
The kernel of the algorithm consists in a recursive procedure that exhaustively explores a sub-

tree of the search space given its root. The input of this procedure is a seed closed itemset X
and its tid-list g(X). Similar to other CFIM algorithms, given a closed itemset X , new candidates
Y = X ∪ i are created according to the lexicographic order. If a candidate Y is found to be fre-
quent, then its closure is computed and c(Y ) is used to continue the recursive traversal of the
search space. In order to detect duplicates, D-CLOSED introduces the concept of pro-order and
anti-order set:

Definition 4 (Pro-order and Anti-order sets). Let ≺ be an order relation among the set of literals
in the data set, and let Y = X ∪ i be a generator. We denote with Y+ the pro-order and with Y−
the anti-order set of items for Y defined as follows:

Y− = { j ∈ (I \ Y ) | j ≺ i}
Y+ = { j ∈ (I \ Y ) | i ≺ j}

It is easy to show that an algorithm that discards all those candidates Y for which c(Y )∩Y− 
= ∅
is correct (see [2] for a complete proof). The rationale is that for each closed itemset Z there is a
candidate Y that needs only the items in Y+ to calculate the closure c(Y )= Z , and this closure is
in accordance with the underlying lexicographic tree, which spans the whole lattice. Conversely, a
candidate that needs items in Y− is redundant.

Example 2. With reference to Figure 1, suppose that the core recursive mining procedure is invoked
on the candidate Y =∅ ∪ B. By definition we have that Y− = {A} and Y+ = {C, D}.
The closure of Y is c(Y )={B, D}, and it is not discarded since it has empty intersection with the

anti-order set Y−. A new item is taken from the pro-order set and a new candidate Y ′ = {B, D}∪C
is used to start a new recursion of the mining with Y ′− = {A} and Y ′+ =∅.
The closure of Y ′ is C(Y ′)={A, B,C, D}. It has non-empty intersection with the anti-order set

Y ′−, and is therefore discarded as being redundant. Indeed, the itemset {A, B,C, D} was already
discovered after exploring the sub-tree rooted in A.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 667

To understand which items are needed to calculate the closure of a given itemset, it is possible
to exploit the following Extension Lemma:

Lemma 2 (Extension Lemma). Given an itemset X and an item i ∈I, if the set of transactions
supporting X is a subset of the transactions supporting i , then i belongs to the closure of X, and
vice versa, i.e. g(X) ⊆ g(i)⇔ i ∈ c(X).

Proof 2. See [27]. �

Note that the check g(X) ⊆ g(i) can be performed very efficiently given the adopted bit-vector
representation. In fact, it is sufficient to perform a bitwise inclusion between the tid-lists of X and i .
Every single closed itemset X can be thought as the root of a sub-tree of the search space that can

be mined independently of any other (non-overlapping) portion of the search space. Note that this

Algorithm 1 D-CLOSED algorithm.
1: function D-CLOSED (D, �)
2: C← ∅ � the collection of frequent closed itemsets
3: L1← get-frequent-singletons(D, �) � first scan
4: BM ← vertical-bitmap(D,L1) � second scan
5: J← JOBSCREATE() � create independent jobs
6: for all J ∈ J do � jobs can be executed in parallel
7: MINE-NODE(J.X , J.g(X), J.X−, J.X+, C, �, BM)
8: end for
9: return C
10: end function

11: procedure MINE-NODE (X , g(X), X−, X+, C, �, BM)
12: c(X)← X ∪ { j ∈ X+ | g(X) ⊆ g( j)} � compute closure
13: C← C ∪ c(X)

14: Y− ← X− � new anti-order set
15: Y+ ← X+ \ c(X) � new pro-order set
16: while Y+ 
= ∅ do
17: i ← pop min≺(Y+) � select and remove an item from Y+
18: Y ← c(X) ∪ i � candidate generation
19: g(Y ) = g(X) ∩ g(i)
20: if |g(Y )| ≥ � then � frequency check
21: if ¬∃ j ∈ Y− | g(Y ) ⊆ g( j) then � order-preservation check
22: MINE-NODE(Y ,g(Y ),Y−,Y+, C, �, BM) � recursive visit
23: Y− ← Y− ∪ i
24: end if
25: end if
26: end while
27: end procedure

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



668 C. LUCCHESE ET AL.

is an original feature of D-CLOSED, since other algorithms need to share the collection of closed
itemsets discovered so far. Conversely, D-CLOSED needs parallel sub-tasks to share the static
vertical bitmap representing the data set. In addition, thanks to the use of pro-order and anti-order
sets, it is possible to reduce the amount of shared data, since only the tid-lists of the items belonging
to either of those sets are of interest. In addition, in [2] it is shown how to prune such sets during the
mining.
Thus, it is possible to partition the whole mining task into independent regions, i.e. sub-trees of

the search space, each of them described by a distinct job descriptor J =〈X, g(X), X−, X+〉. The
job descriptor J suffices to identify a given sub-task, or job, of the mining process. In principle,
we could split the entire search space into a set of disjoint regions identified by J1, . . . , Jm , and
use some policy to assign these jobs to a pool of CPUs. Moreover, since the computation of each
Ji does not require any co-operation with other jobs, and does not depend on any data produced
by them (e.g. the historical closed itemsets), each job can be executed in a completely independent
manner.
To summarize, we report the pseudocode of D-CLOSED in Algorithm 1. First the data set is

scanned to discover frequent singletons, and then a vertical bitmap is built (lines 3–4). A col-
lection of jobs is generated (line 5) and each executed independently (line 7). The core mining
process immediately computes the closure of the given candidate itemset by exploring the pro-
order set (line 12). Then, the remaining items in the pro-order set are used to generate new
candidates (line 18), which, if order preserving (line 21), are used to reiterate the mining pro-
cess (line 22). For the sake of clarity, in the above pseudocode, we reported that the whole
bitmap BM is given in input to the MINE-NODE procedure, however, only a portion of it is
necessary. Indeed, if i /∈ X+ and i /∈ X−, then the row of BM corresponding to g(i) will never
be accessed. We exploit this feature in one of the data dissemination strategies illustrated in
Section 4.2.
In the following, we will see how to define and distribute the collection of jobsJ={J1, . . . , Jm}.

3.3. Workload partitioning

One easy strategy would be to partition the frequent single items and assign the corresponding jobs
to the pool of workers.

Definition 5 (Naı̈ve Lattice Partitioning based on L1 (1P)). Let L1={i1, . . . , i|I|} be the set of
frequent items in the transactional data setD. The lattice of frequent itemsets can be partitioned into
|L1| non-overlapping sets: the itemsets starting with i1, the itemsets starting with i2, etc. Each one
is identified by a job descriptor defined as follows: Jh =〈X ={ih}, g(X)= g(ih), X− = {i ∈L1 |
i ≺ ih}, X+ = {i ∈L1 | i�ih}〉, for each ih ∈L1.

In Figure 2 we report the cost in seconds of every job resulting from the 1P partitioning. It is
easy to see that while only a few jobs are very expensive, most of the remaining are two orders of
magnitude cheaper. In fact, the 20 most expensive jobs, out of about 120, encompass more that 80%
of the whole workload, as it can be seen in the middle plot of Figure 2, where jobs are sorted in the
decreasing order of their cost. This results in a set of jobs leading to a significant load imbalance.
Under the non-realistic assumption that the cost of each job is known in advance, we show the best

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 669

Figure 2. Job durations after 1P Partitioning on the Accidents data set with �= 3%. In the top plot, jobs are
reported in lexicographical order. In the middle plot, jobs are in decreasing cost order.

scheduling on a set of 24 machines: the result is a completely unbalanced computation, where the
ratio between the minimum and the maximum load is 0.18. In particular, the most expensive job,
which lasts about 250 s, overwhelms one node, and the other jobs are too cheap to feed the rest of
the nodes.
Among the many approaches to solve this problem, an interesting one is [28]. The rationale behind

the solution proposed by the authors is that there are two ways to improve the naı̈ve scheduling
described above. One option is to estimate the mining time of every single job, in order to assign
the heaviest jobs first, and later the smaller ones to balance the load during the final stages of the
algorithm. The other is to produce a much larger number of jobs thus providing a finer partitioning
of the search space: having more jobs provides more degrees of freedom for the job assignment
strategy. Their solution merges these two objectives in a single strategy. First, the cost of the jobs
associated with the frequent singletons is estimated by running a mining algorithm on significant
(but small) samples of the data set. Then, the most expensive jobs are split on the basis of the
frequent 2-itemsets that they contain.
In our setting, we are willing to address very large data sets. In this case, the large number of the

resulting samplings to be performed and their costs make the above strategy unsuitable. Therefore,

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



670 C. LUCCHESE ET AL.

our choice is to avoid any expensive pre-processing, and to materialize jobs on the basis of the
2-itemsets in the Cartesian product L1×L1 as follows:

Definition 6 (Lattice Partitioning based on 2-itemset (2P)). Let L1={i1, . . . , i|L1|} be the set of
frequent items in the transactional data setD. The lattice of frequent itemsets can be partitioned into(|L1|

2

)
non-overlapping sets: the itemsets starting with i1, i2, the itemsets starting with i1, i3, etc. Each

is identified by a job descriptor defined as follows: Jhk=〈X ={ih, ik}, g(ih)∩g(ik), X− = {i ∈L1\
ih | i ≺ ik}, X+ = {i ∈L1 | i�ik}〉, for each h<k and ih , ik ∈L1.

This fine-grained partitioning produces a large number of jobs and sufficient degrees of freedom
to evenly balance the load among workers. But still this may not be sufficient to achieve a good
balancing of the various computing nodes. In Figure 3 we report some results coming from the
2P partitioning. As expected the number of jobs is much larger than before, i.e. ∼ 7000 versus
∼ 120. But also in this case, a few of them are significantly more expensive, whereas a large
majority has a cost pretty close to zero. Also in this case, an omniscient scheduler, which knows
in advance the cost of every single job, cannot provide an optimal scheduling. In the case of
24 computing nodes, we would have a ratio between the minimum and the maximum load of
0.8. We must also consider that such a large number of jobs may produce large communication
overheads.
In order to overcome such problems, and to handle the dynamicity of a large computing network,

we propose a novel partitioning strategy:

Definition 7 (Dynamic Partitioning (DP)). Let J ∗ be the a 2P partitioning of the workload. A DP
is obtained in two steps. Before the mining, consecutive jobs in J ∗ that share the same prefix are
grouped together in sets of size at most k. At mining time, every single job can be split into multiple
parts by creating new jobs descriptors.

The first idea behind the DP strategy is to group together jobs when their amount is excessive,
thus reducing the associated overheads. The maximum size k of a group could also be decided at
run-time, depending on the number of jobs and nodes.
Notice that we group together two consecutive jobs only if they share the same prefix. For

instance, {AB} and {AC} may be grouped together, whereas {AZ} and {BC} may not. The reason for
this constraint is given by the partitioning optimizations usually adopted in the mining algorithm
that we still want to use. Suppose that a job corresponds to the mining of all the itemsets beginning
with a given item i : then any transaction that does not contain i can safely be disregarded. This
technique significantly reduces the amount of data to be processed by a single job. This also explains
why we only group 2-itemsets having the same prefix: we group jobs together only if they share
the same projection of the data.
This data projection approach is very important in our framework. We can reduce the amount

of data needed to accomplish a given job, and therefore the amount of data to be sent through the
network.
The second idea is to take advantage of the expressive power of the job descriptor of our mining

algorithm. In fact, every region of the search space can be expressed with a set of job descriptors,
each of them resulting in an independent job. Therefore, a node that realizes that its load is too
large, may return part of it to the computing network, by pushing a new job descriptor, and this

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 671

Figure 3. Job durations after 2P partitioning Accidents data set with �= 3%. In the top plot, jobs are in
lexicographical order. In the middle plot, jobs are in decreasing cost order.

operation can be repeated over time. Also, a node that wishes to leave the network may push the
set of job descriptors corresponding to the part of the job not yet completed.
This partitioning strategy may thus solve every problem related to the workload imbalance or to

the dynamicity of the network, resulting in a dynamic set of job descriptors evolving and adapting
to the system over time.

4. MINING@HOME: A FRAMEWORK FOR DISTRIBUTED DATA-INTENSIVE
APPLICATIONS

A preliminary framework of a data dissemination network was proposed in [20] for the processing
of astronomical waveforms and in [29] for the analysis of audio files. In those scenarios, the partition
of a large application into independent jobs is trivial as well as the distribution of input data to
workers, and job balancing issues are hardly present since jobs are all very similar in terms of space
and time complexity.
Here, we significantly extend and improve such a framework by proposing Mining@home: a

new data-intensive computing network able to support D-CLOSED, the first distributed algorithm
for the CFIM data mining problem.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



672 C. LUCCHESE ET AL.

4.1. A data-intensive computing network

In our network, we distinguish between nodes accomplishing the mining task and nodes supporting
the data dissemination. Among the first we define:

• the Data Source is the node that stores the entire data set that must be analyzed and mined.
• the Job Manager is the node in charge of decomposing the overall data mining application in
a set of independent tasks, according to the D-CLOSED algorithm. This node produces a job
advert document for every task, which describes its characteristics and specifies the portion of
the data needed to complete the task. The job advert actually corresponds to the job descriptor
defined in Section 3.2. The job manager is also responsible for the collection of output results.
• the Miners are the nodes available for job execution. A miner first issues a job query to
retrieve a job advert, then a data query to obtain the input data for that job.

Such a network can easily support massively parallel tasks as in traditional volunteer computing.
The job manager takes care of supervising the overall process by assigning the various jobs to a
dynamic set of miners. Unfortunately, this would not be sufficient to provide an efficient support to
data mining tasks. Owing to the large volume of data, some effective strategy for its dissemination
must be devised.
We propose a data-intensive computing network, which exploits the presence of a network of

super-peers for the assignment and execution of jobs, and adopts caching strategies to improve the
data delivery process. Specifically, the computing network exploits the presence of:

• Super-Peer nodes, which constitute the backbone of the network. Miners connect directly to a
super-peer, and super-peers are connected with one another through a high-level P2P network.
• Data-Cachers nodes, which are super-peers having the additional ability to cache data and
the associated data adverts. Data cachers can retrieve data from the data source or other data
cachers, and later provide such data to miners.

The super-peer paradigm is chosen to let the system support several public computing applications
concurrently, without requiring that every worker/miner to know the location of the job manager
and/or of the data cachers. The super-peer paradigm allows the job and data queries issued by
miners to rapidly explore the network and discover matching job and data adverts. In this kind of
network it has to know the address of a neighbor super-peer only, irrespective of the application
for which it wants to contribute.
The algorithm works as follows: a set of job adverts are generated by the job manager. Each job

advert specifies the items that must be included in the frequent itemsets to be mined. An available
miner issues a job query to retrieve one of these job adverts. Job queries can be delivered directly
to the job manager; if the location of this node is not known (for example, if several data mining
applications are concurrently running), they can travel the network through the super-peer intercon-
nections. When a job advert is found that matches the job query, the related job is assigned to the
requesting miner. The miner is also informed, through the job advert, about the data that it needs
to execute the job. The required input data can be the entire data set stored in the data source, or a
subset of it.
The miner does not download data directly by the data source, but issues a data query to discover

a data cacher. This query can actually discover several data cachers: each of these sends an ack

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 673

Figure 4. Caching algorithm in a sample super-peer network (1 of 2).

to the miner. Then the miner selects the nearest data cacher (or the most convenient data cacher
according to some given strategy) and delegates to it the responsibility of retrieving the input data
set from the data source, or from another data cacher that has already downloaded the data. After
retrieving the input data, the cacher stores it, then passes it to the miner for job execution. The data
cacher retrieves all the data set, even if the miner needs only a portion of it, in order to have the
data available for other miners’ requests.
The algorithm is illustrated in Figures 4 and 5, which show the messages exchanged in a network

having seven super-peers (among which one is the data source and two are data cachers), a job
manager, and several miners. In the first figure, the miner M , available to execute a job, issues a job
query (step 1) that travels across the super-peer interconnections and gets to the job manager JM .
The job manager assigns a job to the miner and sends it the job advert that describes the job and
the input data required for its execution (step 2). Afterwards, the miner issues a query to discover a
close data cacher (step 3) and in this case discovers two data cachers, which advertise their presence
with an ack message (step 4). The subsequent steps of the algorithm are depicted in Figure 5. The
miner selects the most convenient data cacher, in this case the data cacher DC1 (step 5). Since DC1
does not hold the required data, it issues a query to retrieve the data from the data source or from
another data cacher (step 6). In this scenario, data is found in the data source DS. Hence, DC1
retrieves data from DS (step 7), stores it in the cache in order to serve future miners requests, and
provides it to the miner (step 8). The miner can now execute the job, and sends the output to the
job manager, through a message not shown in the figure.
The algorithm includes a number of techniques that can make execution faster, depending on

the state of the network and the dissemination of data. For example, in the case that the cacher
DC1 already owns the needed data, steps 6 and 7 are unnecessary. Moreover, a miner can exploit
the results of discovery operations executed previously. Specifically, it needs to issue a query to

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



674 C. LUCCHESE ET AL.

Figure 5. Caching algorithm in a sample super-peer network (2 of 2).

discover the job manager or the data cacher only the first time that it asks to execute a job. In the
subsequent times the miner can decide to directly contact the job manager and the data cacher that
it previously discovered. A miner could also have the ability to cache the data itself. This aspect is
discussed in the following subsection.
The decentralized architecture is suitable to efficiently cope with node failures, which may

ungracefully cause job terminations. The adopted strategy for failure management is the following:
when a job is assigned to a miner, the local super-peer, which is assumed to be significantly more
reliable than regular nodes, stores the assigned job advert and periodically checks the status of the
miner. Whenever the super-peer detects an abrupt failure of the miner, it resumes the job advert and
returns it to the job manager, so that the job can be assigned to another miner. This strategy also
implies that each miner communicates the termination of jobs only to the local super-peer. Notice
that this strategy allows for a scalable management of the workers, since it only implies sporadic
communications among each super-peer and the miners directly connected to it.

4.2. Data and workload dissemination strategies

The presence of data cachers helps the dissemination of data and can improve the performance of
the network. It is also useful to verify whether the miners themselves could give a contribution to
speed up the computation, in case they also have the capability to store some input data (in general,
the public-resource computing paradigm does not require hosts to store data after the execution
of a job). In fact, it often happens that the input data of a job overlaps, completely or partially,
with the input data of another job executed previously. Therefore, the miner could retrieve the
whole data set when executing the first job, and avoid to issue a data query for the subsequent job.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 675

Therefore, two different caching strategies have been analyzed and compared:

• Strategy M-D: Minimum Download. The miner downloads from the data cacher only the
portion of the data set that it strictly needs for job execution, and discards this data after the
execution.
• Strategy F-D: Full Download. The miner downloads from the data cacher the entire data set
the first time that it has to execute a job. Even though the miner will only use a portion of the
data set, data will be stored locally and can be used for successive job executions.

As mentioned at the end of Section 3, a miner can execute only a part of the assigned job if it is
too large and resource consuming. Therefore, to support load balance in the network, we propose
and evaluate a third strategy:

• Strategy D-A: Dynamic Assignment. A miner executes the job only for a limited amount of
time. If this time expires and the job is not completed, the miner builds a new job advert that
embraces the unexecuted part of the job, and sends this description back to the job manager,
which will reassign it to another miner.

Note that the D-A strategy implies that the miner does not try to predict the length of the job
before executing it. Indeed, such a prediction is very difficult and often erroneous [28], and it
would require an extra time that may not be counterbalanced by the time saving obtained with the
prediction. The D-A strategy can be combined both with the M-D and the F-D strategy.
Depending on the application, these simple strategies may be further improved. One possible

approach could be to use the information present in the job adverts, in order to retrieve only
those transactions of the data set that the miner does not already store. Indeed, a wide range of
opportunities is open. We discuss them in Section 6.

5. PERFORMANCE EVALUATION

We used an event-based simulation framework (similar to that used in [29]) to analyze the perfor-
mance of our super-peer protocol. In the simulation, the running times of the jobs were obtained by
actually executing the MINE-NODE procedure for each available job, and measuring the elapsed
times. To model a network topology that approximates a real P2P network as much as possible, we
exploited the well-known power-law algorithm defined by Albert and Barabasi [30]. This model
incorporates the characteristic of preferential attachment that was proved to exist widely in real
networks.
The simulation scenario is summarized in Table II. The network contains 25 super-peers and 250

potential miners, randomly distributed among super-peers. The bandwidth and latency between two
adjacent super-peers were set to 1Mbps and 100ms, respectively, whereas the analogous values for
the connections among a super-peer and a local miner were set to 10Mbps and 10ms. If during
the simulation a node (e.g. a data source or a data cacher) needs to simultaneously serve multiple
communications (with different miners), the bandwidth of each communication is obtained by
dividing the downstream bandwidth of the server by the number of simultaneous connections.
The largest transactional data set usually adopted is WebDocs [31], which is about 1GB large.

This is an inverted file of a large web collection, and it can be used to detect plagiarism or

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



676 C. LUCCHESE ET AL.

Table II. Simulation scenario.

Scenario feature Value

Number of super-peers, Nsp 25
Number of data cachers, Ndc 0–23
Number of available miners, Nminers 1–250
Average number of neighbors of a super-peer 4
Size of the input data file 300 Mb
Number of jobs, Njob 846 300
Latency between two adjacent super-peers 100ms
Latency between a super-peer and a local worker 10ms
Bandwidth between two adjacent super-peers 1Mbps
Bandwidth between a super-peer and a local worker 10Mbps

near-duplicate documents. We used the well-known IBM data set generator‡ to create a data set
with similar characteristics, but twice as large. The resulting data set is called Synth2GB: it has
about 1.3 millions transactions and 2.5 thousands distinct items, for a total size of 2GB. By running
the algorithm with a minimum absolute support threshold of 30 000, we obtained statistics of about
846 300 jobs resulting from the 2P partitioning strategy described in Section 3.3, which were later
grouped in 100s to reduce the total number of jobs. The machine used for this experiment is an
Intel Xeon 2.00GHz with 4MB L2 cache and 4GB main memory. We measured the execution
times of every single job and used them in the simulation: each job assigned by the job manager
was given the same characteristics (size of input data to download, execution time) as those of the
real jobs executed in the serial experiment. To better simulate a realistic scenario, the unavoidable
heterogeneity of a distributed environment was taken into account. Hence, the execution time of
each job was multiplied by a factor randomly chosen in the interval [0.25, 4], in order to simulate
the different computing powers of the available miners in the distributed environment. In the first
experiments, the nodes were assumed to be completely reliable: the impact of node failures is
examined later.
Figure 6 shows the overall running time needed to execute the jobs, by using strategies M-D

and F-D, in the case that 200 miners are available, by varying the number of data cachers from 0
(meaning that data can only be retrieved by the data source) to 23 (in this case, every super-peer is
also a data cacher, except the data source and the super-peer directly connected to the job manager).
The time needed to complete the mining on a single machine, by executing all the jobs in sequence,
and taking into account the multiplication by a random factor mentioned before, is 2060 h, about
85 days. Conversely, the distributed execution of the jobs with the algorithm presented in this paper
allows the overall computation time to be reduced to 64 h with strategy M-D and 18 h with strategy
F-D, with reduction factors of 32 and 114, respectively. The better performance of the second
strategy is therefore confirmed, but of course this improvement should be counterbalanced by the
requirement that miners allow data to be cached in their local memory.

‡Available at: http://pomino.isti.cnr.it/∼claudio/assoc gen linux.tgz.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 677

10

20

50

100

200

500

1000

0 5 10 15 20 25

T
E

xe
c 

(h
)

Number of Data Cachers

Strategy M-D, Nminers=200

Strategy F-D, Nminers=200

Figure 6. Overall execution time vs the number of data cachers with strategies M-D and F-D.
The number of active miners is 200.

We notice that the number of available data cachers has an important influence on the overall
execution time. With strategy M-D, the execution time decreases as the number of data cachers
increases from 1 to about 15, since miners can concurrently retrieve data from multiple data cachers,
thus reducing the duration of single download operations. However, the execution time increases
when more than 15 data cachers are made available. To explain this, it must be considered that
data cachers may retrieve data in parallel from the data source, so that the downstream bandwidth
of the data source is shared among a large number of connections. The results show that the time
needed to distribute data to more than 15 data cachers is not compensated by the time saved in
data transfers from data cachers to miners. Therefore, an ‘optimum’ number of data cachers can
be estimated. This number is 15 in this case, but in general depends on the application scenario,
for example, on the number and the length of the jobs to execute. With strategy F-D, on the other
hand, it is seen that the optimal number of data cachers is 4; in fact, a sort of second-level caching
is operated directly by miners, hence there is less advantage to have nodes, i.e. the data cachers,
which are specifically dedicated to the caching of data.
To analyze the scalability characteristics of the distributed algorithm, a number of experiments

were performed by varying the number of available miners. Strategies M-D and F-D were compared:
the number of data cachers was, respectively, set to 15 and 4, the values that were found to be
optimal with the two strategies. The results, reported in Figure 7, confirm the clear advantage
obtained with the strategy F-D, with any number of available miners. However, the scalability
behavior is quite different in the two cases: with strategy M-D, the execution time decreases as
the number of available miners is increased by up to about 50, but beyond this value the curve
saturates, and therefore no advantage is granted by adding more miners. Conversely, strategy F-D
can profitably exploit the presence of a much larger number of miners. The marginal advantage
becomes low with more than 200 miners, therefore this number was chosen for the experiments
aiming to evaluate the impact of data cachers and the possible improvement brought by the dynamic
assignment (D-A) strategy.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



678 C. LUCCHESE ET AL.

10

20

50

100

200

500

1000

2000

0 50 100 150 200 250

T
E

xe
c 

(h
)

Number of Peers

Strategy M-D, Ndc=15

Strategy F-D, Ndc=4

Figure 7. Overall execution time vs the number of active miners. The number of data cachers is set to 4 with
strategy M-D and 15 with strategy F-D.

We thus combined the F-D and D-A strategies. A miner, after downloading the entire input
data file, executes the assigned job for an amount of time corresponding to a threshold S, which is
predetermined. If the job is not finished after this time interval, the miner generates a new job advert
that describes the remaining part of the job and sends it to the job manager, for a new assignment.
Figure 8 shows the execution time obtained with values of S ranging from 30 s to 57 600 s, or 16 h.
Since the largest job executes for 25 300 s, all the values of S larger than this value correspond to
disabling the dynamic strategy, because no job needs to be reassigned. The reported results confirm
the effectiveness of the D-A strategy. For example, with four data cachers available, the overall
execution time can be decreased from 65 700 s (18.25 h) to 52 000 s (14.44 h, in the case that the
threshold S is set to 600 s), with a gain of about 21%. The improvement derives from a better load
balancing of execution responsibilities among miners: if a job is very large, which could slow down
the whole process, the miner can share its load. Notice, however, that the value of the threshold
must be chosen with care: if the threshold is too high, the D-A strategy is not fully exploited,
whereas, if it is too low, the execution time is lengthened by the large number of job reassignments
and the related overhead.
The results discussed so far have been obtained in a scenario in which node failures are very

infrequent. In the following, we illustrate the behavior of Mining@home in an unreliable environ-
ment, where miners may fail ungracefully. We adopted the usual exponential failure distribution
model, where the cumulative probability of a node failure increases over time according to the
probability function F(t)= 1−e−�t , where � is the failure rate. The inverse of � corresponds to the
Mean Time Between two successive Failures (MTBF) that occur on a given node. In Figure 9, we
studied the behavior of the system on varying the failure rate �, when adopting the combination of
fully download (F-D) and dynamic assignment (D-A) strategy, with a number of four data cachers.
Here it is worth recalling that the failure management strategy contemplates that the failure of a

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 679

5

10

15

20

25

30

30 60 180 600 1800 3600 14400 57600

T
E

xe
c 

(h
)

Job Duration Threshold (s)

Nminers=200, Ndc=0
Nminers=200, Ndc=4

Nminers=200, Ndc=10
Nminers=200, Ndc=15
Nminers=200, Ndc=20

Figure 8. Overall execution time vs the value of the threshold S, when adopting the D-A strategy.

10

15

20

25

30

35

40

45

50

30 60 180 600 1800 3600 14400 28800

T
E

xe
c 

(h
)

Job Duration Threshold (s)

λ  = 2e-4 (1/s)
λ  = 1e-4 (1/s)
λ  = 5e-5 (1/s)
λ  = 2e-5 (1/s)
λ  = 1e-5 (1/s)

no failures

Figure 9. Overall execution time vs the value of the threshold S, when adopting the D-A strategy, for different
values of the failure rate �.

node is detected by the local super-peer, which republishes the job advert of the failed job and
allows for its re-assignment.
Figure 9 is interesting in many aspects. First, it shows that the performance of Mining@home

is hardly affected when the failure rate is low, specifically when its value is not greater than
2×10−5 s−1 or, equivalently, when the MTBF interval is longer than 50 000 s. In the case of higher
failure rates, the impact depends on the adopted job duration threshold S. If the threshold is low,
jobs are unlikely to fail, as long as S is lower than the MTBF. However, when S is significantly
larger than the MTBF, job failures are more frequent, leading to an increase of the overall execution

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



680 C. LUCCHESE ET AL.

time, as shown in Figure 9 by the trend of the curve that corresponds to a failure rate of 2×10−4 s−1,
or to an MTBF equal to about 5000 s.
It can be concluded that Mining@home can efficiently overcome the failures that occur in

an unreliable environment and that the dynamic assignment strategy, which limits the maximum
duration of jobs, is useful not only to improve the load balancing characteristics, but also to limit
the performance degradation caused by failures.

6. DISCUSSION AND FUTURE WORK

Many directions for future works are open. First, a wide spectrum of improved data dissemination
strategies may be exploited to fit the particular problem of closed FIM. In fact, a client may be able
to download from data cachers only the rows and columns of the vertical bitmap, i.e. the data set,
he does not own already. This would be an improvement w.r.t. the M-D strategy, since the same
data set portions are not downloaded again and again, and also w.r.t. the F-D strategy, because
useless transactions are never transmitted over the network. We also omitted a set of optimizations,
such as compression of transactions and of itemsets collections, which would not affect the general
framework we proposed, but, in general, can greatly improve the network efficiency.
Moreover, our data-intensive computing network can be easily extended in the case of multiple

data sources, which is very usual in large geographically distributed application. In the future, we
plan to tackle other large-scale data mining problems, and test a real implementation of the software
on a large number of peers distributed geographically.

7. CONCLUSION

We have proposed Mining@home, a novel framework for the exploitation of P2P and/or volunteer
computing networks aiming at the execution of large data-intensive data mining tasks.
We illustrated an instantiation of this framework on a particular data mining problem: the extrac-

tion of closed frequent itemsets, which is hard to parallelize, and for which a distributed mining
algorithm was not proposed so far. Given the peculiarities of the data mining problem, we are
confident that our framework can be easily extended to other large data-intensive applications.
Our first contribution was to show that it is possible to decompose the CFIM problem into

independent tasks, which however need to share a large volume of data. Our second contribution
was to design a novel data-intensive computing network, being based on co-operating super-peers
with caching capabilities in a P2P topology. We run several simulations of this network, using
statistics of a real workload. The results are very promising, in fact, we were able to successfully
exploit a large network of 200 peers, and to handle the dissemination of a large volume of data,
thus reducing the running time of the mining task from 85 days to about 14 h.
Our approach for distributing large amounts of data across a P2P data mining network opens up

a wide spectrum of opportunities. In fact P2P data mining has recently gained a lot of interest. Not
only because of the computing power made available by volunteer computing, but also because of
new emerging scenarios, such as sensor networks, where data are naturally distributed, and nodes
of the network are not reliable. Although many P2P data mining algorithms, such as clustering [32]

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



MINING AT HOME 681

and feature extraction [33], have been developed, still they suffer the cost of data dissemination.
Our approach alleviates this cost, and it can easily deal with failure and load balancing problems.
For these reasons, we believe that our proposed data-intensive computing network may be a bridge
toward P2P computing for other data mining applications dealing with large amounts of data,
such as web documents clustering, or dealing with a naturally distributed environment, e.g. sensor
networks.

ACKNOWLEDGEMENTS

This research work has been partially carried out under the Network of Excellences CoreGRID (FP6 contract
no. IST-FP6-004265) and S-Cube (FP7 contract no. IST-FP7-215483) funded by the European Commission.

REFERENCES

1. Anderson DP. Boinc: A system for public-resource computing and storage. GRID ’04: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (GRID’04), Pittsburgh, PA, U.S.A., 2004; 4–10.

2. Lucchese C, Orlando S, Perego R. Parallel mining of frequent closed patterns: Harnessing modern computer architectures.
ICDM ’07: Proceedings of the Fourth IEEE International Conference on Data Mining, Omaha, NE, U.S.A., 2007.

3. Grahne G, Zhu J. Fast algorithms for frequent itemset mining using fp-trees. IEEE Transactions on Knowledge and
Data Engineering 2005; 17(10):1347–1362.

4. Goethals B, Zaki MJ. Advances in frequent itemset mining implementations: Report on FIMI ’03. SIGKDD Explorations
Newsletter 2004; 6(1):109–117.

5. Buehrer G, Parthasarathy S, Tatikonda S, Kurc T, Saltz J. Toward terabyte pattern mining: an architecture-conscious
solution. PPoPP ’07: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM: New York, NY, U.S.A., 2007; 2–12.

6. Agrawal R, Shafer JC. Parallel mining of association rules. IEEE Transactions on Knowledge and Data Engineering
1996; 8(6):962–969.

7. Han EH, Karypis G, Kumar V. Scalable parallel data mining for association rules. SIGMOD ’97: Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data. ACM: New York, NY, U.S.A., 1997; 277–288.

8. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. SIGMOD ’00: Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, Dallas, TX, U.S.A., 2000; 1–12.

9. Li H, Wang Y, Zhang D, Zhang M, Chang EY. Pfp: Parallel fp-growth for query recommendation. RecSys ’08: Proceedings
of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland. ACM: New York, NY, U.S.A., 2008;
107–114.

10. Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters. Communications of the ACM 2008;
51(1):107–113.

11. Anderson DP. Public computing: Reconnecting people to science. Proceedings of Conference on Shared Knowledge and
the Web, Madrid, Spain, 2003; 17–19.

12. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. Seti@home: An experiment in public-resource computing.
Communications of the ACM 2002; 45(11):56–61.

13. Cappello F, Djilali S, Fedak G, Herault T, Magniette F, Neri V, Lodygensky O. Computing on large-scale distributed
systems: Xtrem web architecture, programming models, security, tests and convergence with grid. Future Generation
Computer Systems 2005; 21(3):417–437.

14. Fedak G, Germain C, Neri V, Cappello F. Xtremweb: A generic global computing system. Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid, Brisbane, Australia, 2001.

15. Moretti C, Steinhaeuser K, Thain D, Chawla NV. Scaling up classifiers to cloud computers. ICDM ’08: Proceedings of
the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy. IEEE Computer Society: Washington, DC,
U.S.A., 2008; 472–481.

16. Grossman RL, Gu Y, Hanley D, Sabala M, Mambretti J, Szalay A, Thakar A, Kumazoe K, Yuji O, Lee M, Kwon Y,
Seok W. Data mining middleware for wide-area high-performance networks. Future Generation Computer Systems 2006;
22(8):940–948.

17. Khoussainov R, Zuo X, Kushmerick N. A toolkit for machine learning on the grid October 2004. ERCIM News No. 59.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe



682 C. LUCCHESE ET AL.

18. Talia D, Trunfio P, Verta O. Weka4ws: A wsrf-enabled weka toolkit for distributed data mining on grids. Proceedings of
the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2005), Porto,
Portugal, 2005.

19. Gu W, Eisenhauer G, Schwan K, Vetter J. Falcon: On-line monitoring for steering parallel programs. In Ninth International
Conference on Parallel and Distributed Computing and Systems (PDCS 97), Washington, DC, U.S.A., 1998; 699–736.

20. Cozza P, Mastroianni C, Talia D, Taylor I. A super-peer protocol for multiple job submission on a grid. Euro-Par 2006
Workshops (Lecture Notes in Computer Science, vol. 4375), Dresden, Germany. Springer: Berlin, 2007; 116–125.

21. Wille R. Restructuring lattice theory: An approach based on hierarchies of concepts. Ordered Sets, Rival I (ed.). Reidel:
Dordrecht, Boston, 1982; 445–470.

22. Yan X, Han J, Afshar R. Clospan: Mining closed sequential patterns in large datasets. SDM ’03: Proceedings of the
Third SIAM International Conference on Data Mining, San Francisco, CA, U.S.A., 2003; 166–177.

23. Chi Y, Yang Y, Xia Y, Muntz RR. CMTreeMiner: Mining both closed and maximal frequent subtrees. PAKDD ’04:
Proceeding of the Eighth Pacific Asia Conference on Knowledge Discovery and Data Mining, Sydney, Australia,
2004; 63–73.

24. Yan X, Han J. Closegraph: Mining closed frequent graph patterns. KDD ’03: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington, DC, U.S.A., 2003; 286–295.

25. Zaki MJ, Hsiao CJ. Charm: An efficient algorithm for closed itemset mining. SDM ’02: Proceedings of the Second
SIAM International Conference on Data Mining, Arlington, VA, U.S.A., 2002.

26. Pei J, Han J, Mao R. Closet: An efficient algorithm for mining frequent closed itemsets. DMKD ’00: ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, Dallas, TX, U.S.A., 2000; 21–30.

27. Lucchese C, Orlando S, Perego R. Fast and memory efficient mining of frequent closed itemsets. IEEE Transactions on
Knowledge and Data Engineering 2006; 18(1):21–36.

28. Cong S, Han J, Padua DA. Parallel mining of closed sequential patterns. KDD ’05: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, IL, U.S.A., 2005; 562–567.

29. Al-Shakarchi E, Cozza P, Harrison A, Mastroianni C, Shields M, Talia D, Taylor I. Distributing workflows over a
ubiquitous p2p network. Scientific Programming 2007; 15(4):269–281.

30. Barabási AL, Albert R. Emergence of scaling in random networks. Science 1999; 286(5439):509–512.
31. Lucchese C, Orlando S, Perego R. WebDocs: A real-life huge transactional dataset. FIMI ’04: Proceedings of the ICDM

2004 Workshop on Frequent Itemset Mining Implementations, Brighton, U.K., 2004.
32. Datta S, Bhaduri K, Giannella C, Wolff R, Kargupta H. Distributed data mining in peer-to-peer networks. IEEE Internet

Computing 2006; 10(4):18–26.
33. Wurst M, Morik K. Distributed feature extraction in a p2p setting: a case study. Future Generation Computer Systems

2007; 23(1):69–75.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:658–682
DOI: 10.1002/cpe


