
An Approach for Scalable Parallel

Execution of Ant Algorithms

Franco Cicirelli

DIMES - University of Calabria

Rende (CS), Italy

Email: f.cicirelli@dimes.unical.it

Agostino Forestiero, Andrea Giordano, Carlo Mastroianni

ICAR - CNR

Rende (CS), Italy

Email: {forestiero,giordano,mastroianni}@icar.cnr.it

Abstract—This paper presents an approach for the efficient
parallel/distributed execution of ant algorithms, based on multi-
agent systems. A very popular clustering problem, i.e., the
spatially sorting of items belonging to a number of predefined
classes, is taken as a use case. The approach consists in parti-
tioning the problem space to a number of parallel nodes. Data
consistency and conflict issues, which may arise when multiple
agents concurrently access shared data, are transparently han-
dled using a purposely developed notion of logical time. The
developer remains in charge only of defining the behavior of the
agents modeling the ants, without coping with issues related to
parallel/distributed programming and performance optimization.
Experimental results show that the approach is scalable and can
be adopted to speed up the ant algorithm execution when the
problem size is large, as may be in the case of massive data
analysis and clustering.

Keywords—Ant algorithms; distributed multi-agent systems;
conflict resolution; composed logical time; clustering

I. INTRODUCTION

Bio-inspired algorithms are widely exploited to solve a

number of complex problems (combinatorial algorithms, task

allocation, routing problems, graph partitioning, etc.) [1] and

have been also adopted to provide advanced services in P2P

networks [2], Grid systems and Cloud infrastructures. Most

biological systems are funded on the swarm intelligence

paradigm. A number of small and autonomous entities perform

very simple operations driven by local information: for exam-

ple, while searching for food an ant follows a pheromone sub-

stance deposited by another ant that has already discovered a

food source; a bird adjusts its speed and direction by following

the movements of nearby birds. From the combination of such

operations a complex and intelligent behavior emerges: ants

are able to establish the shortest path towards a food source;

birds travel in large flocks and rapidly adapt their movements

to the changing characteristics of the environment, etc. [1] [3].

Swarm biological algorithms can be executed by using

situated multi-agent systems [4] [5] [6]: the behavior of insects

and birds can be reproduced by agents that are situated in a

hosting environment (territory) and perform simple operations.

Agent-based systems may inherit useful and beneficial proper-

ties from biological counterparts, namely: (i) self-organization,

since decisions are based on local information, i.e., without

any central coordinator; (ii) adaptivity, since agents can react

flexibly to the ever-changing environment; (iii) stigmergy

awareness [7], since agents are able to interact and cooperate

through the modifications of the environment that are induced

by their operations.

Parallel/distributed execution of bio-inspired algorithms is

often required to cope with the high demand of computational

resources needed when the problem becomes more complex

or its size increases. In a parallel/distributed scenario, the

territory represents a huge shared variable of a concurrent

system that needs a careful handling. Territory management

requires conflicts and data consistency issues to be addressed.

Moreover, frequent access to territory information may easily

become a bottleneck impairing the overall system performance

and scalability.

In this paper we propose an approach for achieving good

performance and scalability in parallel execution of general

ant-based algorithms. There are some papers that focus on

the same issue [8] [9] [10] [11], but they do not explicitly

manage the problem of territory representation and handling.

Our approach relies on explicit territory management [12] [13]

[14] and a special-purpose notion of logical time [12] [15].

Data consistency and conflict management are transparently

handled without resorting to lock-based mechanisms and high-

level synchronization primitives. The developer of ant-based

algorithms remains in charge only of defining the behavior

of the agents modeling the ants, without coping with issues

related to parallel/distributed programming and performance

optimization. Differently from [12], where the purposely de-

veloped logical time notion was used in the context of event-

driven distributed simulation, here the approach is exploited

and evaluated for the distributed execution of step-based ant

algorithms.

The remainder of the paper is organized as follows. Section

II discusses the basic ant algorithm chosen to show the effec-

tiveness of the approach, i.e., the spatial sorting and clustering

of items belonging to a number of predefined classes. Then,

Section III describes the approach used to parallelize the

problem and fasten its execution. The section gives details on

the mechanisms used to partition the territory among parallel

executing nodes while avoiding conflicts through an ad hoc

978-1-4799-5313-4/14/$31.00 ©2014 IEEE 170

usage of the logical time concept. Section IV shows the

performance of the parallel execution, and reports a speedup

analysis when varying the problem size and the number of

parallel nodes. Section V describes related work and Section

VI concludes the paper.

II. BASIC ANT ALGORITHM

The objective of the basic ant algorithm presented in [1]

is to cluster items in a two-dimensional space. The space is

partitioned in cells, forming a two-dimensional grid. Each ant

moves hopping between adjacent cells and has visibility over

the items deposited in the visibility area, which includes the

cell where the ant resides and the cells within the visibility

radius (VR). For example, if the radius is equal to 3, the ant

can observe the cells that are at most 3 cells away.

In the simplest scenario, in which items are identical and

are spread, the goal is to create regions in which items are

accumulated, leaving empty regions in between. This basic

version can be specialized in many ways depending on the

application. In a very common and significant variation, items

belong to a number of predefined different classes, and the

objective becomes to spatially sort items, i.e., separate items

of different classes and clustering items of the same class.

The rest of the paper focuses on such version, which has

a large number of applications in several domains, from the

organization of physical objects performed by robots to data

analysis and clustering in distributed information systems.

Each ant contributes to the reorganization by picking and

dropping items from/to the cells. The ants perform their opera-

tions following time-stepped advancements. At each time-step,

every ant performs a single operation, either a hop towards

an adjacent cell or a drop/pick attempt. The pick and drop

operations are driven by corresponding probability functions,

which are inspired by the mechanisms introduced in [16], and

later elaborated and discussed in [1] and [17], to emulate the

behavior of some species of ants that cluster and sort items in

their environment.

The probability of picking an item of a given class from a

cell must decrease as items of the same class are accumulated

in the visibility area centered in that cell. This ensures that

as soon as the equilibrium condition is broken (i.e., items

belonging to different classes begin to be accumulated in dif-

ferent areas), a further reorganization of items is increasingly

fostered. The Ppick probability function, defined in formula

(1) below, and inspired by the pick probability defined in [1],

aims to achieve the spatial separation of items belonging to

different classes.

Ppick =

(

kp

kp + fc

)2

(1)

For each class c of items, the fraction fc is computed as the

number of items of class c, accumulated in the cells within

the visibility area, divided by the overall number of items of

all classes that are accumulated in the same area. As the local

area accumulates more items of a class, with respect to other

classes, fc increases and the value of the pick probability for

this class becomes lower, and vice versa. This has to effect of

inducing agents to pick items that are uncommon in the local

area, and leave items of the class that is being accumulated.

The parameter kp is assigned a non-negative value and is used

to tune the clustering effort. In the tests performed in this work

it is set to 0.1, as in [1].

After picking an item, the agent travels the system hopping

between adjacent cells, and at any new cell it must decide

whether or not to drop the item. Like the pick function, the

drop function is first used to break the initial equilibrium and

then to strengthen the spatial clustering of items. The drop

probability for a class, shown in formula (2) below, increases

as the local area accumulates items of this class. In (2), the

fraction fc is defined as in formula (1), whereas the parameter

kd is set to 0.3 [1].

Pdrop =

(

fc

kd + fc

)2

(2)

The effectiveness of the clustering algorithm is evaluated

through a spatial entropy function, based on the well-known

Shannon’s formula for the calculation of information content.

For each cell l, the local entropy El, defined in formula (3),

gives an estimation of the extent to which the items have

been spatially mapped in the area around l. In (3), fc is the

fraction of items of class c (c = 1...C, where C is the number

of predefined classes) that are located in the visibility area

with respect to the overall number of items located in the

same area. The El function is normalized so that its value is

comprised between 0 and 1. In particular, an entropy value

equal to 1 corresponds to the presence of comparable numbers

of items of the different classes, whereas a low entropy is

obtained when the area centered in l has accumulated a large

number of items belonging to one specific class. As shown in

formula (4), the overall entropy E is defined as the average

of the entropy values El computed at all the system cells (the

number of cells is equal to Nl).

El =

∑

(c=1...C) fc · lg
1
fc

lgC
(3)

E =

∑

l El

Nl

(4)

The next section shows how this kind of ant algorithm can

be transparently executed in a parallel environment while en-

suring scalability and preventing consistency issues. It should

be remarked here that the approach is generic and can be

171

applied not only to different variants of ant algorithms but

also to other types of swarm intelligence algorithms, such as

bird flocking, bee colony optimization etc.

III. PARALLEL/DISTRIBUTED EXECUTION OF THE ANT

ALGORITHM

As the problem size increases, it may be convenient to

parallelize or distribute the execution of ant operations [8]

[9] [10] [11]. An ant can be modeled as a situated agent,

i.e., an agent which owns spatial coordinates and is embedded

into the territory (spatial environment) where it moves and

lives [4] [6]. The notion of visibility radius (VR) introduced

in Sec. II is exploited in order to delimit the area within which

an ant is able to perceive the surrounding space. The notion of

action radius (AR) also needs to be introduced. Given an ant

located in a specific cell, the AR defines the cell’s surrounding

area that can be modified by a single operation of the ant.

Considering the basic ant operations (i.e. moving from cell

to cell and performing pick/drop operations), in the most of

ant-based algorithms, the AR may be set to 1.

In a parallel/distributed scenario, the territory is a huge

shared variable of a concurrent system. A recurrent access

by agents to the territory, can easily become a bottleneck that

limits system performance and scalability. In this paper, the

whole territory is statically split into equal-sized regions as

shown in Figure 1. Each region is allocated to a different

computing node [13] [18]. An agent is executed by the node

associated with the region that includes the cell where the

agent is located. Agent migration is required when an ant

moves from a region to another.

Partitioning the territory among multiple nodes is a key

to avoid that the access to shared content may become a

bottleneck. Moreover, splitting the territory favours system

scalability in that as the size of the territory increases, more

computing nodes can be used to speed up the execution.

However, issues relevant to consistency and conflict resolution

on shared data require to be carefully handled.

Usually, conflict resolution and consistency are achieved by

resorting to synchronization primitives (e.g. based on locks),

which, though, may present two main drawbacks: (i) they

may hinder the transparency of the parallelization procedure,

since the developer is compelled to cope with the management

of such primitives, and (ii) they may negatively impact on

performance and scalability. Our approach allows the men-

tioned issues to be tackled by using a methodology, based

on logical time [13], which is able to transparently enforce

a conflict-free and fair execution order on concurrent actions.

This methodology is detailed in Section III-B.

A. Partitioning the territory into regions

When an ant operates on a cell, it needs to retrieve in-

formation from a number of neighbor cells, delimited by the

visibility radius, and modify the content of the cells delimited

Territory Node1 Node2 Node3
agent

Figure 1. The territory is split into regions that are associated with parallel
computing nodes.

Borders

agent

{{

Local Border

Mirror Border

Local Border

Mirror Border

Node 1

Node 2

Node 1 Node 2

Figure 2. Border areas of two adjacent nodes.

by the action radius. These interactions are local when the

involved cells are comprised in the same region and hence

managed by the same computing node. Conversely, when an

ant operation involves some cells belonging to other regions,

remote interactions – with inter-node information exchange –

would be required if this issue were not properly managed.

In our approach, in order to avoid remote ant operations,

the edge portion of a region is replicated in adjacent nodes.

This edge portion is referred to as a border of the region,

as shown in Figure 2. The border area of a given region

(consider Node 1 in the figure) is made up of two distinct parts:

the local border and the mirror border. The first is managed

by the local node, and information updates are sent to the

mirror border of the adjacent node, i.e., Node 2. Analogously,

the mirror border of Node 1 includes information replicated

from the local border of Node 2. Agents located in a border

area are mirrored by means of phantom agents (copy of the

original agents that are not actually executed), while items are

simply duplicated. The width of borders is determined by the

largest between visibility radius and action radius, which in

this scenario always corresponds to the visibility radius.

Borders are kept aligned by exchanging update messages

between the computing nodes that manage adjacent regions.

A single message contains information about all the updates

occurred in the local border area during the last time step.

This strategy allows all the sensing/acting operations to be

performed locally. More details about management of update

messages are given in the next section.

172

Node1 Node2

ant

item

(a) A conflicting scenario

Borders {

ant

Node1 Node2

action area conflicting
area

(b) Potentially conflicting ants and
conflicting area

Figure 3. Scenario with ants conflicting on the borders of two nodes

B. A conflict-avoidance mechanism based on logical time

As previously mentioned, splitting the territory and spread-

ing the agents upon different computing nodes raises data

consistency issues. This is clarified in Figure 3(a) that shows

an example of conflicting scenario where some ants compete

to pick up the same items contained in the grey cells. As the

ants operate concurrently, two of them may try to pick up

the same item: if both pick operations are actually performed,

this will lead to an inconsistent state of the algorithm. Each

node operates sequentially, i.e., a non-preemptive interleaved

execution of ant actions is adopted. Therefore, ants execute

concurrently only if they are located on different regions. As

shown in Figure 3(b), two ants are potentially conflicting when

they belong to different regions and their action radii overlap.

The conflicting area is defined as the portion of the territory

that can host potentially conflicting ants (see the grey part of

Figure 3(b)).

To prevent conflicts we borrow the notion of logical time

from the distributed system field. The logical time concept

[15] is typically used to prevent causality-constraint violations

in distributed systems. In our approach, instead, we exploit it

as a tie-breaking mechanism that prevents conflicts [13]. The

idea underlying our approach consists in establishing a partial

order of ant executions during a given time step such that

no potentially conflicting ants will execute concurrently. The

problem reduces to assigning, at any given time step, labels

(natural numbers) to ants such that potentially conflicting ants

are assigned different labels. The labels are used as a logical

time that enforces a conflict-free execution order.

At each time step, every computing node executes the

agents located in the corresponding region, respecting the

label ordering discussed here: it executes all the ants with

label 1 (the order among them is inessential), then those with

label 2, etc. To ensure the algorithm consistency, the nodes

must synchronize among them with respect to time steps and

ordering labels. In other words, two nodes are not allowed to

concurrently execute ant operations related to different time

steps or, within a time step, related to different labels. To per-

form such a synchronization, the update messages exchanged

between adjacent nodes, also used to update information on

border regions (see Section III-A), are sent at the end of each

time step and, within each time step, when completing the

executions corresponding to each ordering label. The overhead

of the synchronization mechanism can be easily assessed. Let

N the number of nodes and b the number of used labels, the

number of exchanged messages at each time step is 2×N×b,

since each node sends update messages only to its two adjacent

nodes. The number of messages is then linear in the number

of exploited computing nodes. This linearity property helps to

ensure the scalability of the approach.

An easy fashion to perform a conflict-free labeling of ants

is: first assign labels to the cells belonging to the conflicting

area and then assign each ant the label of the cell where the

ant is located. Figure 4 shows the schema adopted in this

work. Every cell is assigned a label between 0 and 7 through

the following expression, where x and y are the integer

coordinates of the cell:

f(x, y) =

∣

∣

∣

∣

⌊

y%16

8

⌋

−

⌊

x%4

2

⌋
∣

∣

∣

∣

∗4+

⌊

y%8

4

⌋

∗2+(x+y)%2

It can be noticed that if two cells may host conflicting agents

– i.e. two cells belonging to different regions and separated by

at most one interposed cell – they are assigned different labels,

thus ensuring that the hosting ants will never be executed

concurrently.

The choice of adopting the schema of Figure 4, and the

generating expression (5), derive, as detailed in [13] [12],

from two requirements: (i) limit the number of labels, so

as to reduce the number of exchanged messages and the

synchronization points and (ii) assign the labels to cells so that

two adjacent regions will always execute comparable numbers

of operations at each label, i.e., at each logical time. The latter

requirement helps to maximize the concurrency degree.

The schema of Figure 4 is established by using a

backtracking-based algorithm, which enumerates all the ad-

missible schemes. The adopted one was chosen among those

satisfying the above listed requirements. The backtracking

algorithm is executed offline with respect to the execution of

the ant algorithm so as not to affect system performance. The

schema is maintained during the whole algorithm execution

but the specific labels are “rotated” at every time step. This

avoids to assign static priorities among cells, which would be

transferred to the execution order of the hosted ants.

IV. EXPERIMENTAL RESULTS

The presented approach has been evaluated for a typical

clustering context, where the ant algorithm is used to sort

items belonging to different classes. Our goal is to show that

our methodology, while preventing data consistency issues, as

173

Borders
{

Node1 Node2

conflicting
area

0 1 4 5

1 0 5 4

0 1 4 5

1 0 5 4

2 3 6 7

3 2 7 6

2 3 6 7

3 2 7 6

4 5 0 1

5 4 1 0

4 5 0 1

5 4 1 0

6 7 2 3

7 6 3 2

6 7 2 3

7 6 3 2

Figure 4. Schema adopted for assigning labels to cells in the conflicting area

explained in the previous section, ensures a high degree of

scalability in a wide set of scenarios. The items are spread

in a bi-dimensional grid of 120 x 100 cells, and a number of

items per cell ranging between 5 and 50. The items belong

to a number of classes C between 3 and 9 and are randomly

spread over the cells in accordance to a uniform distribution.

The number of ant-like agents is proportional to the number of

items and spans between 30,000 and 300,000. The scalability

is evaluated with two sets of experiments: in the first set we run

the algorithm first on a single node and then on three parallel

nodes of a cluster, varying the problem size (i.e., the number

of items); in the second set, for a given problem size, we

varied the number of parallel nodes up to 9. The experiments

were carried out on a cluster in which each computing node

has CPU Intel(R) Xeon(R) CPU E5-2670 2.60GHz and 128GB

RAM. The nodes are interconnected with an Intel Corporation

I350 Gigabit Network.

To show how the algorithm clusters the items, Figure 5

reports three snapshots of the system taken before starting the

algorithm, in an intermediate state, and when clustering has

been achieved. The snapshots are taken for the scenario in

which items belong to three classes and the visibility radius

VR is set to 10. The three classes correspond to the RGB

colors. When a cell contains items of different classes, the

color corresponds to the dominant class. The color intensity

of a cell is proportional to the number of items of the dominant

class.

The value of the overall entropy, as defined in expression

(4), is computed every 1000 time steps, and decreases as the

algorithm proceeds, confirming its effectiveness. The system

is considered stable when 10 successive values of the entropy

differ among them no more than 1%: this is used as a stop

criteria for the algorithm.

Before analyzing the parallel execution of the algorithm, we

analyze its behavior when it is executed on a single node in

some of the use cases of interest. Figures 6 and 7 show the

(a) at the beginning

(b) in an intermediate state

(c) at the end of execution

Figure 5. Evolution of the clustering algorithm

behavior when varying, respectively, the number of classes

and the visibility radius. Specifically, Figure 6 shows that the

entropy decreases from values close to 1 to values lower than

0.2, confirming that the items have been effectively clustered.

The curves stop when the algorithm terminates its execution.

It is noticed that as the number of classes C increases: (i) the

stable value of entropy decreases and (ii) the convergence is

slightly faster. In these tests, the visibility radius VR was set

to 5. The value of VR can be used to tune the size of the

clusters, i.e., of the areas containing items of the same class:

larger clusters are obtained with larger values of VR. Figure

7 shows the results of experiments in which the number of

classes is set to 3 and the visibility radius ranges between

2 and 10. As the VR value increases, the algorithm needs

more time steps to converge, and converges to larger values

of entropy.

It should be remarked here that during parallel execution we

obtained the same behavior as the one illustrated in Figures 6

and 7. This mirrors the fact that the adopted approach does not

impair the algorithm evolution. Differently to what happens

elsewhere, e.g. in [11], the behavior of the ant algorithm does

not depend on the serialized or parallel execution context.

174

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000

en
tr

o
p

y

time step

C=3
C=5
C=7
C=9

Figure 6. Entropy curves using different number of classes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

en
tr

o
p

y

time step

VR=2
VR=3
VR=5

VR=10

Figure 7. Entropy curves using different visibility radii

The parallel execution of the algorithm is more and more

efficient as the overall computational load increases. In the

considered scenario the problem size increases with the num-

ber of items and the visibility radius. Indeed, the number

of pick/drop attempts is proportional to the number of items

while the computational load of a single pick/drop attempt is

proportional to the visibility radius, as the radius determines

the number of cells involved in the computation of function fc
(see expressions (1) and (2)). It may be remarked here that the

computational load does not depend on the number of classes.

Figure 8 reports the overall execution time of the algorithm

and confirms the mentioned relationships between the number

of items, the visibility radius and the computational load.

Performance of parallel execution is assessed by measuring

the speedup value, computed as the ratio of the execution

time experienced on a single node and the execution time on

multiple nodes. Figure 9 reports the speedup on three parallel

nodes vs. the number of items, when varying the visibility

radius. The algorithm scales very well: as the number of items

increases up to 600,000, the speedup value increases up to

values between 2.5 (with VR=2) and 2.7 (with VR=10). It is

also noticed that, as the visibility radius increases, the steady

value of speedup is achieved for smaller values of the number

of items. Such behavior is consistent with the computational

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600

ex
ec

 t
im

e
(h

o
u
rs

)

no. of items (thousands)

VR=2
VR=5

VR=10

Figure 8. Execution time vs. the number of items

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600

sp
ee

d
u
p

no. of items (thousands)

VR=2
VR=3
VR=5

VR=10

Figure 9. Speedup vs. the number of items

load analysis discussed before.

Finally, we analyzed the speedup when parallelizing the

execution on up to 9 nodes. Figure 10 reports the values

of speedup vs. the number of computing nodes and for

different problem sizes, when setting the visibility radius to 10.

Experimental results reported in Figures 9 and 10 confirm the

good scalability and performance of the approach since: (i) the

speedup increases with the number of nodes; (ii) for a given

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9

sp
ee

d
u
p

no. of nodes

360000 Items
480000 Items
600000 Items

Figure 10. Speedup vs. the number of computing nodes

175

number of nodes, the speedup increases with the problem size.

V. RELATED WORK

This paper presents an approach that can be used to improve

performance and achieve good scalability when a wide class

of algorithms are ported and executed in parallel architectures.

The approach is applied to ant algorithms, a class of agent sys-

tems that aim to solve very complex problems, ranging from

the management of distributed systems to routing problems

and multi-parameter optimization, by imitating the behavior

of some species of ants [1].

Parallel/distributed versions of ant algorithms became pop-

ular in the last decade. A recent survey [9] focuses on par-

allel implementations of Ant Colony Optimization solutions,

which aim to improve the efficiency of population-based meta-

heuristics. By splitting the population into several processing

elements, parallel implementations of meta-heuristics allow

to reach high quality results in a reasonable execution time,

even when facing hard-to solve optimization problems [19].

In [10], a mathematical model is presented that helps to

parallelize a generic Ant Colony Optimization problem while

minimizing the workload imbalance among the machines,

with the objective of reducing the overall execution time. In

[11] an ant algorithm is parallelized using the MapReduce

programming model: the input dataset is partitioned into a

number of parallel nodes, and partial results are collected by

a central controller node. However, with this approach the

parallel nodes are isolated, and mobile agents (ants) are not

allowed to migrate from one node to another, which limits

their movements and hinders the faithful implementation of

the ant paradigm.

When the problem size is relevant, it may be useful to

exploit computing nodes belonging to heterogeneous systems.

In such a case, a tailored framework must be designed to

cope with the issues related to a distributed scenario. A

configurable distributed architecture was proposed in [20] in

order to provide an intuitive and simple mapping of ant colony

optimization algorithms in a distributed environment. In this

approach, the physical environment of ants is represented

and implemented as a distributed multi-agent system, and the

movements of ants are modeled through messages that are

exchanged asynchronously among the agents. The approach

was generalized in [21] to distribute Swarm Intelligence (SI)

algorithms that solve graph search problems on a computer

network. This work proposes a novel distributed framework,

for a class of SI algorithms, which better exploits the inher-

ently distributed nature of these algorithms.

AntNet [8] is a distributed multi-agent routing algorithm

proposed for wired datagram networks based on the principle

of ant colony optimization. In AntNet, each node maintains a

routing table and an additional table containing statistics about

the traffic distribution over the network. AntNet uses two sets

of homogeneous mobile agents, forward ants and backward

ants, to collect information about traffic distribution and update

the routing tables. Multi-agent ant algorithms were also used

to manage distributed information systems, Grids, and P2P

networks. A self-organizing distributed algorithm, So-Grid,

was proposed to cluster objects according to their classes, so

as to facilitate their management and speed up their discovery

in a Grid environment [22].

The approaches mentioned so far are focused on the mod-

eling and execution of bio-inspired algorithms but do not

explicitly manage the problem of territory representation and

handling. Situated multi-agent systems are systems in which

the behavior of agents is strongly influenced by their positions

in the territory and by their interactions with the surrounding

environment [23]. The management of the shared state rep-

resenting the territory may become a bottleneck, limiting the

overall performance when situated agent systems are executed

in a parallel/distributed scenario [24] [25].

The concept of spheres of influence is introduced in [26]

in order to manage shared state in a distributed scenario. The

purpose is to favor locality by putting information close to

the agent that uses the information during execution. Spheres

of influence are dynamically determined on the basis of the

mutual interactions among agents and information. In [27]

shared data is maintained in a tuple-space. The tuple-space

is partitioned by following a hierarchical schema based on the

spheres of influence so as to avoid bottleneck in managing the

shared data. In [28] the concept of synchronization regions is

introduced to resolve conflicts among concurrent actions and

to reduce synchronization cost in a distributed setting. A region

is a group of agents that act simultaneously and independently

from other agents. Regions are determined by a decentralized

synchronization algorithm that is executed when actions are

performed.

The described approaches need an explicit effort of the

developer for the definition and implementation of explicit

high-level synchronization mechanisms and primitives used

to manage territory and shared data. Conversely, our ap-

proach offers a transparent and efficient way to parallelize

the execution of ant algorithms, ensuring good performance

while relieving the developer from taking care of the issues

related to management of shared state, territory handling and

performance optimization.

VI. CONCLUSIONS

We presented and evaluated an approach that makes on

original use of the logical time concept to automate the

parallelization of a wide class of bio-inspired algorithms. The

approach is applied to a very popular clustering problem, i.e.,

the spatially sorting of items belonging to different classes,

obtained through probabilistic pick and drop operations per-

formed by mobile agents. The paper describes the mechanisms

and the policy used to partition the territory among parallel

nodes and manage shared data avoiding conflicts and data

inconsistency. This relieves the developer from the burden of

explicitly defining and managing high level synchronization

176

primitives to cope with the above mentioned issues. The per-

formance of the clustering algorithm was evaluated through the

measurement of spatial entropy. Results, assessed in a parallel

environment, show that the approach has good scalability

properties and can be adopted to speed up the ant algorithm

execution when the problem is complex and/or its size is large.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from

natural to artificial systems. New York, NY, USA: Oxford University
Press, 1999.

[2] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A framework
for the development of agent-based peer-to-peer systems,” in Proc. of

the 22 nd International Conference on Distributed Computing Systems

ICDCS’02. Washington, DC, USA: IEEE Computer Society, 2002, pp.
15–22.

[3] P. Dasgupta, “Intelligent agent enabled peer-to-peer search using ant-
based heuristics,” in Proc. of the International Conference on Artificial

Intelligence IC-AI’04, 2004, pp. 351–357.
[4] M. Wooldridge, An introduction to multi-agent systems. John Wiley &

Sons, Ltd., 2002.
[5] K. Sycara, “Multiagent systems,” Artificial Intelligence Magazine,

vol. 10, no. 2, pp. 79–93, 1998.
[6] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial

Intelligence. Addison Wesley Longman, 1999.
[7] P. Grasse’, “La reconstruction du nid et les coordinations inter-

individuelles chez belicositermes natalensis et cubitermes sp. la thorie
de la stigmergie : Essai d’interprtation du comportement des termites
constructeurs.” Insectes Sociaux, no. 6, pp. 41–84, 1959.

[8] G. Di Caro and M. Dorigo, “Antnet: Distributed stigmergetic control for
communications networks,” J. Artif. Int. Res., vol. 9, no. 1, pp. 317–365,
December 1998.

[9] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on parallel
ant colony optimization,” Applied Soft Computing, vol. 11, no. 8, pp.
5181 – 5197, 2011.

[10] T. Keskinturk, M. B. Yildirim, and M. Barut, “An ant colony optimiza-
tion algorithm for load balancing in parallel machines with sequence-
dependent setup times,” Computers & Operations Research, vol. 39,
no. 6, pp. 1225 – 1235, 2012.

[11] Y. Yang, X. Ni, H. Wang, and Y. Zhao, “Parallel implementation of ant-
based clustering algorithm based on hadoop,” in Proc. of the 3rd Int.

Conference on Advances in Swarm Intelligence - Part I, ser. ICSI’12.
Shenzhen, China: Springer-Verlag, October 2012, pp. 190–197.

[12] F. Cicirelli, A. Giordano, and L. Nigro, “Efficient environment man-
agement for distributed simulation of large-scale situated multi-agent
systems,” Concurrency and Computation: Practice and Experience,
2014. [Online]. Available: http://dx.doi.org/10.1002/cpe.3254

[13] ——, “Distributed simulation of situated multi-agent systems,” in Proc.

of the IEEE/ACM 15th International Symposium on Distributed Simu-

lation and Real Time Applications, Washington, DC, USA, 2011, pp.
28–35.

[14] D. Weyns, A. Omicini, and J. Odell, “Environment as a first class
abstraction in multiagent systems,” Autonomous Agents and Multi-Agent

Systems, vol. 14, no. 1, pp. 5–30, 2007.
[15] L. Lamport, “Time, clocks and the ordering of events in a distributed

system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.
[16] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain,

and L. Chrétien, “The dynamics of collective sorting robot-like ants
and ant-like robots,” in Proc. of the First International Conference

on Simulation of Adaptive Behavior on From Animals to Animats.
Cambridge, MA, USA: MIT Press, 1990, pp. 356–363.

[17] M. Martin, B. Chopard, and P. Albuquerque, “Formation of an ant
cemetery: swarm intelligence or statistical accident?” Future Generation

Computer Systems, vol. 18, no. 7, pp. 951–959, 2002.
[18] F. Cicirelli, A. Furfaro, and L. Nigro, “An agent infrastructure over HLA

for distributed simulation of reconfigurable systems and its application
to UAV coordination,” SIMULATION, Trans. of SCS, vol. 85, no. 1, pp.
17–32, 2009.

[19] E. Alba, Parallel metaheuristics: a new class of algorithms. John Wiley
& Sons, 2005, vol. 47.

[20] S. Ilie and C. Badica, “Multi-agent approach to distributed ant colony
optimization,” Science of Computer Programming, vol. 78, no. 6, pp.
762 – 774, 2013.

[21] ——, “Multi-agent distributed framework for swarm intelligence,”
Procedia Computer Science, vol. 18, pp. 611 – 620, 2013, 2013
International Conference on Computational Science. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050913003682

[22] A. Forestiero, C. Mastroianni, and G. Spezzano, “So-grid: A self-
organizing grid featuring bio-inspired algorithms,” ACM Transactions

on Autonomous and Adaptive Systems, vol. 3, no. 2, May 2008.
[23] S. Bandini, S. Manzoni, and C. Simone, “Dealing with space in multi

agent systems: a model for situated MAS,” in Proc. of the 1st Int. Joint

Conference on Autonomous Agents and Multiagent Systems, New York,
NY, USA, July 2002, pp. 1183–1190.

[24] B. Logan, “Evaluating agent architectures using simulation,” in Evaluat-

ing Architectures for Intelligence: Papers from the 2007 AAAI Workshop.
AAAI Press, 2007, pp. 40–43, Technical Report WS–07–04.

[25] D. Pawlaszczyk and S. Strassburger, “Scalability in distributed simula-
tions of agent-based models,” in Proc. of Winter Simulation Conference

(WSC), Austin, TX, USA, 2009, pp. 1189–1200.
[26] B. Logan and G. Theodoropoulos, “The distributed simulation of mul-

tiagent systems,” Proc. of the IEEE, vol. 89, no. 2, pp. 174–185, 2001.
[27] M. Lees, B. Logan, R. Minson, T. Oguara, and G. Theodoropoulos,

“Modelling environments for distributed simulation,” in Proc. of the

1st International Workshop on Environments for Multi-Agent Systems

(E4MAS)), ser. LNAI, vol. 3374. Springer, 2005, pp. 150–167.
[28] D. Weyns and T. Holvoet, “A formal model for situated multi-agent

systems,” Formal Approaches for Multi-Agent Systems, Special Issue of

Fundamenta Informaticae, vol. 63, no. 2, 2004.

177

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 7.20 points
 Normalise (advanced option): 'improved'

 32

 D:20140619130514
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 Full
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 5.40 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 322
 Fixed
 Up
 5.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

