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Abstract. Smart city and Internet of Things applications can benefit
from the use of distributed computing architectures, due to the large
number and pronounced territorial dispersion of the involved users and
devices. In this context, a natural method to parallelize the computa-
tion is to consider the territory as partitioned into regions, e.g., city
neighborhoods, and associate a computing entity with each region. The
application considered in this paper is the prediction of the amount of
internet traffic generated within a given region, which requires to con-
sider not only the devices located in the region but also the mobile devices
that are expected to enter the local region in the future. When setting
the number of neighbor regions included in the computation, it must
be considered that this parameter has opposite effects on two impor-
tant objectives: increasing the number of neighbors tends to improve
the accuracy of the prediction but slows down the computation because
more computing entities need to synchronize among each other. Similar
considerations apply when setting the size and number of regions that
partition the territory. This paper offers an insight onto these important
tradeoff issues.

1 Introduction

In the last few years, increasing attention is devoted to the field of the so-called
“Internet of Things” (IoT), an emerging paradigm built upon the research and
development advances in a wide range of areas including wireless and sensor
networks, mobile and distributed computing, embedded systems, agent tech-
nologies, autonomic communication, Cloud computing. The variety of involved
application domains is also wide [10]: transportation and logistics, smart elec-
trical grids, big data and business analytics, social sciences, etc. The intelligent
management of “smart cities” is one of the most important application scenarios
of the Internet of Things paradigm. Sustainable development of urban areas is a
challenge of key importance and requires new, efficient, and user-friendly tech-
nologies and services [3]. The challenge is to harness the collaborative power of
ICT networks (networks of people, of knowledge, of sensors) and use the resulting
collective intelligence to implement better informed decision-making processes
and empower citizens, through participation and interaction, to adopt more sus-
tainable individual and collective behaviors and lifestyles [12]. High-quality can
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be obtained by cross-correlating data retrieved from a number of sensors and
objects and by analyzing such data with sophisticated algorithms.

Due to the specific nature of smart city applications, data and objects are
strictly related to the space or territory on which they are defined and used:
for example, environmental information extracted from sensors, data inherent
to the neighborhoods and residential units in a city, etc. It is then natural to
manage such data through the use of computing entities distributed over the ter-
ritory, in order to perform the computation as close as possible to data sources
and to improve the performances by increasing the degree of parallelization [4].
Cloud computing provides an ideal back-end solution for handling the data pro-
duced by such a large number of heterogeneous devices. However, because of
the inherent dispersion of data and computing entities, it can be unfeasible or
inconvenient to bring computation to a single Cloud infrastructure, e.g., a big
centralized data center. A better support to tackle mobility and geo-distribution
of data, embrace location awareness and ensure low latency, can be provided by
a variant of Cloud, referred to as Fog Computing [2,9], which is composed by a
number of distributed Cloud facilities located close to data sources, i.e., a cloud
close to the ground. The computation related to smart city applications can be
partitioned and parallelized by assigning different areas of the city to different
computing entities, for example servers or smart sensors, all connected through
a Fog Computing infrastructure.

Most parallel applications are designed so that the computation advances
through successive steps, and all the nodes need to synchronize before proceeding
to the computation related to the next step. For example, when using the master-
slave model, the computation is “embarrassingly parallel” [5], i.e., the parallel
tasks do not need to exchange data during the execution. When completing every
step, however, the nodes must communicate the results to a central node that,
after collecting all the data, gives the nodes the permission to execute the next
step. Smart city applications differ from this model because they typically require
that the computation regarding a specific region of the city is performed using
the information received from a subset of neighbor regions. This corresponds to
the necessity of synchronizing the computation only among a limited number of
parallel nodes, without the need for a coordinator node.

Depending on the specific application, it is possible to tune the number of
regions that partition the territory – and consequently their size – and the “syn-
chronization degree”, i.e., the number of neighbor regions that must communi-
cate data among them and synchronize. The main objective of this paper is to
show that the proper setting of these parameters is of paramount importance to
balance the efficiency and effectiveness of computation. This is evaluated for the
specific case of a “smart avenue” traversed by mobile devices held by vehicles
and pedestrians, in which the goal of the computation is to predict the amount
of internet traffic generated in each region of the avenue. The prediction of inter-
net traffic is an important application scenario today [6,14], as numerous vehi-
cles possess powerful sensing, networking, communication, and data processing
capabilities, and can exchange information with each other (Vehicle to Vehicle,
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V2V) or exchange information with the roadside infrastructure such as camera
and street lights (Vehicle to Infrastructure, V2I) over various protocols, includ-
ing HTTP, SMTP, TCP/IP, WAP, and Next Generation Telematics Protocol
(NGTP) [7].

In particular, increasing the synchronization degree allows the accuracy of the
prediction to be improved, because more devices are included in the computation,
but can slow down the computation because of the larger overhead related to
synchronization. Furthermore, increasing the degree of parallelization, i.e., the
number of regions in which the avenue is partitioned, allows the computation to
be fastened but generates the necessity of increasing the synchronization degree
to keep the same accuracy, since each region covers a smaller fraction of the
avenue. The proper tradeoff between computation and accuracy should take into
account the characteristics of the specific scenario, and can be formulated as an
optimization problem with given constraints. For example, the system manager
could be asked to maximize the accuracy of the computation given that it is
completed within a given interval of time.

The rest of the paper is organized as follows: Sect. 2 describes the smart
avenue scenario considered for this work; Sect. 3 illustrates how the synchroniza-
tion among neighbor regions can be modeled through a Petri net; Sect. 4 reports
performance results, in terms of computation time, speedup and accuracy of the
computation, when varying the number of parallel nodes and the synchronization
degree; finally, Sect. 5 concludes the paper.

2 Smart Avenue Scenario

The smart city application used as a test case in this work is the analysis of the
internet traffic generated by the devices located and moving over a city avenue.
This choice allows us to start with a mono-dimensional scenario, as this kind of
scenario is simpler to model and the related results are easier to be analyzed.
Afterward, the analysis can be naturally extended to a two- or three-dimensional
scenario. The smart avenue model consists in a large road on which pedestri-
ans and vehicles generate internet traffic to use classical audio/video applica-
tions, for example social applications or navigators. In addition, as envisioned
by the Cloud of Things paradigm, in particular by the vehicular Cloud scenario
[7], smart devices can offer their computing and storage capabilities to perform
computations in combination with the facilities of the fixed Cloud infrastructure.
The goal of the smart avenue application is to predict the amount and charac-
teristics of the data network traffic and the required computing and storage
capabilities of devices in a future interval of time, starting from the past behav-
ior of mobile devices. In this context, past behavior concerns both the usage
of internet applications and the mobility behavior of the users. The accurate
prediction of internet traffic can be used for several goals: to anticipate possible
bottlenecks in some portions of the avenue, to save energy and batteries con-
sumption by dynamically redistributing the workload between fixed and mobile
devices, as recently described in [1], to design traffic-aware energy-efficient cellu-
lar networks [11], to improve the Quality of Service offered to the users, etc. To
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this aim, the use of machine learning algorithms for traffic forecasting through
behavior modeling of mobile users is becoming a challenging issue to improve ser-
vice effectiveness and efficiency [6,14]. For instance, usage pattern prediction of
requests can be used to influence the admission/denial of service demands made
by priority and non-priority users, in order to match their respective Quality of
Service agreements [14]. As another example, the bandwidth provided in a given
area can be dynamically adapted according to the predicted volume of requests,
thus saving energy consumption in the overall network [6].

The parallelization of the computation is achieved by partitioning the avenue
into N regions, and by assigning each region to a computing entity or “node”, for
example a smart device or a server. Each node has detailed information about the
behavior of the users included in the region and receives summarized information
about the users located in a number of neighbor regions. For example, informa-
tion about the number and type of mobile devices that will probably enter the
local region. We define the visibility radius RV as the number of regions, on
each of the two sides, from which a computing node receives information. The
computation is performed at every given interval of time, or time step, whose
duration depends on the applications requirements. An essential requirement is
that the duration of the time step is longer than the time needed by the nodes
to perform the computation and transmit related data among them, so that the
nodes are able to keep the pace and complete the computation in time, i.e.,
before the beginning of the next step.

At the end of a time step, each computing node sends information about
the local region to the computing nodes up to RV regions away. Only when a
node receives the information from all the neighbor nodes it can start predicting
the internet traffic for the next time step. In the section devoted to perfor-
mance results, we will see that the number of nodes and the visibility radius are
essential parameters to establish the proper tradeoff between computation time,
speedup and accuracy of the result. The scenario of interest, outlined in Fig. 1,
is completed with the following assumptions:

– the length of the avenue under consideration is L, which is set to 10 km in
this work. The width of the avenue is a constant, therefore all the quantities
that are assumed to be proportional to the area covered by a section of the
avenue, are also proportional to the length of the section;

– to simplify the scalability analysis, all the N computing nodes are assumed
to have the same computation power;

– the time that would be needed by a single node to perform the overall com-
putation for the entire avenue is Tserial, assumed to be equal to 10 min in the
case that L= 10 km;

– the computational load is uniformly distributed over the avenue, and the
average time needed to perform the computation on a single node, Tnode, is
proportional to the length of the corresponding avenue portion, i.e., Tnode =
Tserial/N . The time is assumed to be distributed with negative exponential
distribution. The variability can depend on many factors, among which the
variable workload on the nodes and the variable number of involved devices.
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Fig. 1. Smart avenue scenario.

– the time needed to communicate (transmit and receive) data with the neigh-
borhood nodes is negligible with respect to the computation time. This
assumption is coherent in the case that only summary and aggregated data
are communicated, such as the number and type of mobile devices, the esti-
mation about the global data that will be transmitted by such devices, etc.

– the mobile devices are assumed to belong to two classes: those held by pedes-
trians and those held by vehicles. They move along the two directions with
equal probabilities, and their average speed is 50 km/h for vehicles and 5 km/h
for pedestrians. Clearly, this is a very simple mobility model. It is possible to
use much more complex models, such as those defined in [6,14], but we use a
simple model for two reasons: (i) it is sufficient to understand the basic behav-
ior of the system; (ii) the analysis is not influenced and biased by additional
assumptions that are often related to a specific domain or city.

In this scenario, there is a clear tradeoff to achieve when setting the number
of nodes N . Indeed, parallelizing the computation on a larger number of nodes
reduces the time Tnode and therefore the time to complete the parallel computa-
tion related to a single step. However, a larger number of nodes corresponds to
smaller regions: it means that the input data used by the computation is related
to a smaller portion of the avenue (if the value of RV is kept constant) and a
smaller fraction of involved mobile devices, which can lead to a reduced accuracy
of the results.

The second important tradeoff concerns the value of RV . On the one hand,
a higher value of RV is expected to slow down the computation, due to the
stronger impact of the involved synchronization barrier. Indeed, before executing
the computation at step s, a node n must wait until 2 × RV neighbor nodes
terminate their computation at step s−1 and send to n the related computation
results. The time needed for the synchronization is expected to increase with the
number of involved nodes, 2 × RV . On the other hand, a larger value of RV (if
the value of N is kept constant) allows the accuracy of the computation to be
increased, because the computation can be based on information about a larger
portion of the avenue.

3 Petri Net Model for the Computation

The parallel computation process for the described smart avenue application,
and the synchronization barrier among the nodes, can be represented by the
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Fig. 2. Petri net representing the execution of tasks at six parallel nodes, with RV

equal to 1. In (a) all the nodes are ready to execute. After execution at nodes N3,
N4 and N5, the state of the Petri net is depicted in (b): now N1, N2 N4 and N6 are
ready to execute, while N3 and N5 must wait for the execution at nodes N2 and N6,
respectively.

Petri net model depicted in Fig. 2, in a sample scenario with six parallel nodes
and the visibility radius RV set to 1. Six Petri net transitions, labeled as N1–N6,
are associated with the parallel nodes, and the firing of a transition corresponds
to the execution of the computation at the corresponding node. Every transition
is connected by inbound arcs to three input places, and in accordance to Petri net
rules [13], the transition is enabled, and the computation can start, if all the input
places hold at least one token. When a transition fires (i.e., the computation is
performed at the current step), one token is consumed at each input place, and
one token is produced on each of the output places, i.e., the places connected
to the three outbound arcs leaving the transition. One of these output place
coincides with the input place of the same transition. The other two output
places are input places of the two neighbor nodes: the production of a token on
these two places models the delivery of the computation results to the neighbor
nodes and the permission to such nodes to execute their computation at the next
time step1.

Figure 2(a) represents the state of the system in a situation where all the
Petri net transitions are enabled, i.e., all the nodes are ready to execute the
computation at the current step. The ability to perform the computation is
represented by the presence of a red border on the square representing the tran-
sition. Figure 2(b) represents the situation after the execution of tasks at nodes
N3, N4 and N5. N4 is now enabled to execute the next task, because it has
performed the previous task and has received permissions by its neighbor nodes
N3 and N5. In the Petri net model, this corresponds to the presence of three new

1 The two transitions that correspond to the two extreme regions of the avenue are
modeled differently, as depicted in the figure, and only two outbound arcs depart
from those transitions.
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tokens at the input places of N4, which means that the synchronization barrier
which precedes the next computation at node N4 has been successfully passed.
It is also noticed that nodes N3 and N5 are not yet enabled because they are
still waiting for the completion of tasks at nodes N2 and N6, respectively.

Analogously, the case of RV equal to 2 is modeled by putting five input places
at every transition and five outbound arcs that connect every transition to itself
and to four neighbor nodes, two on the left and two on the right. The case of
all–to–all synchronization among the nodes, where each node needs to receive
the results from all the other nodes, is modeled with each transition preceded
by N input places, and N outbound arcs connected to all the N nodes.

The Petri net model highlights the advantage of relaxing the synchronization
requirements with respect to the classical parallel computation model, in which
the synchronization involves all the nodes. When a node needs to synchronize
with a limited number of neighbor nodes, different nodes are allowed to execute
different time steps. For example, with RV set to 1, each node can be one step
ahead than its direct neighbors, and the gap between the time steps executed by
the two nodes located at the two ends of the avenue can be as large as N . This is
a notable advantage in the case that the computation time varies from node to
node and from step to step, as in the smart avenue case. The advantage resides
in the fact that a longer execution time at one node does not slow down the
execution at all the other nodes, but only at the neighbor nodes. As an example,
if the nodes located at one end of the avenue are slower for a period of time
(e.g., due to the presence of a larger number of vehicles), the nodes located at
the other end can proceed and execute some additional time steps. In the future,
the nodes that are some steps behind can become faster and reach the other
nodes, and so on. This is true if the assumption holds that the computation load
is evenly distributed on the territory. If this does not hold, it is possible to divide
the territory in a non-uniform fashion, for example, by assigning more nodes to
the regions with the highest computational load. Overall, this allows the global
computation to proceed faster, as will be shown in the next section, devoted to
performance results. The results have been obtained in two ways: by using the
well-known Petri net simulator Yasper [8], specifically its “automatic simulation”
tool, and through an ad hoc simulator written in Matlab, which reproduces the
same computation modeled by the Petri nets. Results are statistically identical,
with the correlation factor always larger than 0.99.

4 Performance Results: Speedup and Accuracy
of Computation

When setting the number of nodes N and the visibility radius RV , a tradeoff
emerges between minimizing the computation time and maximizing the accuracy
of the computation. The next two subsections focus on these two aspects.
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4.1 Computation Time and Speedup

To analyze the efficiency of the computation, we performed a scalability evalua-
tion, by considering an avenue with length L of 10 km, partitioned into a number
of regions N . As described in Sect. 2, the average computation time at a single
node, Tnode, is proportional to the length of the region, l=L/N , and is equal to
Tserial/N , where Tserial is assumed to be equal to 10 min. We also tested three
different values of the visibility radius RV , from 1 to 3, and considered the case
of all–to–all synchronization as a reference, i.e., the visibility radius extends over
the entire avenue. We simulated the computation for a time equal to 30 days
and obtained the average time needed to execute a single step on all the nodes,
Tstep, by dividing the 30-days time interval by the number of completed steps2.

Figure 3 reports the values of Tstep, the average time needed to perform a
step on all the nodes. When N increases, the value of Tstep decreases because the
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Fig. 4. Values of the speedup in the case of an avenue with fixed length and partitioned
among a variable number of regions.

2 As explained in Sect. 3, there can be a gap between the steps executed at different
nodes. Therefore, we consider the node that has executed the minimum number of
steps.
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computation is partitioned among a larger number of nodes. Figure 4, reporting
the speedup – i.e., the ratio between Tserial and Tstep – is more useful to analyze
the effect of the visibility radius RV on the scalability. The effect is remarkable:
as an example, when N is set to 40, with all–to–all synchronization the speedup
is equal to about 9.3, while it increases to 13.2, to 14.5 and to 17.2 with values
of RV equal, respectively, to 3, 2 and 1. The corresponding speedup increments,
in percentage, are 42%, 56% and 85%.

Ongoing experiments are showing that the speedup value greatly depends on
the type of random distribution of the computation time, specifically on the coef-
ficient of variation, i.e., the standard deviation/average ratio. With larger values
of this ratio, the time needed for the synchronization increases, and the speedup
decreases. Interestingly, however, we are also noticing that the improvement
obtained when restricting the synchronization to a few neighbor nodes (with
respect to all–to–all synchronization) increases with the value of the coefficient
of variation.

4.2 Accuracy of the Computation

To predict the internet traffic that will be originated in a region during a time
interval, it is necessary to consider not only the mobile devices already located
in the region, but also those that will arrive or transit during the time interval
of interest. In a time interval T , a mobile device traveling with average speed v
can travel a distance s= v×T , and the number of regions of length l=L/N that
can be traversed during T is �s/l� = � v×T×N

L �. Therefore, mobile devices can
arrive, considering the two possible directions, from a number of regions equal to
NR = min(N, 2×� v×T×N

L �). On the other hand, the number of “visible” regions,
i.e., the number of the neighbor regions that transmit data to the local region,
is equal to 2 × RV . We then define the coverage ratio C, or simply coverage, as
the ratio between the number of visible regions and the number of regions from
which mobile devices can arrive:

C =
2 × RV

NR
(1)

This ratio is used as a measure of the accuracy of the prediction. Indeed, the
coverage ratio equal to 100% means that the computation is able to consider the
data related to all the mobile devices that can arrive or pass through the local
region. When the coverage is lower than 100%, however, the computation does
not receive information from some neighbor regions from which mobile devices
can actually arrive, and the computation can be less accurate.

Of course, the coverage is always equal to 100% in the case of all–to–all
synchronization, since each node receives information from all the other regions.
In all the other cases, the value of C depends on the speed of mobile devices, the
number of nodes N and the visibility radius RV . Figures 5 and 6 show the values
of the coverage ratio computed for the devices held, respectively, by pedestrians
traveling at 5 km/h and by vehicles traveling at 50 km/h, in the case that the
length L of the avenue is 10 km and the time interval T is set to 10 min. Of course,
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Fig. 5. Coverage ratio for mobile devices held by pedestrians.

with the same values of N and RV , the coverage is lower for vehicles than for
pedestrians, as vehicles can reach farther regions in the same amount of time,
and the value of NR, in the denominator of expression (1), is higher. In addition,
it clearly appears that the coverage decreases with larger values of N and with
smaller values of RV . Figures 5 and 6 can be used by administrators to set the
value of parameters needed to achieve a desired goal with given constraints. For
example, if N is set to 10, the two figures shows that the value of RV must be
set to a value equal or larger than 3 if the desired coverage is at least 50% for
both vehicles and pedestrians.
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As speedup and coverage are heterogenous objectives, they cannot be eas-
ily combined in a single optimization function. However, the analysis of Pareto
frontiers can help to tune the values of the parameters, in our case N and
RV . Figure 7 reports the values of speedup and coverage, measured for vehi-
cles, obtained with different values of the couple (N,RV ), and shows the Pareto
frontier. Values of N and RV that are not positioned on the frontier are not
acceptable, because other choices of the parameter values allow both the objec-
tives to be improved. Values that are positioned on the frontier, however, can
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Fig. 7. Values of coverage and speedup for different values of the couple (N, RV ). The
Pareto frontier is shown.

be considered by the administrator and can be chosen depending on the relative
importance of the two objectives.

5 Conclusion and Future Work

This paper addresses the issue of efficiently managing the parallel and concurrent
execution of smart city applications, where the computation is driven by space-
aware information. We focused on the sample mono-dimensional scenario of a
city avenue where the objective is to predict the internet traffic generated by
vehicles and pedestrians. The strategy is to distribute the computational load
among a number of nodes, where each node is assigned to a portion of the avenue
and exchanges information with the nodes assigned to neighbor portions. We
showed that is possible to tune some system parameters – in particular, the
number of parallel nodes and the number of neighbor regions among which the
information is transmitted – to achieve the desired tradeoff between the accuracy
of computation and its scalability and speedup. Specifically, when information
is exchanged among a larger number of nodes, the overall computation time
increases but the accuracy of computation is enhanced, and vice versa. Future
work aims to investigate other use case scenarios, in which the computational
load is not evenly distributed over the territory, or changes dynamically.
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