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a b s t r a c t

With the advent of the “Internet of Services” and the use of novel technologies such as Software as a
Service and Cloud Computing, the market of Information Technology is experiencing an important shift
from the request/provisioning of products toward a scenario where everything, computing, storage,
applications, is provided as a network-enabled service. When no single service is able to address the
requirements of a specific problem, the solution can be the deployment of a workflow composed of
several basic services. This paper presents a P2P self-organizing framework that facilitates collective
discovery requests, issued to locate all the components of a workflow. The information system is
organized so that the descriptors of services that are often used together in the same workflow are
placed close to each other. This allows queries to rapidly find several target services, which helps to lower
the search time and reduce the computing and network load.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The “Internet of Services” is rapidly emerging as a paradigm
that allows users and companies to access computational resources
(storage, applications, infrastructures) as network-enabled services
provided on pay-as-you go basis (European Community for
Software & Software Services, 2009). The Internet of Services is
expected to have a great impact not only in business scenarios, but
also in advancing public administration procedures and services.
The shift from the request/provisioning of products to the service-
oriented view is also favored by the Cloud technology, which is
making on-demand computing a common practice for many
enterprises and scientific communities (Buyya et al., 2009).

In this context, one of the main requirements is to deploy a
scalable architecture where services provided by different vendors
or institutions can be accessed in a uniform fashion and integrated.
For example, strategies are being devised to integrate the services
offered by multiple Cloud companies, in scenarios referred to as
Hybrid Cloud Computing or Sky Computing (Riteau et al., 2010).
This trend toward integration comes from many reasons: one
is the quest for elastic solutions, as the presence of multiple
providers can help to adapt the amount of available resources to
changing user requirements. A second reason is the necessity of
avoiding vendor lock-in situations, as customers appreciate the
possibility of easily moving their data and applications from one

vendor to another, depending on the experienced cost and quality
of service. Perhaps the most relevant motivation for this trend is
that a solution cannot always be offered by a single service, but
through the composition of multiple basic services in a workflow
(Dustdar and Papazoglou, 2008; Srivastava and Koehler, 2003).
Unfortunately, as the number of available services increases, the
number of composition possibilities grows exponentially. This is
the problem of combinatorial explosion (European Community for
Software & Software Services, 2009).

A great research effort is currently devoted to the building of
automatic and semi-automatic frameworks and tools that assist
the user in three main tasks: the design of complex services and
workflows; the discovery of the basic component services; and the
execution of the workflows. The design phase is often assisted by
tools that exploit statistics on the way services have been selected
and composed in the past (Wisner, 2006), and may use semantic
and ontology-oriented algorithms. Once a composite service has
been designed, the basic services specified in the composition
pattern must be discovered on the network. In most cases, the
user does not need to discover a specific service, but a set of
services having some desired characteristics, among which the
most convenient ones will be selected at execution time. Discovery
requests must be issued to find service descriptors, which contain
information about the services' characteristics and the modalities
to access them. In the case of a composite service, a request is
needed for each component/basic service, which can result in long
overall discovery times and high network loads.

This paper presents an approach that helps to improve the
efficiency of “collective” discovery requests. The main idea is to
spatially cluster service descriptors on the basis of the co-use
frequencies of corresponding services. In other words, the descriptors
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of services that are often executed in the same workflow are
placed in restricted regions of the network. This allows search
messages to find all or most of the required basic services on a
small number of close-by hosts, so as to reduce the response time
experienced by the user and save processing load and bandwidth.

The presented framework is decentralized and self-organizing,
which helps to endure good scalability and fault tolerance char-
acteristics. Such properties emerge from simple operations per-
formed by a set of mobile agents, whose behavior is partially
inspired by ant algorithms Bonabeau et al. (1999). In numerous
scientific projects, ant-inspired agents are used to reorganize
items in a distributed environment (resembling the clustering of
larvas performed by some species of ants Handl and Meyer, 2007),
or to find a good path toward a target resource, for example a food
source (Doerner et al., 2009). Both these features are exploited in
the presented system by two types of agents: ant agents and query
agents. Ant agents travel the network exploiting peer-to-peer
(P2P) interconnections among hosts, and relocate service descrip-
tors through probabilistic pick and drop operations. Query agents
exploit the reorganization of descriptors to drive discovery mes-
sages, hop by hop, towards the target services specified in the
collective discovery requests. Simulation-based analysis shows
that the ant agents succeed in the spatial ordering of descriptors,
and query agents are able to satisfy user requirements rapidly and
with low resource consumption.

The rest of the paper is organized as follows: after the
discussion of the state-of-the-art in Section 2, Section 3 describes
the algorithms for the reorganization and discovery of service
descriptors, Section 4 presents performance evaluation results,
and Section 5 concludes the paper.

2. Related work

The development of applications over complex and distributed
environments, such as Grids and federated Clouds, requires the
ability to select and integrate inter-organizational and heteroge-
neous services. If no single service can satisfy the functionalities
required by the user, it is often possible to combine existing
services in order to fulfill the request. This trend has triggered a
considerable number of research efforts, in academia and industry
(Rao and Su, 2004; Papazoglou et al., 2007; Zimeo et al., 2008),
on the composition of services. Despite these efforts, this is still a
highly complex task, mainly for two reasons: (i) the number of
available services increases dramatically and composition alter-
natives grow exponentially and (ii) services are often provided by
different organizations, which use different concept models for
their descriptions, and yet there is no unique language to define,
evaluate and access services.

Today service composition is typically performed through
centralized middleware components, such as registries, discovery
engines and brokers, but this approach is inevitably a serious
bottleneck and is not well scalable. In the last few years, dis-
tributed registries have been proposed to let service networks
scale to the growing number of service providers and consumers.
Meteor-S (Verma et al., 2005) and Pyramid-S (Pilioura et al., 2004)
propose scalable P2P infrastructures to federate the registries that
publish and discover services. These systems use an ontological
approach to organize registries: semantic classification is based on
the specific application domain and is assisted by domain experts.

Most P2P systems adopted today are structured, which means
that peers are organized in a predefined overlay (e.g., a ring or a
multi-dimensional space). A hash function is defined to assign
each resource/service an access key and each peer a code, and
every service is assigned to the peer whose code matches the
resource key. This approach ensures that a single service can be

found rapidly through an informed discovery procedure. Unfortu-
nately, it is recognized (Cheema et al., 2005) that the hash function
does not preserve the semantic features of services, and the keys
of services that are in some way related to each other are
inevitably dispersed to distant regions of the network. This means
that the target services of multiple discovery requests must be
found with distinct search procedures, with no chance of using the
results of one request to speed up or facilitate another request.

Recently, we presented agent-based algorithms for P2P systems
that do not use hash functions to compute resource keys, but
assign similar keys to similar resources (Forestiero et al., 2008a,
2010a). This helps to serve range queries, i.e., queries for which
some features of the target resources are defined through ranges
of contiguous values. However, services that are frequently used in
the same workflow are not similar to each other, as they are
generally used for different purposes. For example, a pre-
processing service is not similar to a data mining service, yet they
are often executed in the same workflow sequence. The approach
of this paper is to use the statistics on the execution of workflows
to define a peculiar type of similarity between services, which
corresponds to the frequency with which they are used together.
This allows to define self-organizing algorithms that cluster fre-
quently co-used services and in this way assist collective service
requests. To the best of our knowledge this is the first time that an
approach of this kind is proposed. In general, however, the
collective discovery and composition of services can be favored
by intelligent mechanisms that use semantic information about
services, or that exploit statistical information about the way they
have been used in the past. Some works that follow such avenues
are summarized in the following.

The system presented in Birukou et al. (2007) aims to improve
Web service discovery. Data collected from past requests, and
corresponding service invocations and executions, are used to
compute similarity between user requests, and similarity informa-
tion is used to recommend useful services. Magallanes (Rios et al.,
2009) is a platform-independent Java library of algorithms aimed
at discovering bioinformatics web services and associated data
types. Magallanes adopts a scoring system based on the number
of occurrences and relative positions of matching hits, and is
currently endowed with AND/OR operators and regular expres-
sions. In Rasch et al. (2011), a set of algorithms is proposed to
continuously present the most relevant services to the user, trying
to anticipate user implicit requests on the basis of the current
context.

The strategy of BioMoby (Di Bernardo et al., 2008) is to simplify
interactive service composition for the bioinformatics domain. In
each step of the workflow construction process, only those
services that are compatible and more likely to be useful are
displayed. This is achieved by ranking the services according to
several aspects, such as semantic similarity of data type inputs or
statistics about past requests. The system presented in Sellami
et al. (2009) exploits past users characterizations to route a query
to the most appropriate registries, exploiting P2P interconnections
among registries on top of a JXTA platform. When no formal
description of the composition process is easily obtained, or when
the quality of existing documentation is uncertain, the use of
process mining techniques can be a valid solution (van der Aalst
et al., 2007a). Process mining aims at the automatic building of
composite services starting from the behavior deducible from
execution logs of basic services.

In Meyer et al. (2006), the authors present an approach to
schedule the execution of composite services on the basis of the
spatial proximity of files and jobs. The idea is to leave the files at
the sites where they have been processed, so that adjacent jobs
can immediately retrieve the files and remove them only when
they are no longer needed. A comparison between this approach
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and the one adopted here may be interesting: in Meyer et al.
(2006) the location of services and resources is the input, and
workflows are scheduled so as to optimize execution efficiency in
the given scenario; with our approach, service descriptors are
relocated so as to improve the performance of discovery requests.

An interesting approach is proposed in Maamar et al. (2011).
The authors look into the possible overlap between social comput-
ing and service-oriented computing. The objective is to let users
capitalize on their past interactions. For example, users can obtain
information from Web services about the other users with whom
they could profitably collaborate to build new complex services.

3. Ant-inspired algorithms for collective service discovery

As discussed in the introductory section, one of the main tasks
involved in the process of building a composite service, or “work-
flow”, is the discovery of the basic component services over the
network. This paper presents a technique that facilitates and
speeds up this important task.

In the examined scenario, services are provided by a large
number of hosts in a distributed environment, such as a P2P
system, a Grid or a Cloud. The technique can be adopted whenever
a few assumptions apply, as explained in the following. The first
assumption is that services can be categorized into a number of
service classes, where this classification is driven by service
semantics and functionalities. Indeed, very often users are not
interested in using a specific service, but wish to collect informa-
tion about a number of services having specified characteristics or
functionalities, for example mathematical services that provide a
numerical solution to differential equations, or bio-informatic
modules that perform particular operations on protein data. Once
several services have been discovered for a given class, the most
appropriate one may be chosen on the basis of user-defined
criteria: cost, effectiveness, availability of the service provider, etc.

The second assumption is that workflows are built following
recurrent patterns (Meng et al., 2008). For example, the execution
of a data mining software often requires a specific algorithm to
preprocess input data: in this case, the preprocessing algorithm
and the data mining software will be executed together and will
often be included in the same collective discovery request.

The third assumption is that the services belonging to a given
class are associated with a specific value of a key. This strategy is
very common in P2P systems and service-oriented architectures
(Taylor, 2004). A service key may be generated by a hash function,
as in Distributed Hash Tables, or may have a semantic meaning: for
example, if each bit in the key corresponds to a specific topic, the
1/0 value means that the service covers/does not cover that topic.

The fourth assumption is that a user, before using a service,
must first retrieve a metadata document, or descriptor, which
contains the reference to the service along with the description of
its functionalities. The service is provided by a specific host, but
the descriptor can be relocated on another host, so as to facilitate
the service discovery process. This is very frequent in distributed
systems, which mainly differ for the strategy adopted to relocate
descriptors. For example, in most P2P systems the descriptor is
maintained by a peer whose index is the same as the resource key,
or is very similar to it, whereas in gossip-based systems descrip-
tors are disseminated through the connections between adjacent
peers.

Under the mentioned assumptions, a user who wishes to build
a composite service must first individuate the classes of the
component basic services (and the corresponding keys), then issue
a search request for each class, and finally select among the
services that have been discovered. This process may result in
long search times and excessive use of network and computing

facilities, especially if the number of component services is large.
The goal of the technique presented here is to reduce the duration
and load of the process by spatially clustering the descriptors of
services that are frequently co-used in the same workflow. This
ensures that once a discovery procedure has found some target
services, with high probability it will find many other useful services
in the same region of the network, and often in the same peer.

System operations are executed by three distributed algo-
rithms: Alg. 1, used to collect and disseminate statistics about
the co-occurrence of service classes in the same workflow; Alg. 2,
used to relocate and cluster the descriptors of frequently co-used
services1; Alg. 3, used to drive discovery requests toward target keys.

The algorithms are executed by mobile agents whose behavior
is partially inspired by ant colonies (Bonabeau et al., 1999;
Forestiero et al., 2008b). Specifically, two different types of mobile
agents are defined: ant agents and query agents. Ant agents execute
Alg. 2: they move and cluster the keys over the network on the
basis of co-use statistics. Query agents execute Alg. 3: they are
generated by users to serve collective discovery requests, and
move toward the target services exploiting P2P connections.
Finally, ant agents and query agents cooperate to execute Alg. 1:
the former carry statistical data from peer to peer, helping the
peers to make these statistics more consistent and stable, while
query agent update the co-use statistics maintained by the peers
through which they pass.

Figure 1 summarizes the tasks performed by agents on a single
peer. The upper part and lower part of the figure show the tasks
executed by ant agents and query agents, respectively, while the
middle part shows the information maintained by the peer, and
used/updated by agents: a repository of keys, a list of adjacent
peers, and the co-use matrix, which collects the co-use statistical
data. When a query agent arrives at the peer carrying a collective
query, (i) it uses the query itself to update the co-use matrix, then
(ii) it collects the target keys found in the local repository, and
finally (iii) it selects the adjacent peer that most probably stores
some useful keys and hops there. When an ant agent arrives at the
peer, it carries the co-use matrix of the last visited peer and
possibly some keys picked on the peers visited previously. The ant
operates as follows: (i) it merges the carried co-use matrix with
the matrix stored locally, using the Push-Sum protocol (Kempe
et al., 2003); (ii) it executes probabilistic trials, in order to decide
whether or not to drop the carried keys and/or pick other keys
stored in this peer; and (iii) it hops to a new peer, chosen
randomly. Ant and query agents operate continuously and in
parallel. This allows the reorganization of descriptors to adapt
dynamically to user requests, so as to serve them more rapidly and
efficiently.

The three algorithms are described in the following subsections
in detail. To help the description, it is assumed that services are
composed according to the workflow pattern depicted in Fig. 2,
which corresponds – with a few simplifications – to “MassBank to
KEGG”, a workflow schema for the analysis of bioinformatics data,
published at the repository myExperiment.2 myExperiment is a
collaborative environment where scientists publish and share
their workflows and experiment plans, and is currently the largest
public repository of scientific workflows. The mentioned workflow
pattern is used to retrieve information from several databases
about organic molecules and their interactions, parse this infor-
mation and put it into a standard format for successive processing.
The workflow pattern includes 20 service classes and has two OR

ramifications: a workflow instance may follow any of the branches

1 Since each service class is associated with a specific value of the descriptor
key, the discussion will often refer to the relocation and clustering of keys, for the
sake of simplicity.

2 http://www.myexperiment.org/workflows/741.html.
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of a ramification and execute the services of the chosen branch.
The first two services, denoted as S1 and S2, are included in any
workflow instance and are used, respectively, to select the perti-
nent database and prepare the query in a common format. Then,
the workflow instance selects one of the branches of the first OR
ramification depending on the specific database that needs to be
interrogated. For example, if the workflow instance needs to
download data from the PUG database (PubChem Power User
Gateway, at http://pubchem.ncbi.nlm.nih.gov/), it follows the left-
most branch, which includes services from S3 to S8. Conversely,
if the database of interest is ChemSpider (http://www.chemspider.
com), the instance follows the rightmost branch, with services
from S17 to S20. As data about the execution of workflow
instances is not available, in our experiments it is assumed that
all the branches are chosen with equal probabilities, as indicated
in the figure.

In general, the workflow pattern makes it evident that some
services are always executed together while other services are

never executed in the same workflow. It is then reasonable that a
collective request may be highly facilitated by the fact that the
component services of a workflow are located close to each other.

3.1. Alg. 1: building and dissemination of co-use matrices

The objective of Alg. 1 is the building of co-use matrices on the
peers of the network. Assuming that services are categorized into
NS classes, in accordance with a domain specific classification,
these classes are assigned progressive integer keys from 0 to NS�1.
Each peer maintains a bi-dimensional matrix M, in which the
element Mði; jÞ, with i; j¼ 0::NS�1; ia j, represents the frequency of
co-occurrences of service classes i and j in the same workflow.

To build M, each peer examines the target keys of the collective
discovery requests carried by query agents. For each couple of keys,
i and j, the matrix element Mði; jÞ is incremented by 1. To give more
relevance to the recent behavior of the system, matrix elements
are computed in a temporal window that includes the workflow
requests received during the past H hours (H is a tunable para-
meter, and in this work it is set to 24 h). Values of M are
normalized, so as to obtain values between 0 and 1.

The ant agents are assigned the responsibility of disseminating
the values of co-use matrices among the peers, in order to speed
up the convergence process. After hopping from one peer to
another, an ant delivers the matrix of the source peer, Ms, to the
target peer. The target peer updates its co-use matrix Mt by
combining its current values with the values of the matrix Ms.
This technique follows the Push-Sum protocol (Kempe et al., 2003),
which allows aggregate values, in this case the average values of
the M elements stored by different peers, to be computed in a
number of rounds that is logarithmic with respect to the number
of peers. In this way, information is progressively disseminated
across the network, and the values of the peer matrices converge
rapidly to consistent values.

Figure 3 shows the expected values of the co-use matrix when
services are composed following the workflow pattern of Fig. 2.
Service classes are grouped in blocks, since services belonging to
the same block are always executed together. The matrix is
symmetrical and sparse, hence only a fraction of its values must
be stored by peers and carried by ant agents.

Fig. 1. Tasks performed by ant and query agents when arriving at a new peer. Each
task is associated with one the three basic algorithms.
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3.2. Alg. 2: reorganization of descriptors

The objective of this algorithm, executed by the ant agents, is
the reorganization of keys. An ant is generated by a peer when it
joins or reconnects to the system, and travels the network hopping
from peer to peer. The lifetime of an ant is set to the average
connection time of the issuing peer. In this way, the average
number of circulating ants, Na, is always comparable to the
average number of peers connected to the network, Np, since
dying ants are compensated by new ants generated by reconnect-
ing peers.

Each ant agent, at random time intervals, hops from a peer to
an adjacent one, chosen randomly. At the new peer, the ant tries to
pick a key that is not frequently co-used with the others stored
locally. After picking a key, the ant carries it and tries to drop it in a
peer where the co-use frequency with the local keys is high. The
continuous execution of pick and drop operations ensures that the
descriptors of frequently co-used services are kept close to each
other. Pick and drop operations are described in the following.

Pick operation. To decide whether or not to pick a key from a
peer, say key k̂, the ant agent computes the “co-use similarity” of
the key with the other keys k stored in the local area A, which
includes the local peer and the peers directly connected to it. The
co-use similarity f ðk̂;AÞ is defined as follows:

f k̂;A
� �

¼ 1
Nk

� ∑
kϵA

M k; k̂
� �� �

ð1Þ

where M is the co-use matrix of the local peer, and Nk is the
number of keys stored in the local area A, excluding k̂. The co-use
similarity has values between 0 and 1, and a higher similarity
corresponds to a higher co-use frequency. The agent performs a
Bernoulli trial, i.e., a trial with two possible outcomes, success (the
key is picked) or failure (the key is left at the peer). The success
probability is

Ppick ¼
αp

αp þ f ðk̂;AÞ
; with 0rαpr1 ð2Þ

Therefore, the pick probability is inversely proportional to the
co-use similarity, which ensures that an “outlier” key will be
picked with high probability and moved to other regions of the
network. The parameter αp can be tuned to modulate the degree of
similarity among keys. In this work, αp is set to 0.1, as in the
canonical ant algorithm (Bonabeau et al., 1999).

With reference to the co-use matrix shown in Fig. 3, if all the
keys stored in the local area belong to service classes S3–S8, a key
of class S10 will be picked with high probability, because its
similarity with the other keys is zero. This is also evident in Fig. 2:
a service of class S10 is never executed in a workflow with any of
the services S3–S8.

Drop operation. After a key k̂ has been picked, it is carried by the
ant agent across the network. The agent evaluates the drop
probability function at any new peer, until the key is dropped;
then, the agent will try to pick another key. The drop operation is
also based on a Bernoulli trial, whose probability is

Pdrop ¼
f ðk̂;AÞ

αd þ f ðk̂;AÞ
; with 0rαdr1 ð3Þ

This time the drop probability is directly proportional to the co-
use similarity f ðk̂;AÞ between the carried key and keys stored
locally. The value of αd is set to 0.5. For example, with reference to
the workflow pattern in Fig. 2 and the co-use matrix of Fig. 3, a key
S10 is dropped with high probability if the local keys belong to
classes S9–S12, while it is not dropped if local keys belong to
classes S3–S8.

Being concurrently executed by many ant agents, pick and drop
operations cluster keys of service classes having high co-use

frequencies, and avert keys of rarely co-used service classes. The
efficiency of this technique lies in the “swarm intelligence” behavior
of ant-inspired algorithms.

3.3. Alg. 3: collective discovery of services

The purpose of this algorithm is to find as many services as
possible that belong to a set of target classes and are needed to
build and execute a workflow instance. The reorganization of keys
achieved with Alg. 2 is exploited to increase the efficiency of the
discovery process. Specifically, the process exploits the fact that
keys are clustered (equal or similar keys are often stored in the
same peer) and spatially sorted (close-by peers store similar keys).
These aspects will be quantitatively examined in Section 4.1.

When a user initiates a discovery process, it issues a collective
query and consigns the list of target key values (each correspond-
ing to a service class) to a query agent. The query agent follows a
path toward the target keys exploiting their spatial sorting. It
operates as follows:

(i) first, it selects the service class for which it is most likely to
find a good number of keys in the local area. To do this, the
agent computes the similarity of each key of the collective
query with the keys stored in the local area, using expression
(1), and selects the key kx that maximizes this function. Now
the objective is to find as many keys kx as possible.

(ii) the agent hops to the neighbor peer at which the similarity of
key kx with the keys stored locally is the largest. This step is
repeated until the similarity computed at the current peer is
larger the similarity computed at any of the adjacent peers.
This means that the current peer most probably maintains the
largest number of keys kx. At this point, the query agent
collects the keys kx discovered so far, and removes kx from the
list of keys that are not yet selected.

(iii) the agent turns to step (i) and selects, among the keys
contained in the collective query and not yet selected, the
key ky for which the similarity with the keys stored locally is
the largest. The agent executes step (ii) to discover keys with
the new target value ky.

The procedure terminates when all the keys of the collective
query have been selected. During the search path, the query agent
collects all the target keys found along the path. At the end of the
procedure, the query agent goes back to the requesting peer,
which examines the keys discovered for each service class. If the
result is satisfactory, the discovery process terminates. Otherwise,
a new query agent is issued to search for the service classes for
which the required number of keys have not yet been discovered.
The whole process terminates when the required number of keys
have been found for each service class, or when it is not possible to
discover more keys.

As an example, let us assume that the workflow to be executed
adheres to the pattern of Fig. 2 and follows the branch that
includes service classes S1, S2, S9, S10, S11 and S12. A query agent
is then issued to discover keys of these services. Let us further
assume that the required number of keys per class is set to 10, and
that the query agent returns with 12 keys for each of the service
classes S1, S2 and S10, and 6 keys for each of the service classes S9,
S11 and S12. The request is satisfied for the first three classes, but
it is not for other three. Therefore, a second query agent is issued
to find 4 more keys for classes S9, S11 and S12. If this second agent
succeeds, the whole request is satisfied using only two query
agents.

Notice that, in absence of key reorganization, six query agents
or messages would be needed, one for each service class specified
in the workflow. Owing to the described reorganization of keys,
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it is possible to reduce the number of query messages, down to
only one in most cases. This aspect will be examined in Section 4.2.

4. Performance evaluation

The performance of the presented framework has been eval-
uated for two sets of experiments. For the first set we used the
myExperiment workflow pattern shown in Fig. 2, and generated
1000 workflow instances that follow the pattern. For each work-
flow instance, a collective query is issued to search for the services
that compose the instance. The co-use matrix for these experi-
ments was reported in Fig. 3.

For the second set of experiments we used a set of workflow
logs published at the ProM Web site.3 ProM (van der Aalst et al.,
2007b) is an open-source framework aimed at implementing and
assessing process mining tools in a standard environment. ProM
workflow logs are widely used in the literature to test algorithms
for mining process models, and their publication on the Internet
guarantees the full reproducibility of the results. Specifically, we
reproduced the workflow instances reported in the log file
a12f9n10_5.xml, which contains 1800 workflow traces. Services
are categorized into 12 classes, and the average number of services
per trace is 6.72. As for the first set of experiments, for each
workflow trace a collective discovery request is issued to search
for the corresponding component services. The co-use matrix of
ProM experiments is reported in Fig. 4. The large variability of
matrix values testifies that some services are co-used very fre-
quently (for example services belonging to classes a to g), while
others are hardly used in the same workflow.

The simulation experiments were performed with an event-
based simulator similar to that used in Forestiero et al. (2008b):
the simulation evolves through messages exchanged among
objects, i.e., among peers and mobile agents. Performance indices
were evaluated for a network of 2500 peers connected in a scale-
free topology, in which the number of connections of a peer
follows the power-law distribution (Barabási and Albert, 1999),
and the average is set to 4 neighbors per peer. Each peer publishes
15 services on average, with the actual number extracted from a
Gamma statistic distribution. The class of each published service is
generated randomly, with a uniform distribution. Collective dis-
covery requests are generated at the rate of one request per peer
every 1000 s.

Peers are not stable, but connect and disconnect periodically.
The connection time of the peers is extracted from a Gamma
distribution with average set to 4 h. Each reconnecting peer
generates an ant agent, whose lifetime is set to the connection
time. This ensures that the overall number of circulating agents is
kept approximately constant, and is comparable to the number of

connected peers, since dying agents are substituted by other
agents generated by the peers that enter the network.

The performance of the framework was evaluated with regard
to three aspects: the capacity of reorganizing and clustering the
descriptor keys, the effectiveness and efficiency of discovery
operations, and the load induced by ant and query agents. These
aspects are examined in the following subsections.

4.1. Performance of the key reorganization process

The objective of the key reorganization process is to put the
keys of co-used services in the same or in neighbor peers. To this
aim, two indices are defined: the peer homogeneity, which
assesses the co-use frequency of the keys stored in a single peer,
and the peer similarity, which evaluates the co-use frequency of
the keys stored in a local region of the network that includes a
peer and its neighbors (the neighbors of a peer are the peers
directly connected to it). Both indices should be as high as
possible: a high value of homogeneity means that a discovery
request can find many useful keys in the same peer; a high value of
similarity is a sign that the keys of neighbor peers are similar, and
therefore keys are spatially sorted on the overlay with respect to
their co-use frequency. This also means that the target keys of a
collective request can be found in a restricted region of the
network, with few steps of query agents.

More specifically, the homogeneity of a peer P is defined as the
average value of the co-use frequency, evaluated for every couple
of keys stored in P:

Om Pð Þ ¼ 1
Nk1 ;k2

� ∑
k1 ;k2 inP

M k1; k2ð Þ ð4Þ

where M is the co-use matrix of peer P and Nk1 ;k2 is the number of
key couples. To have an overall perspective about the network
state, the index is averaged over the Np peers: Om ¼ 1=Np�
∑POmðPÞ.

The similarity of a peer P is defined as the average value of the
co-use frequency evaluated for key couples in which one key is
stored in the local peer and the other is stored in AðPÞ, the set of
peers adjacent to P:

Sn Pð Þ ¼ 1
Nka ;kb

� ∑
kainP;kbinAðPÞ

M ka; kbð Þ ð5Þ

Again, the value is averaged over the whole network, Sn ¼ 1=Np�
∑PSnðPÞ.

In Figs. 5 and 6, these indices are plotted versus time, starting
from the instant in which the process is initiated and ant agents
begin to travel the network. The two figures correspond to the two
sets of experiments: the ProM logs and the traces generated with
the myExperiment workflow pattern. In both cases, homogeneity
and similarity increase rapidly and then get stabilized at values
that are much higher than at the beginning. This trend confirms
that keys are clustered and sorted by agents, which is the
condition that allows query agents to find target keys, as described
in Section 3.3.

It should be remarked that the transient phase occurs only
once, when the process is initiated starting from a completely
disordered system. After this phase, the indices are stable because
every change in the network – connections and disconnections of
peers, publishing and removals of resources – is rapidly tackled by
ant agents. For example, when a peer publishes some new keys,
the ant agents quickly notice that those keys are not in order, and
use pick and drop operations to restore the order.

Fig. 4. Co-use matrix resulting from the execution of ProM workflow instances.
Service classes are labeled with letters from a to l.

3 http://prom.sourceforge.net/.
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4.2. Performance of resource discovery

The reorganization of keys ensures that the descriptors of
services included in a collective discovery request are located in
the same or in neighbor peers: this fact is exploited by the
discovery process. To evaluate the effectiveness of resource dis-
covery, we computed the percentage of “satisfied” service classes,
i.e., the percentage of service classes, specified in a workflow
request, for which a minimum number of keys are discovered. This
minimum number is a threshold used as a parameter, and is
referred to as Tq.

Figures 7 and 8 report the values of this index vs. time when Tq
is set to 2, 4 and 8. Again, the two figures correspond to the two
sets of experiments. The dashed and continuous curves report,
respectively, the percentage of service classes that are satisfied by
the first query agent and at the end of the process. Here it may be
useful to recall (see Section 3.3) that new query agents are issued
by the requesting peer until the entire discovery request has been
satisfied (Tq keys have been found for each service class) or it
proves impossible to fulfill the goal (the last query agent does not
discover any further key). The figures show that the index
increases with time and, once the keys have been reorganized,
the first query agent is sufficient to satisfy a large percentage of
service classes, always higher than 70%. The percentage depends
on the value of Tq: it is lower with higher values of Tq, because
more keys are needed to satisfy the request. The two figures also
show that at the end of the process the percentage of satisfied

service classes is practically equal to 100%, meaning that all
collective requests are successful.

The efficiency of the discovery process can be evaluated by
assessing the number of issued query agents and the length of
their path. Accordingly, we measured the average values of (i) the
number of query agents needed by a discovery request to collect at
least Tq keys for each service class; (ii) the overall number of steps
performed by those query agents to fulfill the goal. Both indices
should be minimized to reduce the response time experienced by
the user and limit the traffic load. Figures 9–12 show that both
indices decrease as the agents operate, proving that the reorgani-
zation of keys not only improves the effectiveness of the discovery
process, but also its efficiency. In steady conditions, the average
number of needed query agents (Figs. 9 and 10) is slightly higher
than one, meaning that in most cases one or two query agents are
sufficient to satisfy a collective discovery request. At the same time
the overall number of steps performed by query agents (Figs. 11
and 12) is reduced to about 13 hops in the ProM case and 8 hops
for the myExperiment scenario.

It is useful to compare the efficiency of this approach with that
of typical structured P2P systems. In these systems, the keys are
sorted over the network and can be typically reached in a number
of steps that is logarithmic with the size of the network. However,
as discussed before, the keys are dispersed by the hash function,
therefore one separate query must be issued for each key included
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Fig. 5. Homogeneity vs. time, starting from a disordered network. Experiment
executed with ProM logs.
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Fig. 6. Similarity vs. time, starting from a disordered network. Experiment
executed with the myExperiment workflow pattern.
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Fig. 7. Percentage of service classes satisfied by the first query agent (dashed lines)
and at the end of the discovery process (continuous lines), for different values of
the threshold Tq. Experiment executed with ProM logs.
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in the collective request. In the two analyzed scenarios, myExperi-
ment and ProM, the average number of target keys included in a
discovery request is, respectively, 6.7 and 6. The first value was
computed directly from the ProM logs, while the second value
derives from the observation that the workflow pattern shown in
Fig. 2 always needs the execution of 6 services. The number of
hops to reach a key in a structured P2P systems with 2500 peers is

log 2ð2500Þ, i.e., about 11.3. It is then found that the number of
hops performed by query agents is about 6:7n11:3¼ 75:7 for the
myExperiment case (against 13 with our approach) and 6n11¼ 66
for the ProM case (against 8).

4.3. Analysis of computing and traffic load

This section discusses the computing and traffic load induced
by ant agents and query agents. Ant agents are discussed first. The
arrival of an ant agent at a peer triggers the execution of pick/drop
operations and the update of the co-use matrix with the Push-Sum
protocol. Therefore it is important to estimate the average number
of agents per second that arrive and are processed at a peer. The
arrival rate of agents to peers is given by the product of the
average number of circulating agents Na by the frequency of their
movements 1/Tmov, where Tmov is the mean of the random interval
from the instant in which a peer receives an ant agent to the
instant in which it forward the agent to the next peer. In this work,
Tmov is set to 3 s. As discussed in Section 3.2, Na and Np (Np is the
average number of connected peers) are comparable. Thus, the
arrival rate at a single peer can be computed as

Na

Np � Tmov
� 1

Tmov
ð6Þ

Therefore the arrival frequency of ants is comparable to the
inverse of Tmov, i.e., one ant every 3 s. This result was confirmed by
simulation experiments. The operations performed when receiv-
ing an ant are simple and fast, therefore the induced computing
load is acceptable. From expression (6) it is also evident that the
arrival frequency does not depend on the network size, which is a
sign of good scalable behavior.

The traffic load induced by ant agents can also be estimated.
Each ant carries the co-used matrix taken from the last peer. Since
the co-use matrix is sparse and symmetrical, only a subset of its
elements needs to be carried. In the ProM tests, the size of the
matrix is 12�12, but on average only 40 non-zero elements need
to be carried. In myExperiment tests, the size of the matrix is
20�20, and on average only 64 elements are significant. In both
cases, the size of data carried with the co-use matrix is negligible.
An ant also carries a number of keys taken with pick operations,
along with the corresponding resource descriptors, each of which
needs about 4 KBytes of data. The average number of carried keys
is about 4 for both experiments, which means that an ant carries
on average 16 KBytes of data. If this quantity is multiplied by the
arrival frequency estimated before, it is obtained that the rate of
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Fig. 9. Average number of query agents needed to complete a collective request,
for different values of Tq. Experiment executed with ProM logs.
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Fig. 10. Average number of query agents needed to complete a collective request,
for different values of Tq. Experiment executed with the myExperiment workflow
pattern.
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Fig. 11. Average number of steps performed by query agents to serve a collective
request, for different values of Tq. Experiment executed with ProM logs.
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Fig. 12. Average number of steps performed by query agents to serve a collective
request, for different values of Tq. Experiment executed with the myExperiment
workflow pattern.
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incoming data at a single peer is about 16=Tmov KBytes=s, i.e.,
about 5 KBytes/s.

The load induced by query agents is now examined. At the
arrival of a query agent, some elements of the co-use matrix are
updated (see Section 3.1) and the discovery algorithm is executed
(Section 3.3). The arrival frequency of query agents can be
obtained multiplying the frequency at which collective requests
are issued by the average number of steps performed by query
agents to serve a request. The first quantity depends on the
behavior and activity of users. In the experiments, it is assumed
that the users working on a single peer need to execute a work-
flow, and issue a corresponding collective request, every 1000 s,
i.e., every 16.6 min. The average number of steps was reported in
Figs. 11 and 12. Thus, the number of query agents that arrive
per second at a single peer, for ProM and myExperiment tests is,
respectively, about 13/1000 and about 8/1000: in both cases, less
than one query agent per minute. The computing load caused by
query agents is therefore acceptable. To obtain the traffic load
induced by query agents, the arrival frequency must be multiplied
by the size of data carried by a single query agent. The average
number of keys carried by a query agent is about 18 for the ProM
case and 30 for the myExperiment case. The size of the metadata
descriptor associated with each key is about 4 KBytes, therefore
the rate of incoming data is about (13/1000)n18n4 KBytes/
s¼0.93 KBytes/s with ProM, and about (8/1000)n30n4 KBytes/
s¼0.96 KBytes/s with myExperiment.

If a structured P2P system were adopted instead of the
approach presented here, the computing and traffic load could
be estimated in a similar way. Recalling the considerations made
in Section 4.2, the arrival frequency of query agents would be
about 75.7/1000 for the ProM case and about 66/1000 for the
myExperiment case. Of course, a correspond increase in the traffic
load would be observed. It can be concluded that the computing
and traffic load induced by the presented algorithms is lower than
the load experienced in classical P2P systems.

5. Conclusion

This paper presented a self-organizing peer-to-peer framework
and a set of nature-inspired algorithms that aim to assist the user
in the design and execution of complex applications and work-
flows of services. The main idea is to place the descriptors of
services in the same or in close-by peers if they are often used
together, so as to facilitate the collective discovery of the basic
services needed to compose a workflow. The relocation of services
is performed with the help of mobile agents, which move the
service descriptors over the network, and is assisted by statistical
information about the co-occurrence of services in past workflow
instances. Performance evaluation focused on two scenarios taken
from the literature, specifically from ProM and myExperiment
scientific projects. Results show that the services are clustered and
sorted by mobile agents. This allows the efficacy and efficiency of
discovery operations to be notably improved, while the computing
and network load induced by the algorithms is moderate and
easily sustainable.
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