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This article presents So-Grid, a set of bio-inspired algorithms tailored to the decentralized construc-
tion of a Grid information system that features adaptive and self-organization characteristics. Such
algorithms exploit the properties of swarm systems, in which a number of entities/agents perform
simple operations at the local level, but together engender an advanced form of swarm intelligence
at the global level. In particular, So-Grid provides two main functionalities: logical reorganization
of resources, inspired by the behavior of some species of ants and termites that move and col-
lect items within their environment, and resource discovery, inspired by the mechanisms through
which ants searching for food sources are able to follow the pheromone traces left by other ants.
These functionalities are correlated, since an intelligent dissemination can facilitate discovery. In
the Grid environment, a number of ant-like agents autonomously travel the Grid through P2P
interconnections and use biased probability functions to: (i) replicate resource descriptors in order
to favor resource discovery; (ii) collect resource descriptors with similar characteristics in nearby
Grid hosts; (iii) foster the dissemination of descriptors corresponding to fresh (recently updated)
resources and to resources having high quality of service (QoS) characteristics. Simulation analy-
sis shows that the So-Grid replication algorithm is capable of reducing the entropy of the system
and efficiently disseminating content. Moreover, as descriptors are progressively reorganized and
replicated, the So-Grid discovery algorithm allows users to reach Grid hosts that store information
about a larger number of useful resources in a shorter amount of time. The proposed approach fea-
tures characteristics, including self-organization, scalability and adaptivity, which make it useful
for a dynamic and partially unreliable distributed system.

Categories and Subject Descriptors: H.0 [Information Systems]: General; H.4 [Information

Systems Applications]; I.2 [Artificial Intelligence]

General Terms: Algorithms

Additional Key Words and Phrases: Grid, multiagent systems, P2P, resource discovery, self-
organization, swarm intelligence

This work has been partially supported by the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265) and by the SFIDA-PMI project cofunded by
the Italian Ministry of Research and University, MIUR (reference number 4446/ICT).
Authors’ email: {forestiero, mastroianni, spezzano}@icar.cnr.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1556-4665/2008/05-ART5 $5.00 DOI 10.1145/1352789.1352790 http://doi.acm.org/
10.1145/1352789.1352790

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 5, Publication date: May 2008.



5:2 • A. Forestiero et al.

ACM Reference Format:

Forestiero, A., Mastroianni, C., Spezzano, G. 2008. So-Grid: A self-organizing Grid featuring bio-
inspired algorithms. ACM Trans. Autonom. Adapt. Syst. 3, 2, Article 5 (May 2008), 37 pages.
DOI = 10.1145/1352789.1352790 http://doi.acm.org/10.1145/1352789.1352790

1. INTRODUCTION

Grid computing [Foster and Kesselman 2003] is an emerging computing model
that provides the ability to perform higher throughput computing by taking
advantage of many networked computers and distributing process execution
across a parallel infrastructure. Modern Grids are based on the service oriented
paradigm; for example, in the Globus Toolkit 4 based on the Web Services Re-
source Framework (WSRF [The Globus Alliance 2007]), resources are offered
through the invocation of Web services, which boast enriched functionalities
such as lifecycle and state management.

The information system is an important pillar of a Grid framework, since it
provides information about Grid resources, critical to the operation of the Grid
and the construction of applications. In particular, users turn to the information
system to discover suitable resources that are needed to design and execute a
distributed application, explore the properties of such resources and monitor
their availability.

Owing to the dynamic nature of Grids, the set of available hosts and re-
sources can change with time: hosts disconnect and join the network again,
new resources and services may be added, existing ones can be removed, and
the basic properties of a resource or a service may change. The dynamic nature
of Grids makes human administrative intervention difficult or even unfeasi-
ble, thereby increasing the need for self-organizing Grids [Erdil et al. 2005],
in which scalability is obtained through the use of automatic mechanisms and
protocols.

The construction of self-organizing Grids can be favored by the use of bio-
inspired algorithms, which are widely exploited to solve a number of complex
problems (combinatorial algorithms, task allocation, routing problems, graph
partitioning, etc.) [Bonabeau et al. 1999] and have been recently adopted to also
provide distributed services in P2P networks [Babaoglu et al. 2002]. An inter-
esting feature of many biological systems, ranging from ant colonies to wasp
swarms and bird flocks, is the emergence of swarm intelligence despite the mod-
erate complexity of individual components. In these systems, a number of small
and autonomous entities perform very simple operations driven by local infor-
mation (for example, while searching for food an ant follows a pheromone sub-
stance deposited by another ant, which has already discovered a food source; a
bird adjusts its speed and direction by following the movements of nearby birds),
but from the combination of such operations a complex and intelligent behavior
emerges (ants are able to establish the shortest path towards a food source; birds
travel in large flocks and rapidly adapt their movements to the ever changing
characteristics of the environment) [Bonabeau et al. 1999; Dasgupta 2004].

Swarm biological systems can be quite naturally emulated in a distributed
system through the multi-agent paradigm [Sycara 1998]: the behavior of
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insects and birds can be imitated by mobile agents that travel through the
hosts of a Grid and perform simple operations. Agent-based systems may in-
herit useful and beneficial properties from biological counterparts, namely: (i)
self-organization, since decisions are based on local information without any
central coordinator; (ii) adaptivity, since agents can react flexibly to the ever-
changing environment; (iii) stigmergy awareness [Grasse’ 1959], since agents
are able to interact and cooperate through the modifications of the environment
that are induced by their operations.

This article presents So-Grid, a bio-inspired approach for the construction of
a self-organizing information system, which allows the efficient management
and discovery of resources in a dynamic Grid. The main purpose of this approach
is the replication and dissemination of metadata documents that provide basic
information about Grid resources, in order to advertise their presence and fos-
ter their use. In particular, a metadata document (in the following also called
descriptor for the sake of simplicity) can be composed of a syntactical descrip-
tion of the service (a WSDL—Web Services Description Language—document)
and/or an ontology description of service capabilities. This objective is typical of
epidemic mechanisms, which disseminate information in distributed systems
[Petersen et al. 1997]. However, in So-Grid, descriptors are not only replicated
but also reorganized according to their features. More specifically, descriptors of
similar resources—of resources belonging to the same class—are accumulated
in restricted regions of the Grid. This reorganization not only allows informa-
tion management to be simplified, since neighbor hosts manage homogeneous
information, but allows the definition of a discovery algorithm that can direct
user queries towards a Grid region where a number of useful descriptors can
be discovered in a short amount of time.

The two most important So-Grid algorithms are: the replication algorithm,
which performs replication and reorganization of descriptors, and the discovery
algorithm, which drives user queries towards descriptors. These two algorithms
were presented, in their basic versions, respectively in Forestiero et al. [2005]
and Forestiero et al. [2006]. Here we better specify and tune their features;
introduce their enhanced versions, through which it is possible to foster the
dissemination of information pertaining to high quality and/or recently updated
resources; and present a large set of new results obtained with an event-based
simulation framework, which is now also available online.

The replication algorithm is inspired by the behavior of ants and termites,
which cluster and map corpses [Deneubourg et al. 1990]. A number of replica-
tion agents travel the Grid through P2P interconnections among Grid hosts, and
pick and drop resource descriptors according to appropriate probability func-
tions. The objective of agents is twofold: (i) the replication of descriptors and
(ii) their spatial reorganization. The two objectives are achieved by the defini-
tion of two operating modes of agents. Agents are generated by new or reconnect-
ing hosts, and initially work in the copy mode: they can replicate descriptors and
disseminate them on the Grid. However, when an agent realizes, from its own
past activities, that the generation of other replicas would spoil the reorganiza-
tion of descriptors, it switches to the move mode: it will only move descriptors
from one host to another without generating new replicas. Interestingly, the
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mode switch is performed autonomously, only on the basis of local information
and a pheromone mechanism. This is essential to preserve the self-organizing
nature of the algorithm and assure a scalable behavior.

The discovery algorithm is devised to exploit the logical resource organiza-
tion achieved by the replication algorithm. The rationale is the following: if a
large number of descriptors of a specific class are accumulated in a restricted re-
gion of the Grid, it becomes convenient to drive search requests (issued by users
to search for resources of that class) towards that region, in order to maximize
the number of discovered resources and minimize the response time. Therefore,
Grid hosts that accumulate a large number of descriptors of a given class are
elected as representative peers and are used as attractors for discovery requests.
A discovery operation is performed in two phases. In the first phase, the ran-
dom walk technique is adopted [Lv et al. 2002]: a number of asynchronous query
messages are issued by the requesting peer and will travel the Grid in parallel
in a blind fashion. In the second phase, whenever a query message gets close
enough to a representative peer, the search becomes informed: the query mes-
sage is driven towards the representative peer and will likely discover a large
number of useful descriptors. The discovery algorithm is referred to as semi-
informed, since it combines the benefits of both blind and informed resource
discovery approaches, which are currently used in P2P networks [Tsoumakos
and Roussopoulos 2003b].

These two algorithms are executed concurrently and continuously by differ-
ent types of agents, thus achieving a fruitful form of division of labor: while
replication agents replicate and reorganize information, discovery agents ex-
ploit the work of the former to find useful information more rapidly and effec-
tively. The decentralized and self-organizing nature of these algorithms allow
them to respond rapidly to system changes, for example to disconnections and
reconnections of hosts and to modifications of resource characteristics. More-
over, So-Grid is intrinsically scalable, since agent operations are only based on
local information, and do not rely on any central entity that could constitute a
bottleneck, especially in very large systems.

The So-Grid replication algorithm is also available in an enhanced version
that can be adopted if the aim is to improve not only the quantity, but also
the quality and freshness of resources that can be discovered by users. The
adopted strategy is to foster the dissemination of descriptors corresponding to
high QoS and/or recently updated resources. This will obviously increase the
probability of discovering such descriptors on the Grid, thus improving the level
of satisfaction of users.

Actually, the selective dissemination of descriptors of high QoS resources is
possible only if there is a commonly accepted interpretation of high quality,
and if an ordering is defined among resources, through which it is possible to
determine, between two resources, which is better. For example, the QoS can be
the average response time of a software, the computing power of a cluster, the
cost of a service, or simply the ranking value given by users to a homogeneous set
of resources/services. On the other hand, if the QoS is defined in a more complex
way and, more importantly, if it is based on the subjective perception of users,
the advanced version of the So-Grid replication algorithm is not exploitable.
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Conversely, it is always possible to foster the dissemination of fresh resources,
as the age of a resource can be defined as the amount of time elapsed since the
last time the resource was modified. This is an important feature in Grids,
since the discovery of dynamic resources (e.g., amount of free main memory in
a host) is generally more critical than discovery of static resources (e.g., read-
only documents) [Cheema et al. 2005].

A simulation analysis was carried out to demonstrate the effectiveness of
the So-Grid algorithms, their ability to disseminate, reorganize and discovery
resource descriptors, and their good scalability properties, which derive from
the decentralized and self-organizing characteristics of the biological systems
by which they are inspired. Simulation results also show that it is possible
to tune the replication algorithm in order to enforce or reduce the selective
dissemination of high quality and/or fresh resource descriptors. Simulations
can be performed by the reader with an event-driven simulator made available
through the So-Grid Portal, at the Web address http://so-grid.icar.cnr.it.

The remainder of the article is organized as follows: Section 2 introduces
the So-Grid replication algorithm, both in its basic and its enhanced version;
Section 3 analyzes the performance of the replication algorithm, and evaluates
its scalability and adaptivity properties; Section 4 introduces and examines
the So-Grid discovery algorithm, whose performance is evaluated in Section 5;
related work is discussed in Section 6, and Section 7 concludes the article.

2. THE SO-GRID REPLICATION ALGORITHM

The main purpose of the replication algorithm is to achieve a logical organiza-
tion of Grid resources by spatially sorting resource descriptors over the Grid
according to their classifications.

It is assumed that the resources are classified into a number of classes Nc,
according to their semantics and functionalities. The rationale of this classifica-
tion is that users usually issue a query not to search for a single specific resource,
but to collect information about resources having specified characteristics
[Crespo and Garcia-Molina 2002], for example a host with a given CPU power
or a bioinformatic software able to perform particular operations on protein
data. A class of resources is therefore defined as a set of Grid services/resources
having specified properties. After issuing a query, a user can discover a number
of resources of a given class, and then can choose the resources that are the
most appropriate for their purposes.

It is also assumed that the Grid system uses P2P interconnections to enable
communications and document exchanges among Grid hosts. This is coherent
with the recent effort to adopt P2P techniques in Grid frameworks, in order to
enhance efficiency and scalability features of large-scale Grids [Iamnitchi et al.
2003].

In Section 2.1, we discuss the basic pick and drop operations that are per-
formed by agents. Then, in Section 2.2, we describe how So-Grid handles the
dynamic nature of the Grid and manages the turnover of agents. Section 2.3
presents the pheromone mechanism through which an agent self-determines
its operating mode. Finally, Section 2.4 describes the enhanced versions of the
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pick and drop probability functions that enable the selective dissemination of
information pertaining to high quality and fresh resources.

2.1 Basic Pick and Drop Operations

Each replication agent offers its contribution to the reorganization of descrip-
tors. When a peer connects to the network, it may generate an agent that sets
off from this peer and performs a number of hops through the P2P links that
interconnect the Grid hosts. Agents perform pick and drop operations to repli-
cate and move descriptors from one peer to another. When arriving at a host,
each agent autonomously decides whether or not to pick the descriptors of a
given class and then carry them in its successive movements, or to drop de-
scriptors that it has previously picked from another host. Each host can store
descriptors of local resources, which are never removed, as well as descriptors
of resources published by other hosts, which can be picked up and discarded.
When distinction is relevant, such descriptors will respectively be referred to
as local and remote descriptors.

The pick and drop operations are driven by the corresponding probability
functions that are defined and discussed in Sections 2.1.1 and 2.1.2. These func-
tions are inspired by the mechanisms introduced in Deneubourg et al. [1990],
and later elaborated and discussed in Bonabeau et al. [1999] and Martin et al.
[2002], to emulate the behavior of some species of ants that build cemeteries
by aggregating corpses in clusters.

However, these mechanisms are adapted to our purposes, by making the fol-
lowing main modifications: (i) descriptors are not only aggregated, as in the
mentioned papers, but also replicated, and two different ant modes are defined
to balance these two functionalities; (ii) descriptors are spatially mapped: ac-
cumulated in different clusters according to the class to which they belong.

A high-level description of the replication algorithm, performed by repli-
cation agents, is given in the flowchart of Figure 1. Periodically, each agent
performs a small number of P2P hops among Grid hosts. Whenever an agent
arrives at a new Grid host, for every resource class, it evaluates the pick or drop
probability function, specifically: (i) if the agent does not carry any descriptor
of this class, it evaluates the pick probability function, so as to decide whether
or not to pick the descriptors of this class from the current host; (ii) if the agent
already carries some descriptors of this class, it evaluates the drop probability
function, so as to decide whether or not to leave these descriptors in the current
host. After picking the descriptors of a class, the agent will carry them until it
drops them into another host, and then will try to pick other descriptors from
another host.

The pick operation can be performed with two different modes. If the copy
mode is used, the agent, when executing a pick operation, leaves the descrip-
tors on the current host, generates a replica of them, and carries these de-
scriptors until it drops them in another host. Conversely, with the move mode,
as an agent picks the descriptors, it removes them from the current host (ex-
cept for the local descriptors, which cannot be removed), thus preventing an
excessive proliferation of replicas. The use of these two modes is discussed in
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Fig. 1. The algorithm performed by So-Grid replication agents.
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Section 2.3. The following two subsections discuss the probability functions that
drive agent operations.

2.1.1 Basic Pick Probability Function. The probability of picking the de-
scriptors of a given class must decrease as the local region of the Grid accu-
mulates these descriptors and vice versa. This assures that as soon as the
equilibrium condition is broken (i.e., descriptors belonging to different classes
begin to be accumulated in different regions), a further reorganization of de-
scriptors is increasingly driven. The basic Ppick probability function, defined in
Formula (1), is the product of two factors, which take into account, respectively,
the absolute accumulation of descriptors of a given class and their relative ac-
cumulation with respect to other classes. While the absolute factor is inspired
by the pick probability defined in Bonabeau et al. [1999], the relative factor was
appositely introduced to achieve the spatial separation of descriptors belonging
to different classes.

Ppick =
(

fa2

k1 + fa2

)2

·
(

k2
k2 + fr

)2

. (1)

The fa fraction is computed as the number of local descriptors of the class of
interest, stored by the hosts located in the visibility region, out of the overall
number of descriptors of the class of interest, both local and remote, that are
stored by the same hosts. The value of fa is comprised between 0 and 1, as well
as the value of fr, defined in the following. The visibility region includes all the
hosts that are reachable from the current host with a given number of hops
within the visibility radius, which is an algorithm parameter. As more remote
descriptors of a class are accumulated in the local region, fa decreases, the first
factor of the pick function decreases as well, and vice versa, which is the desired
behavior.

Conversely, the fr fraction is computed as the number of descriptors of the
class of interest, accumulated in the hosts located in the visibility region, di-
vided by the overall number of descriptors of all classes that are accumulated
in the same region. As the local region accumulates more descriptors of a class,
with respect to other classes, fr increases, the value of the pick probability for
this class becomes lower, and vice versa. k1 and k2 are non-negative constants,
both set to 0.1, as in Bonabeau et al. [1999].

2.1.2 Basic Drop Probability Function. Whenever an agent gets to a new
Grid host, if it is carrying descriptors of a given class, it must decide, whether or
not to drop these descriptors in the current host. Like the pick function, the drop
function is first used to break the initial equilibrium and then to strengthen
the spatial mapping of descriptors. However, as opposed to the pick probability,
the drop probability for a class, shown in Formula (2), increases as the local
region accumulates descriptors of this class. In (2), the fr fraction is defined as
in formula (1), whereas the threshold constant k3 is set to 0.3 [Bonabeau et al.
1999].

Pdrop =
(

fr
k3 + fr

)2

. (2)
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Notice that the drop function depends only on the relative accumulation of
descriptors, and it does not contain any factor related to absolute accumula-
tion. Indeed it has been observed that in the long term an “absolute” factor
could start an avalanche mechanism, which occurs when a region accumulates
many descriptors belonging to two or more different classes. In this case, drop
operations would be further facilitated for all such classes, instead of only one,
thus weakening the spatial reorganization of descriptors. This phenomenon
does not occur with the mere use of a relative accumulation factor.

2.2 Handling a Dynamic Grid

In a dynamic Grid, peers can go down and then reconnect, and resources can
change their characteristics. To account for this, two characteristics are taken
into consideration: the average connection time of a peer and the update interval
of resources.

The average connection time of a specific peer is generated according to a
Gamma probability function, with an average value set to the parameter Tpeer .
Use of the Gamma distribution assures that the Grid contains very dynamic
hosts, which frequently disconnect and rejoin the network, as well as much more
stable hosts. The rate at which resources are updated also has a significant im-
pact on the availability of dynamic resources, as discussed in Cheema et al.
[2005]. In the present work it is assumed that the characteristics of a resource
are updated after an average time interval equal to Tresource. This parameter as-
sumes different values for different peers (according to a Gamma distribution),
thus assuring the presence of both nearly static and highly dynamic resources.

As a consequence of this dynamic nature, two issues must be tackled. The
first is related to the management of new resources provided by new or recon-
nected hosts. Indeed, if all the replication agents switch to the move mode, it
becomes impossible to replicate and disseminate descriptors of new resources;
as a consequence, agents cannot be allowed to live forever, and must gradually
be replaced by new agents that set off in the copy mode. The second issue is that
the system must (i) remove ghost descriptors, descriptors of resources provided
by hosts that have left the system, and therefore are no longer available, and
(ii) limit the presence of obsolete descriptors, which have obsolete information
about resources, because these resources have changed their characteristics.

Simple mechanisms are adopted to cope with these two issues. The first is to
correlate the lifecycle of agents to the lifecycle of peers. When joining the Grid,
a host generates a number of agents given by a discrete Gamma stochastic
function, with average Ngen, and sets the lifetime of these new agents to the
average connection time of the peer itself. This setting assures that (i) a proper
turnover of agents is achieved, because old agents die when their lifetimes
expire and new agents are generated by reconnecting peers, and (ii) the relation
between the number of peers and the number of agents is maintained with
time (more specifically, the overall number of agents is on average equal to the
number of active peers multiplied by Ngen, as confirmed by simulation tests).
The agent turnover allows for the dissemination of descriptors of new resources,
since new agents start in the copy mode.
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A second mechanism assures that every time a peer disconnects from the
Grid, it loses all the descriptors previously deposited by agents, thus con-
tributing to the removal of obsolete descriptors. Finally, a soft state mechanism
[Sharma et al. 1997] is adopted to avoid the accumulation of obsolete descrip-
tors in very stable nodes. Each host periodically refreshes the descriptors of the
resources owned by other hosts, by contacting those hosts and retrieving from
them updated information about the resources.

It is worth mentioning that this approach for handling a dynamic Grid implic-
itly manages any unexpected peer fault, because this occurrence is processed
in exactly the same way as a peer disconnection. Indeed, the two events are in-
distinguishable, since (i) a peer does not have to perform any procedure before
leaving the system, and (ii) in both cases, disconnection or fault, the remote
descriptors that the peer has accumulated are removed from the system.

2.3 Self-Tuning of Agents

The effectiveness of the replication algorithm is evaluated through a spatial
entropy function, which is based on the well-known Shannon’s formula for the
calculation of information content. For each peer p, the local entropy Ep, defined
in formula (3), gives an estimation of the extent to which the descriptors have
been spatially mapped within the visibility region centered in p. In (3), fr(i) is
the fraction of descriptors of class Ci that are located in the visibility region with
respect to the overall number of descriptors located in the same region. The Ep

function is normalized (the number of classes is equal to Nc), so that its value is
between 0 and 1. In particular, an entropy value equal to 1 corresponds to the
presence of comparable numbers of descriptors belonging to all the different
classes, whereas a low entropy value is obtained when the region centered
in p has accumulated a large number of descriptors belonging to one specific
class, thus contributing to the spatial mapping of descriptors. As shown in
Formula (4), the overall entropy, E, is defined as the average of the entropy
values, Ep, computed at all the Grid peers (the number of peers is equal to Np).

Ep =
∑

i=1...Nc
fr(i) · lg 1

fr(i)

lg Nc
. (3)

E =
∑

pεGrid Ep

Np
. (4)

The overall spatial entropy can be minimized if agents work under both their
operating modes: copy and move. In the first phase of its life, each agent must
copy the descriptors that it picks from a Grid host, but when it realizes from
its own activeness that the mapping process is at an advanced stage, it must
only move descriptors from one host to another, without creating new replicas.
In fact, the copy mode cannot be maintained for a long time, since eventually
every host would have a very large number of descriptors of all classes, thus
weakening the efficacy of spatial mapping.

An approach based on ants’ pheromone [Van Dyke Parunak et al. 2005] en-
ables each agent to perform this mode switch, from copy to move, only on the
basis of local information. This approach is inspired by the observation that
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agents perform more operations when the system entropy is high, but oper-
ation frequency gradually decreases as descriptors are properly reorganized.
The reason for this is that the values of Ppick and Pdrop functions, defined in
formulas (1) and (2), decrease as descriptors are reorganized on the Grid. Each
agent maintains a pheromone base (a real value) and increases it when its ac-
tiveness tends to decrease; the agent switches to the move mode as soon as the
pheromone level exceeds a defined threshold, Hr . In particular, at given time
intervals, every 2000 seconds,1 each agent counts the number of times that it
has evaluated the pick and drop probability functions, Nattempts, and the num-
ber of times that it has actually performed pick and drop operations, Noperations.
At the end of each time interval, the agent makes a deposit, which is inversely
proportional to the fraction of performed operations, into its pheromone base.
An evaporation mechanism is used to give a greater weight to the recent be-
havior of the agent. At the end of the i-th time interval, the pheromone level �i

is computed with formulas (5) and (6).

�i = Ev · �i−1 + φi. (5)

φi = 1 − Noperations

Nattempts
. (6)

The evaporation rate Ev is set to 0.9 [Van Dyke Parunak et al. 2005], and φi

is the amount of pheromone deposited in the last time interval. The pheromone
level can assume values between 0 and 10: the upper limit can be obtained
by equalizing �i to �i−1 and setting φi to 1. As soon as the pheromone level
exceeds the threshold Hr (whose value must also be set between 0 and 10),
the agent switches its protocol mode from copy to move. The value of Hr can be
used to tune the number of agents that work in the copy mode and therefore are
able to create new resource descriptors. The effect of this tuning is discussed in
Section 3.2.

This pheromone mechanism is a form of sematectonic stigmergy [Camazine
et al. 2001], since agents communicate with each other indirectly and base their
actions on the current state of the environment, specifically on the quantity and
type of descriptors present in the local Grid region.

2.4 Enhanced Pick and Drop Probability Functions

The pick and drop functions discussed in Sections 2.1.1 and 2.1.2 allow re-
source descriptors to be replicated and reorganized regardless of their quality
of service and their dynamic properties. Better results can be obtained if de-
scriptors of resources having high QoS characteristics are replicated and dis-
seminated more rapidly and effectively than descriptors of low QoS resources.
This way a user who issues a query will likely find more valuable resources

1The choice of updating the pheromone level at every time interval, instead of at every single
agent operation, was made to fuse multiple observations into a single variable, so giving a higher
statistical relevance to the decisions of the agent. The 2000-seconds value allows on average 33.3
operations to be aggregated, since the average interval between two agent movements is set to 60
seconds.
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and his/her satisfaction will increase [Ran 2003; Vu et al. 2005]. Analogously,
descriptors of dynamic resources should be disseminated more rapidly than
those of static resources, in order to provide timely information to Grid users
[Cheema et al. 2005]. These two issues are tackled by the So-Grid replication
algorithm through the definition of enhanced pick and drop functions.

It should be remarked, as discussed in the introductory section, that these
functions are exploitable only if there is a general agreement about the defini-
tion of high quality and if resources can be ordered with respect to their quality.
In such cases, it can be assumed that the QoS of a resource is expressed by a
non-negative real value ranging from 0 to 10, with higher values correspond-
ing to better quality (QoS values are assumed to be uniformly distributed, with
average 5.0). The QoS value of a resource is inserted in a specific field of the
corresponding descriptor; therefore, in the following, we will not distinguish
between the QoS level of a descriptor and the QoS level of the corresponding
resource.

To achieve a selective dissemination that favors the propagation of high QoS
descriptors, pick and drop functions are enhanced through the definition of
additional factors. More specifically, the pick probability defined in formula (1)
is multiplied by the factor FQoSpick defined in formula (7).

FQoSpick = k4

k4 + QoSdescriptor−QoSpeer

QoSdescriptor

. (7)

This factor is evaluated by a replication agent each time it moves to a new
host. In Formula (7), QoSdescriptor is the average QoS value of a generic de-
scriptor. Each agent estimates QoSdescriptor by averaging the QoS values of the
descriptors stored by the peers that it visits. QoSpeer is the average QoS value
of the descriptors of the class of interest that are stored by the current peer.
Parameter k4 is set to a real value not lower than 2. It can be noticed that the
average value of FQoSpick is equal to 1, which assures that the overall repli-
cation and mapping of descriptors (without considering their QoS values) is
not biased by the new factor. However, if the current peer stored descriptors of
the class of interest characterized by high QoS, the value of FQoSpick is higher
than 1; hence the overall pick probability increases,2 and the pick operation is
favored. Conversely, the value of FQoSpick is lower than 1 if the current peer
stored low QoS descriptors, which is the desired behavior.

Analogously, the drop probability function defined in Formula (2) is multi-
plied by a new factor FQoSdrop, reported in formula (8).

FQoSdrop = k4

k4 + QoSpeer −QoSagent
QoSagent

. (8)

2With the use of the new factor, in some, though very rare, cases the pick probability can assume
values higher than 1; in these cases the probability is truncated to 1. It corresponds to a 100%
probability of picking descriptors that have a very high QoS. Analogous considerations hold for the
factors defined in Formulas (8) and (9).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 5, Publication date: May 2008.



So-Grid: A Self-Organizing Grid Featuring Bio-Inspired Algorithms • 5:13

In this formula, QoSagent is the average QoS value of the descriptors of the
class of interest that are carried by the agent. The drop operation is favored
when the agent carries descriptors that have QoS values higher than the de-
scriptors located in the current peer, thus fostering the dissemination of high
quality descriptors.

In a similar fashion, the replication algorithm is enhanced to foster the dis-
semination of information about recently updated resources. To achieve this,
the pick probability function defined in Formula (1), is multiplied by the factor
FAgepick, defined in Formula (9). In this factor, AGEresource is the average age of
resources present in the Grid. The age of a resource is defined as the amount of
time elapsed since the last time that the resource was modified. As mentioned
in Section 2.2, resource characteristics are updated with an average time inter-
val time equal to Tresource. The parameter AGEresource is estimated by an agent by
averaging the resource age of all the resources stored by the peers that it visits.
On the other hand, the parameter AGEpeer is defined as the average age of the
resources stored by the peer currently visited by the agent. The parameter k5
is set to a real value not lower than 2.

FAgepick = k5

k5 + AGEpeer −AGEresource
AGEresource

. (9)

As for the FQoSpick factor, it can be observed that the average value of the
factor FAgepick is equal to 1, which assures that the overall replication of descrip-
tors (without considering the dynamic nature of corresponding resources) is not
biased by the new factor. However, the new factor fosters the replication of de-
scriptors of recently updated resources, which most likely are also the resources
characterized by a higher dynamic nature. In fact, if AGEpeer < AGEresource, the
factor FAgepick becomes higher than 1, so the overall pick probability increases.
It was not found necessary to include a new factor in the drop probability func-
tion. When a replication agent picks descriptors related to recently updated re-
sources, such descriptors are spontaneously disseminated through subsequent
drop operations.

In conclusion, the enhanced pick and drop probability functions are defined,
respectively, by Formulas (10) and (11). In Section 3.4, it will be observed that
the overall performance of the replication algorithm is not affected by use of
the additional factors (denoted as optional), but these factors can be exploited
to foster the selective dissemination of descriptors corresponding to high QoS
and/or recently updated resources.

Ppick(enhanced) = Ppick · [FQoSpick] · [FAgepick]. (10)

Pdrop(enhanced) = Pdrop · [FQoSdrop]. (11)

3. PERFORMANCE OF THE REPLICATION ALGORITHM

The performance of the So-Grid algorithms was evaluated with an event-
based simulator written in Java. Simulation objects are used to emulate Grid
peers and So-Grid agents. Each object reacts to external events according to a
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finite state automaton and responds by performing specific operations and/or
by generating new messages/events that are delivered to other objects.

For example, a peer visited by a replication agent gives it information about
the resources and descriptors that this peer stores; afterwards the agent uses
probability functions to decide whether or not to pick descriptors from, or drop
descriptors into, the peer. Finally, the agent sets the simulation time in which
it will perform its next movement on the Grid and creates a related event
that will be delivered to the destination peer at the specified time. Events are
ordered in a common queue and are delivered to corresponding destination
objects according to their expiration time, so that peers and agents can operate
concurrently along the simulation time.

Simulations can be performed by the reader with an event-driven simula-
tor made available through the So-Grid Portal, at the Web address http://so-
grid.icar.cnr.it. The portal allows the user, after a simple registration procedure,
to set a large number of network and algorithm parameters, run simulations,
graphically monitor performance indices at run time, download results, and
store them on a personalized storage space on the server. Moreover, the user
can graphically compare the results obtained with simulation tests made in the
same or in different sessions, which enables an interesting parameter sweep
analysis.

3.1 Simulation Scenario and Performance Indices

Grid networks having a number of hosts Np ranging from 1000 to 7000 peers
are considered in this work, but the default value is set to 2500. Hosts are
linked through P2P interconnections, and each host is connected to four peer
hosts on average. The topology of the network is built by using the well-known
scale-free algorithm defined by Barabási and Albert [1999], that incorporates
the characteristic of preferential attachment (the more connected a node is, the
more likely it is to receive new links) that was proved to exist widely in real
networks. The number of Grid resources owned and published by a single peer
is obtained with a Gamma stochastic function with an average value equal to
15 (see Iamnitchi et al. [2003]). Grid resources are assumed to be classified in
a number of classes Nc, set to 5 by default, but varied from 5 to 30 in specific
tests.

The average connection time of a peer, Tpeer (see Section 2.2), is varied
from 35000 to 1000000 seconds (with the default value set to 100000 seconds),
whereas the update interval of resources, Tresource, is set to 50000 seconds. The
mean number of agents generated by a single peer, Ngen, is set to 0.5; as a
consequence, the average number of replication agents, Na, that travel the
Grid is Np/2, as explained in Section 2.2. The average time, Tmov, between two
successive agent movements (between two successive evaluations of pick and
drop functions) is 60 s, whereas the maximum number of P2P hops that are
performed within a single agent movement, Hmax, is set to 3, in order to limit
the traffic generated by agents. The visibility radius, Rv, used for the evalua-
tion of pick and drop functions (see Section 2.1), is set to 1, which means that
these functions are based exclusively on very local information. Finally, the
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Table I. Simulation Parameters

Parameter Value
Grid size (number of peers), Np 1000 to 7000
Average number of neighbor peers 4 (power law network)
Mean number of resources published by a peer 15
Number of classes of resources, Nc 5 to 30
Mean peer connection time, Tpeer 35000 s to 1000000 s
Mean update interval of resources, Tresource 50000 s
Number of agents, Na Np/2
Mean time between two successive movements of an agent, Tmov 60 s
Maximum number of hops, Hmax 3
Visibility radius, Rv 1
Pheromone threshold, Hr 3 to 10

pheromone threshold Hr , defined in Section 2.3, is set to values ranging from
3 to 10.

It is worth noting that the So-Grid replication algorithm is very robust with
respect to variations of these parameters. For example, the average number
of resources published by a peer, the number of resource classes, the average
connection time of a peer, and so on, can affect the rapidity of the process, and
in some cases can slightly influence the steady values of performance indices,
but the qualitative behavior is always preserved.

A set of performance indices is defined for the performance evaluation of the
replication algorithm. The overall entropy, E, defined in Section 2.3, is used to
estimate the effectiveness of the algorithm in the reorganization of descriptors.
The Ndpr index is defined as the mean number of descriptors, both local and
remote, that are generated for each resource. Since new descriptors are only
generated by replication agents that work in the copy mode, the number of such
agents, Ncopy, is another interesting performance index. The processing load,
L, is defined as the number of agents per second that get to a single peer, and
there evaluate pick or drop operations.

Finally, two more performance indices are defined to evaluate the effective-
ness of the enhanced version of the algorithm, which uses enhanced pick and
drop functions (Section 2.4). QoSdescriptor is the average QoS value of resource
descriptors, both local and remote, that are present in the Grid at a given time.
AGEdescriptor is the average age of a descriptor, defined as the amount of time
elapsed since the last time that the related resource was modified. Since a re-
mote descriptor cannot be directly informed of the updates performed on the
corresponding resource, it often happens that the age of a descriptor is higher
than the age of the corresponding resource. This occurs when a resource is
updated after the descriptor has been picked and moved away by an agent.

A graphical description of the behavior of the replication algorithm is given
in Figure 2. For the sake of clarity, here the number of classes Nc is set to 3,
peers are connected in a bidimensional mesh instead of a scale-free topology,
and only a portion of the Grid is shown, though the simulation was performed
on a network with 2500 hosts. Different symbols and colors are associated with
the three classes. Each peer is marked with the symbol and color that corre-
sponds to the class to which the largest number of descriptors, stored by this
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Fig. 2. Accumulation and reorganization of resource descriptors, belonging to 3 resource classes,
in a region of the Grid.

peer, belong. Furthermore, the symbol size is proportional to the number of de-
scriptors of the dominant class. For example, if circles correspond to class C1,
a peer marked with a big circle stores many descriptors of this class, while a
peer marked with a smaller circle stores fewer descriptors of the same class.
In both cases, the descriptors of class C1 are the most numerous in this peer.
The peers with a thicker border are representative peers, which work as attrac-
tors for query messages issued to discover resources of the dominant class, as
described in Sections 4.1 and 4.2. Two snapshots of the network are shown:
the first is taken when the replication process is initiated (time 0), while the
second is taken 400000 seconds later, in a quite steady situation. This figure
shows that descriptors are initially distributed in a completely random fashion,
but subsequently they are accumulated and reorganized by replication agents
in separate regions of the Grid, according to their class.

3.2 Tuning of the Replication Algorithm

The So-Grid replication algorithm was evaluated both in its basic version, which
uses basic pick and drop functions (see Section 2.1) and in its enhanced version,
which exploits enhanced pick and drop functions (see Section 2.4). A first set
of simulation tests was performed to evaluate the basic replication algorithm.
The number of classes Nc was set to 5 and the Grid size to 2500.

The first objective was to verify the effectiveness of the stigmergy mechanism,
which drives the mode switch of agents. Figure 3 reports Ncopy, the number of
agents that work in copy mode (also called copy agents in the following) versus
time, for different values of the pheromone threshold Hr . When the process is
initiated, all the agents (about 1250, half the number of peers) are generated
in the copy mode, but subsequently several agents switch to move, as soon as
their pheromone value exceeds the threshold Hr . This corresponds to the sudden
drop of curves that can be observed in Figure 3. This drop does not occur if Hr
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Fig. 4. Overall system entropy, for different values of the pheromone threshold, Hr .

is equal to 10 because this value can never be reached by the pheromone (see
formulas (5) and (6)); hence with Hr = 10 all agents remain in copy along all
their lives. After the first phase of the replication process, an equilibrium is
reached because the number of new agents that are generated by Grid peers
(such agents always set off in copy mode) and the number of agents that switch
from copy to move become balanced. Moreover, if the pheromone threshold Hr is
increased, the average interval of time in which an agent works in copy becomes
longer, and therefore the average value of Ncopy at equilibrium becomes larger.

A proper tuning of the pheromone threshold is indeed a very efficient method
to enforce or reduce the generation of new replicas and the velocity and inten-
sity of descriptor dissemination. However, a more intense dissemination is not
necessarily associated with a better reorganization (to a more effective spatial
separation of descriptors belonging to different classes). In fact, Figure 4 shows
that lower values of the overall entropy are achieved with lower values of the
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Fig. 5. Mean number of descriptors per resource, for different values of the pheromone threshold,
Hr .

pheromone threshold. For example, with Hr = 3, the value of the overall en-
tropy decreases from the initial value of about 1 (maximum disorder) to less
than 0.72. In the opposite case, virtually no entropy decrease is observed if all
the agents operate in copy (with Hr = 10), which confirms that the mode switch
is strictly necessary to perform an effective spatial reorganization.

Figure 5 shows the mean number of descriptors generated per resource and
confirms that descriptor dissemination is more intense if the pheromone thresh-
old is increased, because a larger number of copy agents operate on the network.
It can be concluded that copy agents are useful to replicate and disseminate de-
scriptors but it is the move agents that actually perform the spatial mapping
and are able to create Grid regions specialized in specific classes of resources.
A balance between the two features (replication and reorganization) can be
performed by appropriately tuning the pheromone threshold, Hr .

3.3 Scalability and Adaptivity of the Replication Algorithm

Another set of tests was made to evaluate several important characteristics of
the replication algorithms, like its scalability and adaptivity. For these tests,
the value of the threshold, Hr , was fixed at 5.0.

The algorithm is intrinsically scalable due to its self-organizing decentralized
nature, since each agent operates and tunes its activeness only according to local
information. To confirm this, we analyzed the processing load, L, defined as the
average number of agents per second that are received, and must be processed,
by a peer. Interestingly, this index only depends on the average number of
agents generated by a reconnecting peer, Ngen, and on the frequency of their
movements across the Grid, 1/Tmov. Indeed, L can be obtained as follows:

L = Na

Np · Tmov
≈ Ngen

Tmov
. (12)

In the described scenario, since the average value of Tmov is equal to
60 seconds, and Ngen is set to 0.5, each peer receives and processes about one
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Fig. 6. Overall system entropy, for different values of the Grid size, Np, with Hr = 5.

agent every 120 seconds, which can be considered an acceptable load. This the-
oretical result was confirmed by simulation tests. Note that the processing load
does not depend on other system and algorithm parameters such as the net-
work size, the pheromone threshold, the number of resource classes, and so on,
which is a first important confirmation about the scalability of the replication
algorithm.

In addition, simulations were performed with different Grid sizes. Results
shown in Figure 6 show that in all the tested Grids, with Np ranging from 1000
to 7000, the overall entropy decreases with time in a similar fashion. The values
of other performance indices, including the number of descriptors per resource
and the processing load, are also hardly modified by variations in the Grid size.

Another interesting type of scalability analysis pertains to the behavior of the
replication algorithm versus the granularity of resource classification: So-Grid
was tested for different values of the number of classes, Nc. Results pertain-
ing to the overall entropy and the dissemination of descriptors are shown in
Figures 7 and 8.

First, it can be noted that, for every tested value of Nc, the replication al-
gorithm is always able to reduce the overall entropy and at the same time to
increase the number of descriptors per resource. Moreover, analysis of steady
values of these indices versus the different values of Nc, is particularly in-
teresting. As Nc increases, lower values of entropy are achievable (Figure 7),
because a finer spatial separation of resources belonging to different classes is
possible. However, this is at the cost of a reduced ability to disseminate descrip-
tors. In fact, it was observed that the drop probability assumes lower values,
as it becomes increasingly difficult to find peers that hold descriptors similar
to those carried by agents. Therefore, the steady value of Ndpr is reduced as Nc

increases, as is evident in Figure 8.
A further set of tests was performed to assess the algorithms ability to adapt

the mapping of descriptors to the continuous modifications of the environ-
ment. Accordingly, simulations were run with different values of the parameter
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with Hr = 5.

Tpeer, the average connection time of a peer, with values ranging from 35000 to
1000000 seconds. For comparison purposes, the case in which peers never dis-
connect was also tested. This kind of analysis is useful because it helps clarify
the mechanisms through which the information system is constructed.

Figure 9 reports the trend of the overall spatial entropy E. It appears that
the work of replication agents makes this index decrease from about 1 to much
lower values. After a transient phase, the value of E becomes stable: it means
that the system reaches an equilibrium state despite the fact that peers go
down and reconnect, agents die and others are generated, etcetera. In other
words, the algorithm adapts to the varying conditions of the network and is
robust with respect to them. Note that the stable value of E increases as the
network becomes more dynamic (that is, with lower values of Tpeer), because
the reorganization of descriptors performed by agents is partly hindered by
environmental modifications.
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Figure 10 shows Ndpr, the average number of descriptors per resource versus
the value of Tpeer. This index increases with time in all cases, which confirms
the ability of the algorithm to disseminate descriptors for different churn rates
of peer. The value of Ndpr is actually determined by two main phenomena that
work in opposite directions as the value of Tpeer decreases. On the one hand, a
lower value of Tpeer causes the generation of a larger number of copy agents (of
agents that operate in the copy mode), since reconnecting peers generate new
agents, and these agents set off in the copy mode. Since copy agents are able
to replicate descriptors, they tend to increase the value of Ndpr. On the other
hand, a more frequent disconnection of peers tends to lower Ndpr, because a
disconnecting peer loses all the descriptors that it has accumulated so far (see
Section 2.2). The result of these two contrasting mechanisms is that the highest
degree of replication is obtained for intermediate values of Tpeer, which are more
realistic on Grids. Indeed Figure 10 shows that the value of Ndpr first increases

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 5, Publication date: May 2008.



5:22 • A. Forestiero et al.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100000  200000  300000  400000  500000

O
ve

ra
ll

 e
nt

ro
py

, E

Time(s)

k4=2
k4=3
k4=5

No QoS-aware Factors

Fig. 11. Overall system entropy obtained by using the optional QoS-aware factors in functions
(10) and (11), for different values of the parameter k4.

as Tpeer increases from 35000 to about 100000, and then decreases for higher
values of Tpeer.

3.4 Selective Dissemination of Resource Descriptors

As discussed in Section 2.4, enhanced pick and drop functions (see Formulas
(10) and (11)) were introduced to foster the dissemination of information con-
cerning high QoS and/or recently updated resources, in order to enhance user
satisfaction. The effectiveness of these functions was evaluated by comparing
the results obtained with and without the additional factors: (i) the QoS-aware
factors FQoSpick and FQoSdrop, defined in formulas (7) and (8), and (ii) the age-
aware factor FAgepick, defined in formula (9). Furthermore, different values of
the parameters k4 and k5, used in these factors, were tested.

A first interesting result is that the presence of the optional factors does
not influence the overall replication process, whatever the values of k4 and k5.
In fact, whereas the variability of these factors depends on k4 and k5, their
average value is always equal to 1, which means that the average value of the
enhanced pick and drop functions is not modified.

As an example, Figure 11 shows the overall entropy obtained by using the
QoS-aware factors, FQoSpick and FQoSdrop, with different values of k4. It can
be seen that results are not significantly modified by the use of these factors,
regardless of the value of k4: the overall entropy is nearly the same as that
obtained without using the QoS-aware factors, which is the looked-for behavior.
Similar results are obtained if the age-aware factor FAgepick is used, regardless
of the value given to the parameter k5.

Even though the overall process is always preserved, the k4 parameter
can be used to steer the QoS-based dissemination of descriptors. In particu-
lar, lower values of k4 increase the variability of FQoSpick and FQoSdrop, and
therefore allow better differentiation of the dissemination of high and low QoS
descriptors.
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Fig. 12. Average QoS level of descriptors obtained by using the optional QoS-aware factors in
functions (10) and (11), for different values of the parameter k4.

Figure 12 shows that, through the enhanced pick and drop functions, it is
possible to significantly increase the value of QoSdescriptor, the average QoS level
of the descriptors disseminated over the Grid. In fact, if optional factors are not
used, which corresponds to adopting the simple pick and drop functions, the
value of QoSdescriptor remains very close to 5.0. However, by using QoS-aware
factors, QoSdescriptor actually increases with time. For example, with k4 equal to
2, QoSdescriptor rapidly increases in the first phase of the dissemination process,
as a result of the activity of a very large number of copy agents (see Figure 3).
Subsequently, the value of QoSdescriptor gets stabilized at a value of about 6.1,
more than 20% higher than the initial value. Notice also that the steady value
of QoSdescriptor increases as k4 decreases, because of the higher variability of
QoS-aware factors.

In a similar way, Figure 13 shows the effect obtained by using the age-aware
factor FAgepick in formula (10). Use of this factor fosters the dissemination of
descriptors of recently updated resources, which results in a notable decrease
of the mean age of descriptors, Agedescriptor, depending on the value of k5. For
example, with k5 = 2 the steady value of this index is about 20% lower than
the value obtained without use of the age-aware factor.

In conclusion, by operating on k4 and k5 parameters, it is possible to tune
the dissemination of high quality and/or dynamic resources on the basis of
users’ requirements, without significantly modifying the overall behavior of
the replication algorithm. Moreover, QoS-aware and age-aware factors do not
influence each other: a modification in the value of k4 has no effect on the mean
age of descriptors while a modification in k5 does not affect the average QoS of
descriptors.

4. THE SO-GRID DISCOVERY ALGORITHM

The main objectives of the replication algorithm presented and evaluated so far
are the controlled replication and mapping of resource descriptors, performed
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by autonomous and self-organizing agents, and the specific dissemination of
descriptors related to high-quality and recently updated resources. Whereas
these objectives are valuable per se, their main benefit is to enable the use of
another bio-inspired algorithm, the discovery algorithm, which allows users to
find the most useful descriptors possible in a limited amount of time.

This is accomplished by issuing a number of query messages, which first
travel the Grid in a random fashion, and then are directed towards Grid re-
gions that have accumulated descriptors belonging to the required class; more
specifically towards representative peers within those regions (see Figure 2). As
the identification of representative peers is preliminary to the use of the dis-
covery algorithm, the related election algorithm is introduced in Section 4.1;
thereafter, the semi-informed discovery algorithm, which exploits a form of
marker-based stigmergy, is described in Section 4.2.

4.1 Election of Representative Peers

As with all the other So-Grid algorithms, the election algorithm is completely
decentralized, and every peer is autonomous in determining whether or not it
should assume the representative role for a class of resources. The algorithm is
performed by each peer periodically (every 2000 seconds), in three steps:

(1) The peer focuses on the class for which it stores the largest number of
descriptors, say class Ci.

(2) The peer verifies whether, for class Ci, it stores an overall number of de-
scriptors that is at least 4 times the average number of descriptors stored
by a generic peer. The last value can be easily estimated, for a local region,
through a simple exchange of data performed by peers. If this occurs, it
means that the peer has accumulated a significant number of remote de-
scriptors. In such a case, the peer elects itself as a potential representative
peer for class Ci.
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(3) Through a simple exchange of short-distance messages, the peer verifies
if, among all the peers that are 1 and 2 hops away, there are other poten-
tial representative peers for the same class. In this case it compares the
number of descriptors of class Ci with those peers. If the peer stores fewer
descriptors than any of these neighbor peers, it abandons the election al-
gorithm, otherwise it elects itself as a representative peer, and will work as
an attractor for query messages issued to discover descriptors of class Ci.

The threshold used in the second step can be increased or decreased in order
to, respectively, reduce or increase the number of representative peers. The goal
of the third step is to avoid the election of several representative peers in the
same region, which could give contrasting information to query messages.

4.2 Semi-Informed Discovery with Marker-Based Stigmergy

As mentioned in the Introduction, the So-Grid discovery algorithm is classi-
fied as semi-informed, as it is performed in two phases, a blind phase and an
informed phase.

A discovery procedure is initiated when a user needs to find descriptors be-
longing to a specified class. In the blind phase, the requesting peer issues a num-
ber of query messages that travel the network according to the random walk
approach [Lv et al. 2002]. The maximum number of query messages is four, but
it can be limited by the number of neighbor peers that are actually online. An in-
termediate peer that receives a query message forwards it to a random neighbor
without generating message replicas, so as to avoid flooding. In the blind phase,
each query message can perform a maximum number of hops equal to a TTL
(time to live) constant, which is set to seven in our study. However, the discovery
operation turns to the informed phase as soon as a query message gets to a peer
which is aware of the proximity of a representative peer and knows a route to
it. In the informed phase, the message is directed towards the representative
peer, where it will likely discover a large number of useful descriptors.

A query message terminates its journey either when it has performed a
number of hops equal to TTL, and no representative peers have been localized,
or when it arrives at a representative peer. In both cases a queryHit agent is
generated and will return to the requesting peer following the same path in
the opposite direction. In the return journey, the queryHit agent performs two
kinds of operations:

(1) In the first peers of the journey, those closer to the representative peer, the
queryHit agent deposits an amount of pheromone that will help successive
query messages to find the same representative peer. In this article, it is
assumed that a queryHit agent deposits pheromone only in the first two
peers of the return path.

(2) The queryHit collects all the descriptors of the class of interest that are
stored by the peers through which it passes. Such descriptors are the results
of the discovery request and are delivered to the requesting peer.

The first kind of operation exploits a type of stigmergy, named marker-based
stigmergy [Camazine et al. 2001], which is typical of different species of animals,
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for example, ants and termites. The mechanism works as follows. In each peer,
a pheromone base is maintained for each resource class. When a query mes-
sage gets to a peer along its blind search, it checks the amount of pheromone
that has been deposited in this peer for the resource class of interest. If the
pheromone level exceeds a threshold Hd , it means that a representative peer
is close; therefore, the discovery procedure turns to the informed phase and the
query is driven towards the representative peer, by following the pheromone
path.

As with all other So-Grid operations, the mechanism is self-organizing and
can adapt to the possible change of representative peers. In particular, an evap-
oration mechanism is defined to assure that the pheromone deposited on a peer
does not drive queries to ex-representative peers. The pheromone level at each
peer is computed every two minutes. The amount of pheromone �i, at the i-th
time interval, is given by Formula (13). Notice that this formula is the same as
that used by replication agents to control their operating mode, but uses an-
other kind of pheromone, which is related to marker-based stigmergy instead
of sematectonic stigmergy.

�i = Ev · �i−1 + φi. (13)

The evaporation rate, Ev, is set to 0.9; φi is equal to 1 if a pheromone deposit
has been made in the last time interval by at least one agent, otherwise it
is equal to 0. The pheromone level can assume values between 0 and 10. The
threshold, Hd , is set to 2. With this setting, the threshold is exceeded as soon as
a few queryHits deposit their pheromone at different time intervals, while the
algorithm is more conservative when it has to recognize that a representative
peer has been “downgraded”; up to 15 time intervals are necessary to let this
level assume a value lower than the threshold.

It can happen that a peer collects pheromone deposited by queryHits coming
from different representative peers of the same class. To tackle this, the peer
actually maintains a different pheromone base for each neighbor and for each
class. The query is forwarded to the neighbor peer associated with the higher
amount of pheromone for the class of interest, provided that this maximum
amount succeeds the threshold. In fact, it corresponds to sending the query to
the oldest representative peer, which is most likely the representative peer that
has collected the largest number of descriptors.

5. PERFORMANCE OF THE DISCOVERY ALGORITHM

Performance results related to the discovery algorithm are reported and dis-
cussed for a Grid with 2500 peers, 5 classes of resources (unless otherwise
stated) and an average of 15 resources per peer. The replication and the discov-
ery algorithms are executed concurrently: discovery requests are issued while
replication agents disseminate and replicate descriptors. The parameters of
the replication algorithm are set as discussed in Section 3.1. Performances are
evaluated through a set of performance indices, which are reported in Table II.

The first index (average number of representative peers per class) is specif-
ically defined to verify the effectiveness of the election algorithm presented in
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Table II. Performance Indices for the So-Grid Discovery Algorithm. The Terms “stk”
and “nostk” are Used when the Evaluation of the Performance Index is Restricted to

Striking Queries and nonStriking Queries, Respectively

Performance Index Value
Nrep Average number of representative peers per class
Pstk Percentage of striking queries
Nres, Nres(stk), Nres(nostk) Average number of discovered results per query
Tmed, Tmed(stk), Tmed(nostk) Average response time
Tfirst, Tfirst(stk), Tfirst(nostk) Response time of the first result
QoSresults, QoSresults(stk), Average QoS level of results
QoSresults(nostk)
AGEresults, AGEresults(stk), Average age of results
AGEresults(nostk)

Section 4.1, whereas the other indices are related to the actual discovery al-
gorithm. A striking query is defined as a discovery request that succeeds in
reaching at least one representative peer. The number of results (the num-
ber of discovered descriptors of the class of interest) and the response times
are calculated for all the requests, and separately for striking and nonstriking
queries. This is done in order to evaluate the performance improvement that
can be achieved through the use of representative peers and, more generically,
through the dissemination of descriptors by the So-Grid replication algorithm.
The response time is defined as the time elapsed between the issue of a request
and the reception of the corresponding results. We calculated the average re-
sponse time (the response time of a generic result) as well as the response time
of the first received result. This calculation assumes that the average link delay
between two adjacent peers is equal to 50 ms and the average time spent by a
peer to process a query (or queryHit) message is also equal to 50 ms. Both these
delays are assumed to have Gamma random distribution functions.

Another purpose is to analyze the performance of the discovery algorithm
when combined with the enhanced pick and drop functions, which, as seen in
Section 3.4, foster the dissemination of high QoS and recently updated descrip-
tors. To this aim, we evaluated the average QoS level and the mean age of
results discovered by generic discovery requests and, specifically, by striking
and nonstriking queries (see Section 2.4 for the definition of age).

Figure 14 shows the average number of representative peers per class versus
time along with the percentage of striking queries and the average number of
results of a generic query. To depict these indices in the same chart, the average
number of results is given in tens: the actual value is obtained by multiplying
the depicted value by 10. Indeed, these three indices are strictly correlated: as
descriptors are replicated and reorganized, more peers are elected as represen-
tative. As a consequence, more and more discovery requests (up to more than
99%) are able to reach a representative peer and, most important for the satis-
faction of the user, the number of results considerably increase. Notice that all
these indices increase in the first phase, and then they become almost stabi-
lized when the system reaches a steady state. This form of “macro” stabilization
does not mean that the system becomes static: on the contrary, it derives from
a balancing of different dynamic phenomena, such as the disconnection and
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Fig. 15. Average number of results discovered by striking and nonstriking queries, and by the
random walk algorithm.

reconnection of peers, the replication and deletion of descriptors, the changes
in the set of representative peers and so on.

Figure 14 proves the advantage deriving from the combined use of the differ-
ent So-Grid algorithms: the replication algorithm, the discovery algorithm and
the auxiliary algorithms, for example, those used to elect representative peers
(Section 4.1) and obtain a proper turnover of agents (Section 2.2). As further
evidence, Figure 15 shows that striking queries are able to discover far more
results than nonstriking queries, due to the fact that representative peers are
typically located in the center of Grid regions having a higher density of useful
descriptors. Since nearly all queries are actually striking in steady conditions,
this results in an overall performance improvement for discovery operations.
This figure also compares the results obtained with So-Grid with those obtained
with the random walk algorithm [Lv et al. 2002], which are reported through
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the dashed line. To achieve a fair comparison, we calculated the average number
of peers that are visited by a query in So-Grid, and let the random walk query
travel until it visits the same number of peers. Notice that striking queries are
able to collect about twice the number of results as the queries of the random
walk algorithm. Even if nonstriking queries collect fewer results, this has a
negligible impact on overall performance, since the percentage of nonstriking
queries is very low, as seen in Figure 14.

To complete the analysis discussed in Section 3.3, Figure 16 shows the num-
ber of results versus different values of the number of classes Nc. The figure
confirms that the number of results increases in all the examined cases, but it
decreases as the classification of resources becomes more refined, because the
fraction of resources of a single class becomes lower.

Figure 17 shows that striking queries not only discover more results but do
that in much less time. Indeed, average and first result response times of strik-
ing queries are lower (if compared to respective indices for nonstriking queries)
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and, interestingly, they further decrease as descriptors are progressively repli-
cated and representative peers are elected. The reason is that a nonstriking
query exploits the entire value of the TTL parameter, whereas a striking query
terminates its path as soon as it reaches a representative peer (see Section 4.2).
Clearly, this is another aspect that greatly increases user satisfaction.

A further set of tests is tailored to the evaluation of the impact that the
enhanced pick and drop probability functions (introduced in Section 2.4) have
on the quality and freshness of discovered results. Notice that in Section 3.4
the effect of these functions on the characteristics of generic descriptors was
evaluated, whereas focus here is specifically on the descriptors returned by
queryHit agents.

Figure 18 shows the average QoS of results obtained with different values of
the parameter k4, used to tune the selective dissemination of descriptors. Per-
formance obtained without the QoS-aware factors is labeled as “No k4 factors.”
It is interesting to observe that as the dissemination of “high QoS” descrip-
tors is fostered (through the use of low values of k4), striking queries perform
remarkably better than nonstriking queries. The reason for this is that “high
QoS” descriptors are progressively accumulated on representative peers, which
are discovered by striking queries. This is another confirmation that directing
queries to a representative peer is indeed useful.

Finally, Figure 19 shows the average age of results, AGEresults, which are
retrieved by discovery operations. By using the factor k5, it is possible to lower
the age of results to a considerable extent. For example, results discovered
with k5 equal to 2 are around 15% fresher than results discovered without
using the age-aware factor in the pick function. It is also observed that results
discovered by striking queries are on average older than those discovered by
nonstriking queries. The reason is that representative peers are peers that
have accumulated a large number of descriptors, so it is natural that they store
a number of old descriptors. Nevertheless, representative peers, by definition,
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store many more descriptors than generic peers, and allow queries to collect a
larger number of results, as observed in Figure 15. Therefore, the correct way
to interpret Figure 19 is that striking queries collect fresh results as well as
nonstriking queries; in addition, striking queries also discover a number of less
updated descriptors that can anyhow be interesting for the user. Indeed it is
always up to the user the to verify that the actual resources, corresponding to
the discovered descriptors, are still available and still have the characteristics
advertised by the descriptors.

6. RELATED WORK

Management and discovery of resources in Grids is becoming more and more
troublesome due to the dynamic characteristics of Grid hosts and resources.
In most Grid frameworks deployed so far, the information system is struc-
tured according to centralized or hierarchical approaches, mostly because the
client/server approach is still used today in the majority of distributed systems
and in Web services frameworks. For example, Version 4 of the Globus Toolkit,
the standard de facto Grid framework, is based on the Web Service Resource
Framework (WSRF [The Globus Alliance 2007]). The central component in the
GT4 information system is the Index Service, which collects information about
Grid resources and makes this information available to users and clients. The
Index Service retrieves information from multiple data sources and publishes
information retrieved by other index services, giving the possibility of build-
ing the information system according to hierarchical, decentralized or hybrid
architectures, even though the hierarchical model is still the most frequently
used [Schopf et al. 2005].

Nowadays, the research and development community agrees that the cen-
tralized approaches are becoming unbearable, since they create administrative
bottlenecks and hence are not scalable. Conversely, the adoption of decentral-
ized approaches, like the P2P paradigm, can favor Grid scalability [Iamnitchi
and Foster 2003; Taylor 2004]. A hierarchical information system can be viable
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within a single Organization or in a small-scale Grid, but it can become imprac-
tical in a large multi-institutional Grid for several reasons, among which:

—fault-tolerance is limited by the presence of a bottleneck at the tree root;
—a significant amount of memory space must be reserved in high level informa-

tion servers to store information about a large number of resources, limiting
the scalability of the Grid;

—information servers belonging to different levels must carry very different
computation and traffic loads, which leads to challenging problems concern-
ing load imbalance;

—the hierarchical organization can hinder the autonomous administration of
different Organizations.

Novel approaches for Grid management, and in particular for the construc-
tion of a scalable and efficient information system, should have the follow-
ing properties: (i) self-organization (meaning that Grid components are au-
tonomous and do not rely on any external supervisor), (ii) decentralization
(decisions are to be taken only on the basis of local information), and (iii) adap-
tivity (mechanisms must be provided to cope with dynamic characteristics of
hosts and resources).

Requirements and properties of Self Organizing Grids are sketched in Erdil
et al. [2005]. Some of the issues presented in that paper are concretely applied
in this work: for example, clustering of resources in order to facilitate discov-
ery operations, election of representative nodes within clusters, and adaptive
dissemination of information. A self-organization mechanism is proposed in
Padmanabhan et al. [2005] to classify Grid nodes in a number of groups based
on the choice of specific similarity characteristics. Each group elects a leader
node that receives requests tailored to the discovery of resources that are likely
to be maintained by such a group. This is an interesting approach but it still
has nonscalable characteristics: for example, it is required that each Grid node
has a link to all leader nodes, which is clearly problematic in a very large Grid.
A self-organizing mechanism is exploited in Chakravarti et al. [2005] to build
an adaptive overlay structure for the execution of a large number of tasks in a
Grid.

Similarly to the latter work, the So-Grid algorithms proposed in this article
exhibit several characteristics of both biological systems and mobile agent sys-
tems (MAS), as discussed in the Introduction. In many aspects So-Grid is
specifically inspired by ant algorithms, a class of agent systems which aim
to solve very complex problems by imitating the behavior of some species of
ants [Bonabeau et al. 1999].

The Anthill system [Babaoglu et al. 2002] is tailored to the design, imple-
mentation and evaluation of P2P applications based on multiagent and evo-
lutionary programming. It is composed of a collection of interconnected nests.
Each nest is a peer entity that makes its storage and computational resources
available to swarms of ants, mobile agents that travel the Grid to satisfy user re-
quests. However, while in Anthill, ants are generated after user requests, in So-
Grid agents operate continuously and autonomously, since the reorganization of
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descriptors must be performed prior to user requests. One Anthill application
is Messor [Montresor et al. 2002], which is aimed at supporting the concurrent
execution of a large set of independent jobs. In Messor the objective of ants
is to find overloaded and underloaded nests, and then assign jobs in order to
improve load balance among nests. In a similar way, in Cao [2004], agents that
are representative of different local schedulers use ant algorithms to balance
the load of these schedulers, so achieving an improved job scheduling pattern
at a global level.

The stigmergy paradigm, through the definition of techniques based on ant
pheromone, is exploited to drive the behavior of So-Grid agents, making them
able to take actions autonomously, without having an overall view of the system.
This kind of approach is discussed in Van Dyke Parunak et al. [2005], where a
decentralized scheme, inspired by insect pheromone, is used to limit the activity
of a single agent when it is no longer acting to accomplish the system goal.

The two main objectives of So-Grid are the replication and dissemination
of metadata documents and the discovery of resources. These issues are ob-
viously correlated, since an intelligent dissemination can facilitate discovery.
Nevertheless, information dissemination is also functional for other important
requirements, such as fault tolerance, load balancing, reduced access latency
and bandwidth consumption. Information dissemination is indeed a fundamen-
tal and frequently occurring problem in large, dynamic and distributed systems.
In Cohen and Shenker [2002], the authors examine a number of techniques that
can improve the effectiveness of blind search by proactively replicating data. In
particular, two natural but very different replication strategies are described:
uniform and proportional. The uniform strategy, replicating everything equally,
appears naive, whereas the proportional strategy, where more popular items
are more replicated, is designed to perform better but fails to do so. Actually, it
is shown that any strategy that lies between the two, performs better than the
two extreme strategies. Iamnitchi and Foster [2005], proposed disseminating
information selectively to groups of users with common interests, so that data
is sent only to where it is wanted. In our article, instead of classifying users,
the proposal is to exploit the classification of resources: resource metadata doc-
uments are replicated and disseminated with the purpose of creating regions
of the network that are specialized in specific classes of resources. In Aktas
et al. [2007] information dissemination is combined with the issue of effective
replica placement, since the main interest is to place replicas in the proxim-
ity of requesting clients by taking into account changing demand patterns. A
metadata document is replicated if its demand is higher than a defined thresh-
old and each replica is placed according to a multicast mechanism that aims to
discover the data system which is the closest to demanding clients.

An additional objective of the present work is the selective dissemination of
information pertaining to high QoS and dynamic resources. Interesting papers
that cope with these issues are Ran [2003], Vu et al. [2005], and Cheema et al.
[2005], which are also referenced in the Introduction and in Section 2.4.

As for the resource discovery issue, the So-Grid algorithm is in the research
category of P2P resource discovery procedures, discussed in Trunfio et al. [2007].
P2P algorithms can be categorized as structured or unstructured. Structured
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protocols, based on highly structured overlays and distributed hash tables (e.g.
Chord [Stoica et al. 2001]), are usually efficient in file sharing P2P networks,
but structure management can be cumbersome and poorly scalable in large
and dynamic Grids. Therefore, unstructured protocols seem to be preferable
in Grids. Unstructured algorithms can be further classified into blind and in-
formed [Tsoumakos and Roussopoulos 2003b]. If nodes have no information
about where the resources are actually located, a search request is performed
through a random exploration of the network; therefore a blind search mecha-
nism is adopted, such as “flooding” or “random walk” [Lv et al. 2002]. If a central-
ized or distributed information service maintains information about resource
location, it is possible to drive search requests through an informed mecha-
nism, such as “routing indices” [Crespo and Garcia-Molina 2002] or “adaptive
probabilistic search” [Tsoumakos and Roussopoulos 2003a].

The So-Grid discovery algorithm can be categorized as semi-informed, since
it combines the benefits of both blind and informed resource discovery ap-
proaches. In fact, a pure blind approach is simple to implement but has limited
performance and can cause an excessive network load, whereas a pure informed
approach requires a structured resource organization, which is generally im-
practical in a large, heterogeneous, and dynamic Grid.

So-Grid assumes the pre-existence of an algorithm for the classification of
resources. This assumption is common in similar works: in Crespo and Garcia-
Molina [2002], performance of a discovery technique is evaluated by assuming
that resources have been previously classified in four disjoint classes. Classi-
fication can be made by characterizing the resources with a set of parameters
that can have discrete or continuous values. Classes can be determined with the
use of Hilbert curves that represent the different parameters on one dimension
[Andrzejak and Xu 2002]; alternatively, an n-dimension distance metric can be
used to determine the similarity among resources [Kronfol 2002].

7. CONCLUSIONS

This article presents So-Grid, a set of algorithms for the construction of a decen-
tralized Grid information system that features profitable characteristics such
as: self-organization, since system entities are autonomous, and there is no
central control; adaptive behavior, which allows a prompt reaction to the mod-
ifications of a dynamic environment; scalability, since the So-Grid algorithms
are not biased by the Grid size. These characteristics derive from the opera-
tions of very simple agents, whose behavior is inspired by biological systems, in
particular ant and termite colonies. Two different kinds of agents operate con-
tinuously and concurrently: some replicate and reorganize resource descriptors
on the Grid, while the others perform resource discovery operations on behalf
of users.

Simulation showed that the So-Grid replication algorithm is effective in the
controlled propagation and reorganization of information. This permits the def-
inition of a semi-informed discovery algorithm that is able to find useful re-
sources in a short time. The discovery algorithm drives message queries to Grid
representative peers, which are elected within Grid regions that store a large
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number of resource descriptors having specific characteristics. An enhanced
version of the replication algorithm is defined to foster the dissemination, and
facilitate the discovery, of recently updated information and of high quality re-
sources, in the case where there is a common agreement about the evaluation
of resource quality.

The So-Grid algorithms can be used in any Grid network in which (i) connec-
tions among hosts are deployed with a P2P overlay and (ii) users, to build their
distributed applications, need to discover hardware and software resources be-
longing to given categories, so that they can choose those that are the most ap-
propriate for their requirements. Moreover, the Web Services approach, which
is adopted in modern Grid frameworks, like the Globus Toolkit, is particularly
suitable to support the multiagent approach of So-Grid. Indeed, agent move-
ments across the Grid can be handled as invocations among Web Services that
are exposed by Grid hosts.
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The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of From
Animals to Animats: The First International Conference on the Simulation of Adaptive Behavior.
MIT Press, Cambridge, MA, USA, 356–363.

ERDIL, D. C., LEWIS, M. J., AND ABU-GHAZALEH, N. 2005. An adaptive approach to information dis-
semination in self-organizing grids. In Proceedings of the International Conference on Autonomic
and Autonomous Systems (ICAS’06). Silicon Valley, CA.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 5, Publication date: May 2008.



5:36 • A. Forestiero et al.

FORESTIERO, A., MASTROIANNI, C., AND SPEZZANO, G. 2005. Construction of a peer-to-peer informa-
tion system in grids. In Self-Organization and Autonomic Informatics (I), H. Czap, R. Unland,
C. Branki, and H. Tianfield, Eds. Frontiers in Artificial Intelligence and Applications, vol. 135.
IOS Press, Amsterdam, The Netherlands, 220–236.

FORESTIERO, A., MASTROIANNI, C., AND SPEZZANO, G. 2006. An agent based semi-informed protocol
for resource discovery in grids. In Proceedings of the International Conference on Computational
Science(4) (ICCS’06). 1047–1054.

FOSTER, I. AND KESSELMAN, C. 2003. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco, CA.

GRASSE’, P. 1959. La reconstruction du nid et les coordinations inter-individuelles chez belicositer-
mes natalensis et cubitermes sp. la thorie de la stigmergie: Essai d’interpretation du comporte-
ment des termites constructeurs. Insectes Sociaux 6, 41–84.

IAMNITCHI, A. AND FOSTER, I. 2003. On death, taxes, and the convergence of peer-to-peer and grid
computing. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03).
Berkeley, CA.

IAMNITCHI, A. AND FOSTER, I. 2005. Interest-aware information dissemination in small-world com-
munities. In Proceedings of the 14th IEEE International Symposium on High Performance Dis-
tributed Computing, (HPDC). Research Triangle Park, NC, USA.

IAMNITCHI, A., FOSTER, I., WEGLARZ, J., NABRZYSKI, J., SCHOPF, J., AND STROINSKI, M. 2003. A peer-to-
peer approach to resource location in grid environments. In Grid Resource Management. Kluwer
Publishing.

KRONFOL, A. Z. 2002. FASD: A Fault-tolerant, Adaptive, Scalable, Distributed Search Engine.
PhD dissertation, at http://citeseer.ist.psu.edu/571354.html.

LV, Q., CAO, P., COHEN, E., LI, K., AND SHENKER, S. 2002. Search and replication in unstructured
peer-to-peer networks. In Proceedings of the 16th International Conference on Supercomputing
(ICS’02). ACM Press, New York, NY, 84–95.

MARTIN, M., CHOPARD, B., AND ALBUQUERQUE, P. 2002. Formation of an ant cemetery: Swarm intel-
ligence or statistical accident? Fut. Gen. Comput. Syst. 18, 7, 951–959.

MONTRESOR, A., MELING, H., AND MONTRESOR, A. 2002. Messor: Load-balancing through a swarm of
autonomous agents. In International Workshop on Agents and Peer-to-Peer Computing. Bologna,
Italy.

PADMANABHAN, A., WANG, S., GHOSH, S., AND BRIGGS, R. 2005. A self-organized grouping (sog) method
for efficient grid resource discovery. In Proceedings of the 6th IEEE/ACM International Workshop
on Grid Computing. Seattle, WA.

PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER, M. M., AND DEMERS, A. J. 1997. Flexible
update propagation for weakly consistent replication. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles (SOSP’97). ACM Press, New York, NY, 288–
301.

RAN, S. 2003. A model for Web services discovery with qos. ACM SIGecom Exch. 4, 1, 1–10.
SCHOPF, J. M., D’ARCY, M., MILLER, N., PEARLMAN, L., FOSTER, I., AND KESSELMAN, C. 2005. Monitoring

and discovery in a Web services framework: Functionality and performance of the globus toolkit’s
mds4. Tech. Rep. ANL/MCS-P1248-0405, Argonne National Laboratory. April.

SHARMA, P., ESTRIN, D., FLOYD, S., AND JACOBSON, V. 1997. Scalable timers for soft state proto-
cols. In Proceedings of the 16th Annual Joint Conference of the IEEE Computer and Com-
munications Societies, (INFOCOM’97). Vol. 1. IEEE Computer Society, Washington, DC, 222–
229.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 2001. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proceedings of the Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM’01).
ACM Press, New York, NY, 149–160.

SYCARA, K. 1998. Multiagent systems. Artif. Intell. Mag. 10, 2, 79–93.
TAYLOR, I. J. 2004. From P2P to Web Services and Grids: Peers in a Client/Server World. Springer.
THE GLOBUS ALLIANCE. 2007. The Web services resource framework, http://www.globus.org/wsrf/.
TRUNFIO, P., TALIA, D., PAPADAKIS, H., FRAGOPOULOU, P., MORDACCHINI, M., PENNANEN, M., POPOV, K.,

VLASSOV, V., AND HARIDI, S. 2007. Peer-to-peer resource discovery in grids: Models and systems.
Fut. Gen. Comput. Syst. 23, 7 (Aug.), 864–878.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 5, Publication date: May 2008.



So-Grid: A Self-Organizing Grid Featuring Bio-Inspired Algorithms • 5:37

TSOUMAKOS, D. AND ROUSSOPOULOS, N. 2003a. Adaptive probabilistic search for peer-to-peer net-
works. In Proceedings of the Third IEEE International Conference on P2P Computing (P2P’03).
102–109.

TSOUMAKOS, D. AND ROUSSOPOULOS, N. 2003b. A comparison of peer-to-peer search methods. In
Proceedings of the 6th International Workshop on the Web and Databases (WebDB’03). San Diego,
CA, 61–66.

VAN DYKE PARUNAK, H., BRUECKNER, S., MATTHEWS, R. S., AND SAUTER, J. A. 2005. Pheromone learn-
ing for self-organizing agents. IEEE Trans. Syst. Man, Cyber. Part A 35, 3, 316–326.

VU, L.-H., HAUSWIRTH, M., AND ABERER, K. 2005. QoS-based service selection and ranking with
trust and reputation management. In Proceedings of the International Conference on Cooperative
Information Systems (CoopIS’05), 31 Oct.–4 Nov. 2005, Agia Napa, Cyprus. Vol. 3760. 446–483.

Received April 2007; revised February 2008; accepted February 2008

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 5, Publication date: May 2008.


