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Abstract. Mining@Home was recently designed as a distributed archi-
tecture for running data mining applications according to the “volunteer
computing” paradigm. Mining@Home already proved its efficiency and
scalability when used for the discovery of frequent itemsets from a trans-
actional database. However, it can also be adopted in several different
scenarios, especially in those where the overall application can be divided
into distinct jobs that may be executed in parallel, and input data can be
reused, which naturally leads to the use of data cachers. This paper de-
scribes the architecture and implementation of the Mining@Home sys-
tem and evaluates its performance for the execution of ensemble learning
applications. In this scenario, multiple learners are used to compute mod-
els from the same input data, so as to extract a final model with stronger
statistical accuracy. Performance evaluation on a real network, reported
in the paper, confirms the efficiency and scalability of the framework.

1 Introduction

The global information society is a restless producer and exchanger of huge
volumes of data in various formats. It is increasingly difficult to analyze this data
promptly, and extract from it the information that is useful for business and
scientific applications. Fortunately, the notable advancements and the advent
of new paradigms for distributed computing, such as Grids, P2P systems, and
Cloud Computing, help us to cope with this data deluge in many scenarios.

Distributed solutions can be exploited for several reasons: (i) data links have
larger bandwidths than before, enabling the assignment of tasks and the trans-
mission of related input data in a distributed scenario; (ii) data caching tech-
niques can help to reuse data needed by different tasks, (iii) Internet computing
models such as the “public resource computing” or “volunteer computing”
paradigm facilitate the use of spare CPU cycles of a large number of computers.

Volunteer computing has become a success story for many scientific applica-
tions, as a means for exploiting huge amount of low cost computational resources
with a few manpower getting involved. Though this paradigm is clearly suited
for the exploitation of decentralized architectures, the most popular volunteer
computing platform available today, BOINC [2], assigns tasks according to a
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centralized strategy. Recent work, though, showed that the public computing
paradigm can be efficiently combined with decentralized solutions to support the
execution of costly data mining jobs that need to explore very large datasets.
These reasons leaded to the design of the Mining@Home architecture. In [11],
simulation experiments showed that the architecture is able to solve the Closed
Frequent Itemsets problem. After these early simulations that showed the ben-
efits of the proposed approach, we worked to provide a full implementation of
the framework and here we show that it is capable for the efficient execution of
different data mining applications in a distributed scenario.

The main contribution of this work is the description of theMining@Home sys-
tem architecture and implementation, and the evaluation of its performance
when running “ensemble learning” applications in a real scenario. The ensemble
learning approach combines multiple mining models together instead of using
a single model in isolation [4]. In particular, the “bagging” strategy consists of
sampling an input dataset multiple times, to introduce variability between the
different models, and then extracting the combined model with a voting tech-
nique or a statistical analysis.Mining@Home was profitably adopted to analyze
a transactional dataset containing about 2 million transactions, for a total size
of 350 MB. To run the application, the volunteer paradigm strategy is combined
with a super-peer network topology that helps to exploit the multi-domain sce-
nario adopted for the experiments.

The reminder of the paper is organized as follows: Section 2 presents the archi-
tecture, the involved protocols and the implementation of Mining@Home . Sec-
tion 3 discusses the ensemble learning strategy. Section 4 illustrates the scenario
of the experiments and discusses the main results. Finally, Section 5 discusses
related work and Section 6 concludes the paper.

2 Architecture and Implementation of Mining@home

As mentioned, the Mining@Home framework was introduced in [11] to solve the
problem of finding closed frequent itemsets in a transactional database. The sys-
tem functionality and performance were only evaluated in a simulated environ-
ment. After that, Mining@Home was fully implemented and was made able of
coping with a number of different data analysis scenarios involving the execution
of different data mining tasks in a distributed environment. The architecture of
the Mining@Home framework distinguishes between nodes accomplishing the
mining task and nodes supporting data dissemination. In the first group:

– the data source is the node that stores the data set to be read and mined.
– the job manager is the node in charge of decomposing the overall data

mining application in a set of independent tasks. This node produces a job
advert document for each task, which describes its characteristics and spec-
ifies the portion of the data needed to complete the task. The job manager
is also responsible for the collection of results.

– the miners are the nodes available for job execution. Assignment of jobs fol-
lows the “pull” approach, as required by the volunteer computing paradigm.
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Data exchange and dissemination is done by exploiting the presence of a network
of super-peers for the assignment and execution of jobs, and adopting caching
strategies to improve the efficiency of data delivery. Specifically:

– super peer nodes constitute the backbone of the network. Miners connect
directly to a super-peer, and super-peers are connected with one another
through a high level P2P network.

– data cachers nodes operate as data agents for miners. In fact, data cachers
retrieve input data from the data source or other data cachers, forward data
to miners and store data locally to serve miners directly in the future.

The super-peer network allows the queries issued by miners to rapidly explore
the network. The super-peer approach is chosen to let the system support several
public computing applications concurrently, without requiring that each miner
knows the location of the job manager and/or of the data cachers. Super-peers
can also be used as rendezvous points that match job queries issued by miners
with job adverts generated by the job manager.

The algorithm is explained here (see Figure 1). Firstly, the job manager par-
titions the data mining application in a set of tasks that can be executed in
parallel. For each task, a “job advert” specifies the characteristics of the task to
be executed and the related input data. An available miner issues a “job query”
message to retrieve one of these job adverts. Job queries are delivered directly to
the job manager, if it is possible. If the location of the latter is not known, job
queries can travel the network through the super-peer interconnections (mes-
sages labeled with number 1 in the figure). When a job advert is found that
matches the job query, the related job is assigned to the miner (message 2 in the
figure). The miner is also informed, through the job advert, about the data that
it needs to execute the job. The required input data can be the entire data set
stored in the data source, or a subset of it.
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The miner does not download data directly from the data source, but issues
a query to discover a data cacher (message 3). This query can find several data
cachers, each of which sends an ack to the miner (message 4). After a short
time interval, the miner selects the most convenient data cacher according to a
given strategy (message 5), and delegates to it the responsibility of retrieving the
required data. The data cacher issues a “data request” (message 6) to discover
the data source or another data cacher that has already downloaded the needed
data. The data cacher receives a number of acks from available data cachers
(message 7), downloads the data from one of those (message 8), stores the data,
and forwards it to the miner (message 9). Now the miner executes the task and,
at its completion, sends the results to the job manager (message 10).

The algorithm can be used in the general case in which the location of job
manager, data source and data cachers is unknown to miners and other data
cachers. In ad hoc scenarios the algorithm can be simplified. Specifically, if the
location of data source and data cachers are known, a job query (message 1) can
be delivered directly to the job manager, instead of traveling the network, and
messages 3-4 and 6-7 become unnecessary. Such simplifications are adopted for
the experimental evaluation discussed in Section 4.

The Mining@Home prototype has been implemented in Java, JDK 1.6.
As depicted in Figure 1, the framework is built upon five types of nodes: job
manager, data source, data cacher, super-peer and miner. Each node is multi-
threaded, so that all tasks (send/receive messages, retrieve data, computation)
are executed concurrently. Each miner exploits a Mining Algorithm Library, i.e.,
a code library containing the algorithms corresponding to the mining tasks.

3 Ensemble Learning and Bagging

Ensemble learning is a machine learning paradigm where multiple learners are
trained to solve the same problem. In contrast to ordinary machine learning ap-
proaches, which try to learn one model from training data, ensemble methods
build a set of models and combine them to obtain the final model. In a classi-
fication scenario, an ensemble method constructs a set of base classifiers from
training data and performs classification by taking a vote on the predictions
made by each classifier. As proved by mathematical analysis, ensemble classi-
fiers tend to perform better (in terms of error rate) than any single classifier [12].
The basic idea is to build multiple classifiers from the original data and then
aggregate their predictions when classifying unknown examples.

Bagging, also known as “bootstrap aggregating”, is a popular ensemble learn-
ing technique [5]. Multiple training sets, or bootstrap samples, are sampled from
the original dataset. The samples are used to train N different classifiers, and
a test instance is labeled by the class that receives the highest number of votes
by the classifiers. A logical view of the bagging method is shown in Figure 2.
Each bootstrap sample has the same size as the original dataset. Since sampling
is done with replacement, some instances may appear several times in the same
bootstrap sample, while others may not be present. On average, a bootstrap
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Fig. 2. A logical view of the bagging technique

sample Di contains approximatively 63% of the original training data. In fact, if
the original dataset contains n instances, the probability that a specific instance
is sampled at least once is: 1 − (1 − 1/n)n → 1 − 1/e � 0.631, where the ap-
proximation is valid for large values of n. This implies that two different samples
share, on average, about 0.631 · 0.631 ≈ 40% of the n instances.

An application implementing the bagging technique can naturally exploit the
Mining@Home system. The described scenario matches the two main conditions
that must hold in order to profitably exploit the features of Mining@Home :

1. Base Classifiers Are Independent. Each base classifier can be mined inde-
pendently from each other. Thus, it is possible to have a list of mining tasks to
be executed, each one described by a distinct job descriptor. This fits the Min-
ing@Home architecture: each available miner is assigned the task of building
one base classifier from a bootstrap sample of data, and at the end of execution
the discovered classification model is transmitted to the job manager. Then, the
miner may give its availability for a new job.

2. Data Can Be Re-Used. As mentioned before, in general different jobs need
overlapping portions of input data, which is the rationale for the presence of
distributed cache servers. After being assigned a job, the miner asks the input
data to the closest data cacher, which may have already downloaded some of
this data to serve previous requests. The data cacher retrieves only the missing
data from the data source, and then sends the complete bootstrap sample to
the miner. Of course, this leads to save network traffic and to a quicker response
from the data cacher.

4 Experimental Evaluation

The performance of theMining@Home framework has been evaluated on a clas-
sification problem tackled with the bagging technique. We deployed the frame-
work in a real network composed of two domains connected through a Wide Area
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Network, as depicted in Figure 3. Each node runs an Intel Pentium 4 processor
with CPU frequency 1.36GHz and 2GB RAM. The average inter-domain transfer
rate is 197KB/s, while the average intra-domain transfer rates are 918KB/s and
942KB/s, respectively. The experiments were performed in a scenario where the
job manager builds 32 base classifiers, by exploiting the bagging technique, on a
transactional dataset D. The application proceeds as follows. The job manager
builds a job list, containing the descriptions of the jobs that must be assigned
to available miners. Each job is a request of building a J48 base classifier from
a specific bootstrap sample. When all the jobs are executed, the job manager
collects the extracted base classifiers and combines them to produce the final
ensemble classifier.
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Fig. 3. Network architecture for the Mining@Home experiments

The input dataset D is a subset of the kddcup99 dataset1. The dataset, used
for the KDD’99 Competition, contains a wide amount of data produced during
seven weeks of monitoring in a military network environment subject to simu-
lated intrusions. The input dataset used for the experiments is composed of 2
million transactions, for a total size of 350 MB.

Our evaluation followed two parallel avenues: we approximated performance
trends analytically, for a generic scenario withND domains, and at the same time
we compared experimental data to analytical predictions for the specific scenario
described before. We adopted the techniques presented in [9] for the analysis of
parallel and distributed algorithms. Let Ts be the sequential execution time, i.e.,
the time needed by a single miner to execute all the mining jobs sequentially,
and To the total overhead time (mostly due to data transfers) experienced when
the jobs are distributed among multiple miners. The total time spent by all the
processors to complete the application can be expressed as:

nTp = Ts + To (1)

in which n is the number of miners and Tp is the parallel execution time when
n miners are used in parallel. The speedup S - defined as the ratio between

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Ts and Tp - is then S = Ts

(Ts+To)/n
= nTs

Ts+To
, and the efficiency E - defined as

the ratio between the speedup and the number of miners - can be expressed as
E = 1

1+To/Ts
. Therefore, the efficiency of the parallel computation is a function

of the ratio between To and Ts: the lower this ratio, the higher the efficiency.
Let us start examining To. The total overhead time comprises the time needed

to transfer data from the data source to data cachers and from these to miners.
Both types of download are composed of a start up time (needed to open the con-
nection and start the data transfer) and a time that is proportional to the amount
of transferred data. Start up times are negligible with respect to the actual trans-
fer time, therefore an approximation for To, in a scenario with ND domains and
NDC data cachers, is:

To =
|D|
RDS

·NDC +

ND∑

i=1

(
f · |D|
Ri

·Ni) (2)

where |D| is the input data set size, RDS is the average rate at which data is
downloaded from the data source to a data cacher, Ri is the download rate from
a data cacher to the local miners within the i-th domain, and Ni is the number
of jobs assigned to the i-th domain. The expression of the first term derives from
the necessity of delivering the whole dataset, in successive data transfers, to all
the data cachers. On the other hand, for any of the Ni jobs that are executed
under domain i, a fraction f (with f � 0.63) of the dataset is downloaded by
the miner from the local data cacher, which explains the second term.

Notice that To increases linearly with the dataset size |D|. On the other hand,
the number of data cachers NDC influences the two terms of expression (2) in
different ways. The first term is proportional to NDC , while the second term is
inversely proportional to NDC in an implicit fashion: when more data cachers
are deployed on the network, possibly closer to miners, the intra-domain transfer
rates Ri increase, and then the value of the second term decreases. Our exper-
iments showed that the best choice is to have one data cacher per domain: this
allows intra-domain transfer rates to be increased but at the same time avoids
transmission of data to more data cachers than necessary, which would increase
the first term in (2). This is the choice taken for our scenario, as shown in Fig-
ure 3. It is also possible to predict the impact of the number of miners. When
two or more miners request data from the local data cacher at the same time,
the intra-domain transfer rate Ri tends to decrease, because the uplink band-
width of the data cacher is shared among multiple data connections. Since the
probability of concurrent downloads increases when more miners are active in
the same domain, the overall value of To tends to increase with the number of
miners. This aspect will be examined in the comments to the experiments.

As opposed to To, the sequential time Ts does not depend on the network
configuration, but of course it depends on the dataset size |D|. Specifically, the
relationship between |D| and Ts reflects the time complexity of the J48 algorithm,
which is O(|D| ∗ ln|D|) [13].

Figure 4 reports the values of Ts and To measured in a scenario with two
domains, one data cacher per domain, when varying the dataset size. The three
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curves for To are obtained in the cases that 8, 16 and 32 miners are available to
execute the 32 jobs. Of course, the values of Ts do not depend on the number of
miners, as Ts is simply the sum of job computation times. The log scale is needed
to visualize values that are very different from each other. The trends of Ts and
To follow, quite closely, the theoretical prediction. This is shown in Figure 5,
which compares the experimental values of Ts to the theoretical J48 complexity,
and the experimental values of To, obtained with 16 miners, to those obtained
with expression (2). While the gap between the two curves of To is small for any
value of |D|, a larger discrepancy is observed for Ts when the dataset contains less
than 500,000 instances, but this discrepancy tends to vanish for larger datasets.
This is compatible with the fact that the expression O(|D| ∗ ln|D|) for the J48
theoretical complexity reflects an asymptotic behavior.
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In Figure 4 it is also interesting to notice that the ratio To/Ts notably de-
creases in the first part the curve, which, as discussed before, is a sign that the
efficiency of the architecture increases with the problem size. However, when the
number of instances is higher than 500 thousands, the gap between Ts and To

becomes stable, which in a graph with log scale means that the corresponding
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ratio becomes stable. To make this clearer we reported, in Figure 6, the relative
weighs of Ts and To. When the dataset size is moderate, the time spent for data
transmission is comparable or even higher that the computation time, therefore
the distributed solution is not convenient. When the size increases, however,
the weigh of To becomes smaller, until it converges to very small values, below
10% of the total time. This is essential to justify the adoption of a distributed
solution: if the overhead time were predominant, the benefit derived from the
parallelization of work would not compensate the extra time needed to transfer
data to remote data cachers and miners. It is also observed that the weigh of To

increases when the number of available miners increases, due to the impact of
concurrent downloads of multiple miners from the same data cachers.
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To better analyze the last aspect, in Figure 7(a) we report the turnaround
time (from the time the application is started to the completion time of the last
job) vs. the number of available miners, which are equally partitioned between
the two domains, except the case in which there is only one miner. Results are
reported for three different sizes of |D|, and are plotted in a log scale due to the
wide range of obtained values. The trend vs. the number of miners is the same
at a first sight, but after a better look the system turns out to scale better when
the problem is bigger. When processing 100,000 instances, the turnaround time
decreases from 1,380 seconds with one miner to 160 seconds with 16 miners,
but then nearly stabilizes to 145 seconds with 32 miners. With a dataset of 2
million instances, the turnaround time goes from about 34 hours with 1 miner
to about 150 minutes with 16 miners and then continues to decrease to about 84
minutes with 32 miners. This indicates that using more and more miners can be
efficient when the problem is big, but it is nearly useless – or even detrimental
for the necessity of administrating a bigger system – when the problem size is
limited. This is an index of good scalability properties, since scalable systems
can be defined as those for which the number of workers that optimizes the
performance increases with the problem size [9]. In Figure 7(b) we report the
speedup, i.e., the ratio of the turnaround time obtained with a single node to
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the turnaround time computed with n nodes. It is clear that the speedup index
saturates soon when the dataset is small, while the trend is closer to the optimal
one (i.e., linear, shown for reference) as the dataset size increases.

5 Related Work

So far, the research areas of Distributed Data Mining and public resource comput-
ing have experienced little integration. The volunteer computing [1] paradigm has
been exploited in several scientific applications (i.e., Seti@home, Folding@home,
Einstein@home), but its adoption formining applications is more challenging. The
two most popular volunteer computing platforms available today, BOINC [2] and
XtremWeb [6,8], are especially well suited for CPU-intensive applications but are
somewhat inappropriate for data-intensive tasks, for two main reasons. First, the
centralized nature of such systems requires all data to be served by a group of cen-
trally maintained servers. Consequently, any server in charge of job assignment
and data distribution is a clear bottleneck and a single point of failure for the sys-
tem. Second, the client/server data distribution scheme does not offer valuable
solutions for applications in which input data files can be initially stored in dis-
tributed locations or may be reused by different workers.
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Some approaches to overcome such limitations have been recently proposed.
In [7] and [11] the authors analyze, through a simulation framework, a volunteer
computing approach that exploits decentralized P2P data sharing practices. The
approach differs from the centralized BOINC architecture in that it seeks to in-
tegrate P2P networking directly into the system, as job descriptions and input
data are provided to a P2P network instead of being directly delivered to the
client. In particular, the application scenario discussed in [7] concerns the anal-
ysis of gravitational waveforms for the discovery of user specified patterns that
may correspond to “binary stars”, while [11] copes with problem of identifying
closed frequent itemsets in a transactional dataset. So far, the analysis has only
been performed in a simulation environment.

To the best of our knowledge, Mining@Home is the first fully implemented
public resource computing framework that executes data mining tasks over dis-
tributed data. In particular, its architecture is data-oriented because it exploits
distributed cache servers for the efficient dissemination and reutilization of data
files. The protocols and algorithms adopted by Mining@Home are general and
can be easily adapted to a wide set of distributed data mining problems. Not
only this kind of solution can improve the performance of public computing sys-
tems, in terms of efficiency, flexibility and robustness, but also it can enlarge
the use of the public computing paradigm, in that any user is allowed to define
its own data mining application and specify the jobs that will be executed by
remote volunteers, which is not permitted by BOINC.

More in general, several distributed data mining algorithms and systems have
been proposed. In [3], a scalable and robust distributed algorithm for decision
tree induction in distributed environments is presented. In order to achieve good
scalability in a distributed environment, the proposed technique works in a com-
pletely asynchronous manner and offers low communication overhead. A dis-
tributed meta-learning technique is proposed in [10], where knowledge probing
is used to extract descriptive knowledge from a black box model, such as a neural
network. In particular, probing data is generated using various methods such as
uniform voting, trained predictor, likelihood combination, etc. Differently from
the classical meta-learning, the final classifier is learned from the probing data.

6 Conclusions

The public resource computing paradigm has proved useful to solve complex
large problems in computational science areas, although it has not been used
for data mining. In this paper we presented a software system, called Min-
ing@Home , which exploits that paradigm to implement large-scale data min-
ing applications in a decentralized infrastructure. The developed system can be
profitably used in the internet for mining massive amount of data available in
remote Web sites or geographically dispersed data repositories. We evaluated
the system and its performance on a specific use case, in which classification
of instances is driven by the use of ensemble learning techniques. The system
can be used for the execution of other mining applications, when these can be
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decomposed in smaller jobs and can exploit the presence of distributed data
cachers. Further applications of Mining@Home are currently under investiga-
tion.
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